Distributed Source Coding using Finite-Length Rate-Compatible LDPC Codes: The Entire Slepian-Wolf Rate Region

The base station collects the compressed sensor readings and recovers the original signals error free. The following three points are significance of our work: First, we studied the DSC of applications with finite-length sequences. DSC using finite-length channel codes introduces new challenges, since the assumption of capacity-approaching channel code is not valid anymore. We model the distributed source coding problem with code design for a set of parallel channels. This model; for short-length sequences; provides the advantage of using non-uniform, rate adaptive and unequal error protection codes. Second, we investigated the DSC of correlated sources when there is no prior knowledge about the correlation parameter at the time of code design. We show how method of distributed source coding at arbitrary rates can also be applied when the correlation parameter is unknown in advance. Third, our work focused on DSC based on sending parity bits. This is a substantial diversion over the other possible method, which is based on syndromes. If the wireless channel is ideal, both syndrome and parity methods can be used. However, in applications where wireless channels is not error free, the syndrome-based method cannot be applied for distributed source coding.