Effects of Perceptual Response Training on Injury Incidence among Women's Collegiate Soccer Players

Alejandra J. Gullion, Katarina L. McMahan, Lauren T. Brooks

Introduction

- Perceptual decisions influence injury risk and sport performance¹
 - Perception = Detection + discrimination of environmental stimuli
 - Perceptions linked to muscle activations through decision processes
- Optimal sport performance depends on fast + accurate decisions
 - □ Rapid deceleration/acceleration provides competitive advantage²
 - Avoidance of collisions or resistance to impending impacts may reduce risk for concussion + musculoskeletal injury³

Introduction

- Virtual reality (VR) precisely measures visual stimulus responses⁴
 Permits analysis of speed-accuracy tradeoff and across-trial variability
 Perceptual response training may enhance decision making
- Estimation of injury risk is essential to guide injury prevention⁵
 Existing tests insufficiently sensitive to detect subtle impairments
 History of concussion is known to have long-lasting adverse effects

To assess the possible beneficial effect of immersive VR

perceptual response training on decision-related metrics and

injury incidence among college women's soccer players.

Participants and Procedures

□ NCAA D-I soccer players (n=26)

- □ Inclusion: On team roster for 2024 season
- **Exclusion:** Any injury-related impairment
 - Age: 19.5 ±1.3 years
 - Height: 168.0 cm ±5.5 cm
 - Mass: 63.6 kg ±14.9 kg

□ VR tests

- □ Baseline
 - Training group (early arrival): n=10
- Pre-participation
 - □ Training group (after 10 training sessions)
 - □ No training (late arrival): n=16
- Post-season follow-up

* Missing data imputation with group mean value (2 cases)

- Global Well-Being Index
 - □ Self-reported history of concussion
- Injury surveillance
 - □ First practice session to final game (14 wks)
 - □ Any core or lower extremity sprain/strain
 - □ Acute or overuse musculoskeletal injury

VR Perceptual Response Training

□ 40 trials per session

- □ Stimulus-response instructions:
 - Move same direction as filled circles
 - Move opposite direction of rings

□ Progression

- Level 1: 1 circle or ring
- □ Level 2: 3 circles/rings; target in middle
- □ Level 3: 3 circles/rings; target flashing
- □ Level 4: 3 circles/rings; faster motion

Level 1

Operational Definitions (Elapsed Time Segments)

* 6° Angular Rotation (Eyes and Neck) or 10 cm Linear Translation (Arm and Step)

Key Metrics:

Rate Correct per Second = # Correct / Sum of Perceptual Latency Values for 40 Trials

Intra-Individual Variability = <u>Standard Deviation of Perceptual Latency Values</u> across 40 Trials

* Perceptual Latency metrics for <u>Neck</u> most sensitive to change and had strongest associations with injury

Statistical Analyses and Results

- □ Paired t-tests for Training Group Pre- to Post-training comparisons
 - □ Neck Rate Correct per Second Perceptual Latency
 - □ *P*=.012; d=1.00
 - Neck Perceptual Latency Variability
 - □ *P*=.002; d=1.34
 - □ Neck Behavioral Efficiency Index (RCS-PL / PL Variability)
 - □ *P*<.001; d=1.75

□ Repeated measures ANOVA for Group Pre-participation and Follow-up comparisons

- □ Neck Rate Correct per Second Perceptual Latency
 - □ Group Main Effect *P*<.001; η_p^2 =.510
- Neck Perceptual Latency Variability
 - □ Group Main Effect *P*<.001; η_p^2 =.503
- Neck Behavioral Efficiency Index (RCS-PL / PL Variability)
 - □ Group X Session Interaction *P*=.017; ; η_p^2 =.216, Group Main Effect *P*<.001; η_p^2 =.717

Kaplan-Meier time-to-event analysis for ROC-derived cut point for Neck BEI
 Mantel-Cox Log Rank P = .059

Neck Rate Correct per Second – Perceptual Latency

Rate Correct per Second = # Correct / Sum of Perceptual Latency for 40 Trials

Neck Perceptual Latency Variability

10

Across-Trial Variability = Standard Deviation of Perceptual Latency over 40 Trials

NCAA Div-I Women's Soccer Players (N=26)

Pre-Participation Assessment: Training Group ($^{\circ}$ **) n=10 and No Training Group (X) n=16**

Neck Perceptual Latency Variability

Neck Behavioral Efficiency Index – Perceptual Latency

12

Behavioral Efficiency Index = Rate Correct per Second / Across-Trial Variability

Neck Perceptual Latency Behavioral Efficiency Index

Neck Perceptual Latency Behavioral Efficiency Index

		Core or LE Injury		
		Yes	No	
Lo Neck PL BEI	≤ 21.6	13	7	PPV: 65%
	> 21.6	1	5	NPV: 83%
	Total	14	12	

Sensitivity: 93% Specificity: 42%

OR = 9.29 (95% CI: 0.90, 95.95)

		Core or LE Injury		
		Yes	No	
Starter Status	Yes	10	6	PPV: 63%
	No	4	6	NPV: 60%
	Total	14	12	

Sensitivity: 71% Specificity: 50%

OR = 2.50 (95% CI: 0.50, 12.64)

Kaplan-Meier Time to Injury Analysis (Core or Lower Extremity Injury)

Neck Perceptual Latency Behavioral Efficiency Index

= (Rate Correct Score / Across-Trial Variability)

Mantel-Cox Log Rank P = .059

Cox Regression Time to Injury Analysis (Core or Lower Extremity Injury)

Days of Injury Avoidance (Chronic or Acute CLEI)

Clinical Relevance

Our findings affirm VR training potential to produce tangible benefits⁶
 Cognitive abilities that may augment physical abilities (strength/power)^{1,7}

Perceptual decision making is foundational to all behaviors⁸ Injury avoidance likely depends on decisions that are rapid, accurate, and consistent

Speed-accuracy tradeoff (RCS) and consistency across trials (PLV) are important metrics to quantify perceptual decision making capability

□ Behavioral efficiency index (RCS/PLV) reflects brain processing efficiency⁹

Clinical Relevance

 Despite lack of continued training over a 14-week period, the beneficial effects of pre-season training were largely retained

□ In-season training may ensure maintenance of optimal function

- Training should not focus exclusively on "physical" performance (strength, power, endurance, etc.)
 - Perceptual decision making appears to be a critical factor influencing sport performance capabilities and injury susceptibility

References

- 1. Gokeler A, et al. Neurocognitive errors and noncontact anterior cruciate ligament injuries in professional male soccer players. *J Athl Train*. 2024;59(3):262-269.
- 2. Xiong Q, Song D-L. Neuromechanical proficiency in elite performance decision-making: An event-related potential (ERP) analysis. *SLAS Technol*. 2024;29(5):100171.
- 3. Kung SM, et al. The effects of anticipation and visual and sensory performance on concussion risk in sport: a review. *Sports Med Open*. 2020;6(54), doi:10.1186/s40798-020-00283-6.
- 4. Burcal CJ, et al. The effects of cognitive loading on motor behavior in injured individuals: a systematic review. *Sports Med*. 2019;49:1233-1253.
- 5. Roach MH, et al. Musculoskeletal injury risk stratification: A traffic light system for military service members. *Healthcare* (Basel). 2023;11(12):1675, doi:10.3390/healthcare11121675.
- 6. Richlan F, et al. Virtual training, real effects: A narrative review on sports performance enhancement through interventions in virtual reality. *Front Psychol*. 2023;14:1240790.
- 7. Crivelli D, Balconi M. Neuroassessment in sports: an integrative approach for performance and potential evaluation in athletes. *Front Psychol*. 2022;13:747852.
- 8. Stine GM, et al. A neural mechanism for terminating decisions. *Neuron*. 2023;111(16):2601-2613.
- 9. Perri RL, Di Russo F. Executive functions and performance variability measured by event-related potentials to understand the neural bases of perceptual decision-making. *Front Hum Neurosci*. 2017;11:556.