

LONGITUDINAL CHANGES IN COUNTERMOVEMENT JUMP PERFORMANCE IN A DIVISION I WOMEN'S SOCCER TEAM

Lambert AB, Giordano JA, Fowler CW, Hogg JA

Authors have no conflicts of interest to disclose.


Introduction

- The ability to quantify jump performance and lower limb muscle function in athletes would be beneficial for both training and rehabilitation purposes.¹
- Measures of movement quality may be an effective method for identifying individuals who are at a high risk of injury.²
- Analyzing the relationship between training loads and key performance measures can help guide training plans and assess an athlete's readiness to compete.³
- The Countermovement Jump is the most common test of lower body neuromuscular function in peer-reviewed studies involving athletes.³

Introduction

- An important thing to consider is the comparison between single and double leg tasks. Single-leg landings present a greater challenge to maintaining proper mechanics.⁵
- Waveform (force-time) analysis, rather than analyzing discrete variables, may have implications for injury screening and intervention.⁵
- The countermovement jump possesses qualities that can be best analyzed by waveform analysis.⁵

Purpose Statement

To analyze single- and double-leg CMJ force-time waveforms before and after a single soccer season to assess jump performance in each limb.

Participants & Study Design

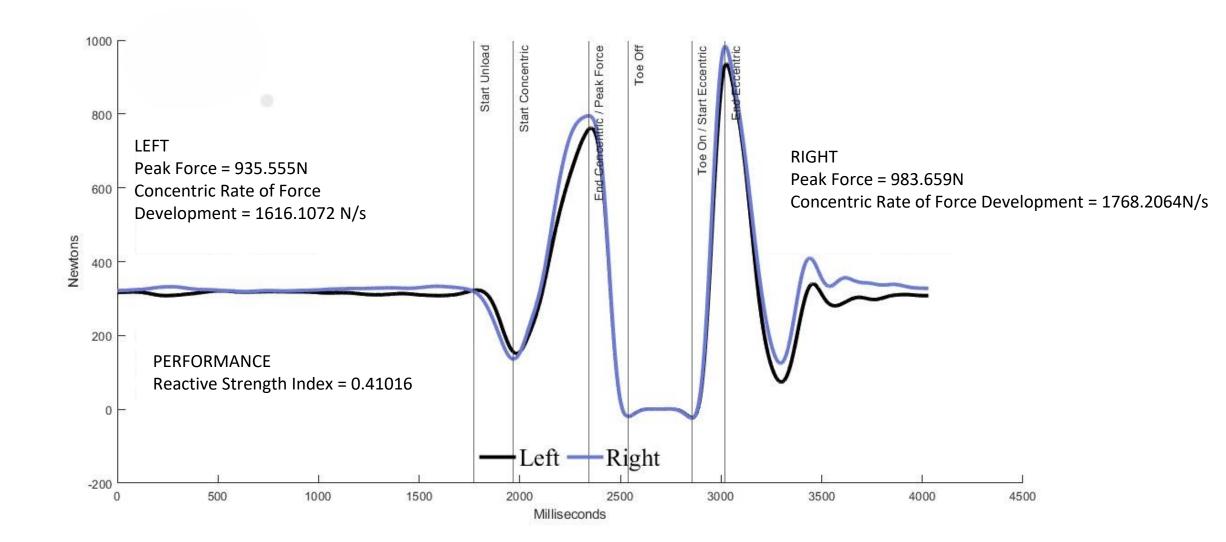
- Demographics
 - 22 Division I Women's Soccer Athletes
 - □ 19.2 ± 1.15 years
 - □ 167.62 ± 5.86 cm
 - □ 63.61 ± 7.10 kg
- Inclusion criteria
 - Varsity athlete
 - **•** Female
 - Ability to complete jumping task
- Each participant provided written informed consent (IRB #: 23-052)

Longitudinal Within-Subjects Study

- Independent Variables
 - □ Session: Pre/Post test
 - CMJ Task: Single/Double
 - □ Limb: Left/Right

Methods

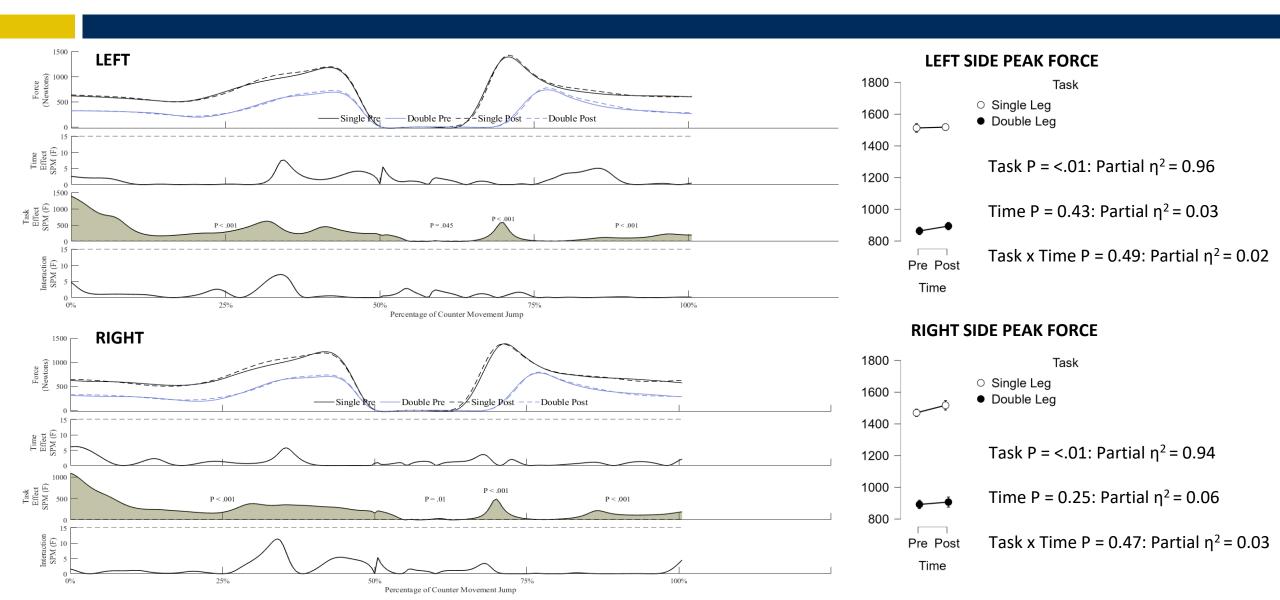
- □ 22 female soccer players performed 3 different jumps before and after the season.
 - Double leg, followed by right and then left single-leg countermovement jumps.
 - □ Told to stand with one foot on each force plate
 - Told to put hands on hips
 - Quick load
 - Minimize time on the ground
 - Maximize time in air
 - Given familiarization rounds
 - One maximal jump was collected for subsequent analysis

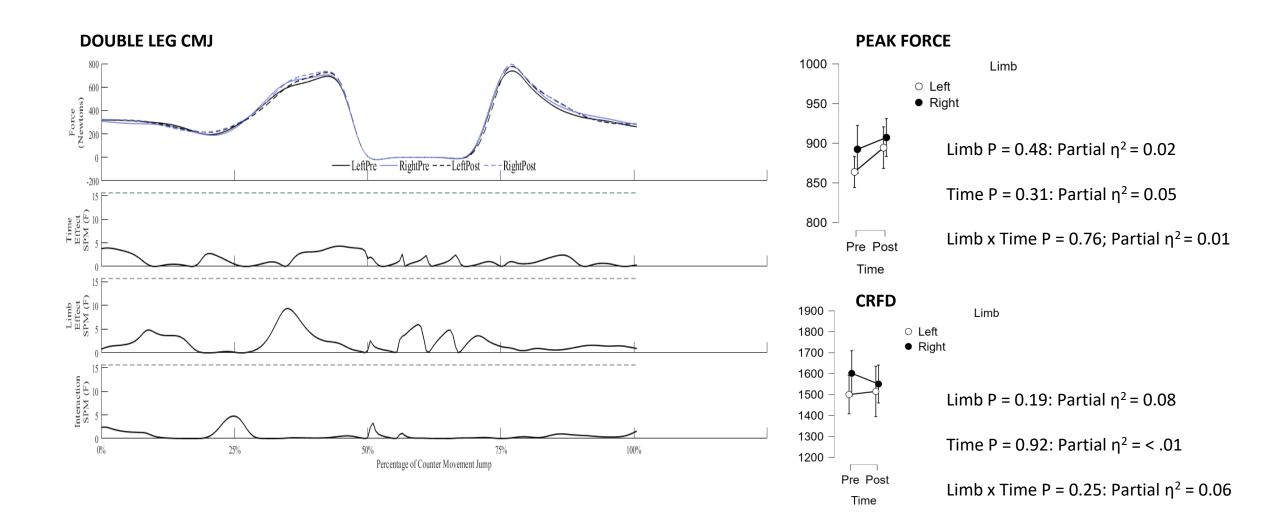


https://www.sportsmith.co/articles/guide-to-using-force-plates-in-sports-performance/

Data Handling

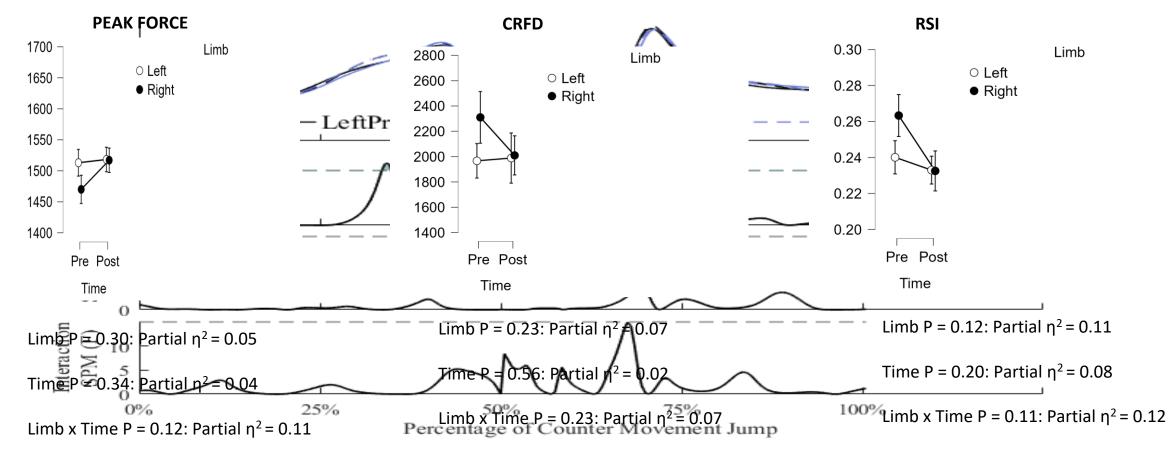
- Triaxial side-by-side embedded force plates (Bertec, Columbus, OH, USA) captured force plate data at 1000 Hz.
- Data were low-pass filtered at 5 Hz and exported from Vicon Nexus.
- Custom MATLAB script was generated to process force plate data and generate waveforms.
 - □ Landmark registered to toe-off
 - One second before toe-off to one second following toe-off
 - □ Interpolated to 202 data points
- Discrete data were assembled using values from the waveforms.
 - Peak force (PF)
 - Concentric rate of force development (CRFD)
 - □ Reactive strength index (RSI)


Descriptive Waveform—Dependent Variables

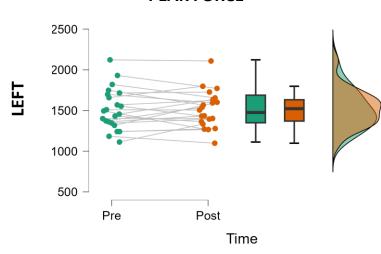

Statistical Analyses

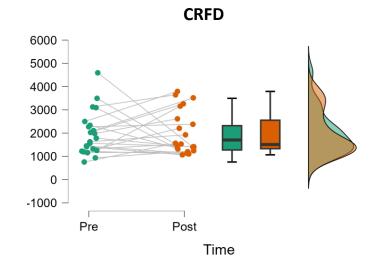
- Waveform analyses—4 separate 2x2 statistical parametric mapping (SPM) RMANOVAs
 - □ For each limb, task (single leg CMJ / double leg CMJ) x time (pre / post)
 - □ For each task, limb (right / left) x time (pre / post)
- **Discrete analyses**—7 2x2 RMANOVAs for discrete variables
 - □ Task by Time peak force for each limb (left / right)
 - □ Limb by Time peak force, CRFD for each task (single leg CMJ / double leg CMJ)
 - □ For single leg CMJ, RSI was also inspected in a limb by time analysis
- A priori significance level (p < .05)
- □ Partial \mathbb{T}^2 were interpreted as .01 (small), .06 (medium), and .14 (large)⁷
- □ MATLAB (R2022a, Mathworks, Natick, MA, USA) was used to run SPM (spm1d.org) code
- □ JASP (0.16.2.0) was used for all discrete analyses

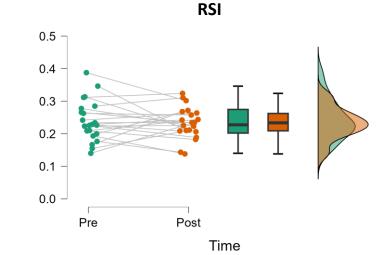
Results—Task x Time

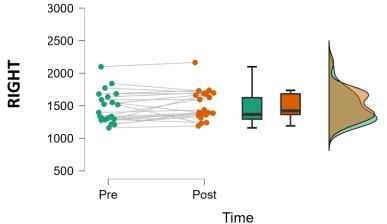


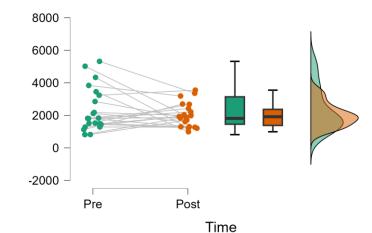
Results—Limb x Time Double Leg

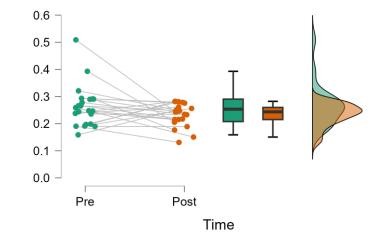

Results—Limb x Time Single Leg


SINGLE LEG CMJ




Results—Limb x Time Single Leg – Raincloud Plots


PEAK FORCE



Discussion

- Single-leg CMJ exposes more differences than double-leg CMJ
 - Single leg does not allow for compensation
 - □ This has been observed with double and single-leg forward hopping.
- □ Pre Post single leg CMJ differences
 - Decrease in R leg CRFD (Cohen's d = -0.23)⁵
 - □ Increase in R leg Peak Force (Cohen's d = 0.33)⁵
 - **Discrete vs Waveform Analysis**
- Dominant leg and time
 - □ There are asymmetries between dominant and non-dominant limbs.⁸
 - Kicking leg is an open kinetic chain movement
 - □ Plant leg is a closed kinetic chain movement

Clinical Relevance

□ Single-leg assessment

- □ Asymmetry measurements
- Closed vs Open kinetic chain movement analysis
- Concentric vs Eccentric strength
- Closed-chain kinetic movements for dominant kicking leg
 - **□** Right leg is getting weaker eccentrically and slower concentrically
- □ Vald Force plate data:
 - Force x Time curves
 - □ Analyzes waveform data automatically
 - □ Peak landing force (Vald) = peak force (current data)

Limitations of the Study

- □ Small sample size underpowered for injury analysis
 - □ May not have everyone complete pre/post data due to injury
 - $\square \quad 26 \longrightarrow 22 \text{ athletes}$
 - Difficult to match injuries to uninjured appropriately
- □ Unable to control for other potentially salient variables
 - **D** Position
 - □ Year in school
 - □ Height/Mass
 - □ Starter/Non-starter

Future Research

- Further research is needed to explore single-leg asymmetries between dominant and non-dominant limbs using waveform and discrete force-plate data.
 - Look at single-leg data
 - Dominant leg
- □ Injury data can be difficult to gather
 - Bigger sample size
 - Match comparisons as close as possible
 - More in-season single-leg limb assessments

References

- Stadnyk M, Sepehri M, Cook M, Adeeb S, Westover L. Quantifying asymmetry and performance of lower limb mechanical muscle function in varsity athletes-using non-countermovement jumps. *J Strength Cond Res.* 2023;37(1):98-106. doi:10.1519/JSC.00000000004215
- Landis SE, Baker RT, Seegmiller JG. Non-contact anterior cruciate ligament and lower extremity injury risk prediction using functional movement screen and knee abduction moment: an epidemiological observation of female intercollegiate athletes. *Int J Sports Phys Ther*. 2018;13(6):973-984. doi:10.26603/ijspt20180973
- ^{3.} Guthrie B, Jagim AR, Jones MT. Ready or not, here I come: a scoping review of methods used to assess player readiness via indicators of neuromuscular function in football code athletes. *Strength Cond J*. 2022;45(1):93-110. doi:10.1519/ssc.00000000000735
- ⁴ Hogg JA, Vanrenterghem J, Ackerman T, Nguyen AD, Ross SE, Schmitz RJ, Shultz SJ. (2020). Temporal kinematic differences throughout single and double-leg forward landings. *J Biomech*. 2020;99:109559. doi:10.1016/j.jbiomech.2019.109559
- 5. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Taylor and Francis; 1988.
- McGrath TM, Waddington G, Scarvell JM, et al. The effect of limb dominance on lower limb functional performance a systematic review. *J Sports Sci.* 2016;34(4):289-302. doi:10.1080/02640414.2015.1050601