Associations of Virtual Reality Metrics and Self-Reported Well-Being with Injury Occurrences among High School Athletes

Wynn KR & Dill PW, Acocello SN, and Wilkerson GB

1

Background

- ☐ Injury risk reduction depends on the ability to identify individuals who have elevated susceptibility¹
 - □ Slow neurocognitive reaction time appears to increase risk for a lower extremity sprain/strain during sport participation¹
 - Strong association identified between asymmetrical whole body reactive movement responses and history of self-reported concussion²
 - □ Evidence exists for an association between psychosocial stress and brain information processing efficiency, ^{3,4} as well as injury incidence^{5,6}

Purpose

□ To identify any prospective association of perceptualmotor function, suboptimal well-being, and/or concussion history with the occurrence of a core or lower extremity sprain or strain among male and female high school athletes

3

3

Methods

- Participants: 68 high school athletes
 - □ 41 Girls' varsity soccer players
 - □ 27 Boys' varsity football players
 - Exclusion criterion: current injury

IRB #22-071

- ☐ Pre-Season Performance Test
 - □ Virtual Reality Perceptual-Motor Efficiency
 - Whole-Body Reactive Response
 - Eyes Neck Arm Step
- □ Pre-Season Survey Administration
 - □ Global Well-Being Index (GWBI)
- Injury Documentation
 - □ Electronic injury record
 - Core or Lower Extremity Injury (CLEI)
 - Any acute sprain or strain that received treatment
 - Surveillance across pre-season and regular season

Pre-Season Performance Test

Immersive Virtual Reality Test

- □ 40 trials requiring lunging/reaching responses to horizontally moving dots
- ☐ Auditory tone and controller vibration feedback provided when target contacted

5

Virtual Reality Measurements

* 6° Angular Rotation (Eyes and Neck) or 10 cm Linear Translation (Arm and Step)

Operational Definitions of Perceptual Latency and Response Time

Methods: VR Test Metrics

- 40-Trial Mean and Trial-to-Trial Intra-Individual Variability (IIV)
 - ☐ Perceptual Latency (PL): Eyes, Neck, Arm, Step
 - ☐ Response Time (RT): Eyes, Neck, Arm, Step
- □ Speed-Accuracy Composite Metric: Rate Correct Score (RCS)
 - □ Calculated from Arm Movements (Hand Controller)
 - □ RCS-PL = Number Correct / Sum of PL Values
 - □ RCS-RT = Number Correct / Sum of RT Values

7

Pre-Season Survey: Global Well-Being Index (GWBI)

		•		J	•	•
Check (√) each of the problems function or derive maximum e						
1. General Pain or Discomfort						
☐ Headaches/Pressure in Head	d □ Neck Pain □ N	on-Specific Body Discomfort	Follow-up question	s appear if at least 1 p	roblem selected within a	given category:
2. Sleep-Related Problems □ Trouble Falling Asleep	☐ Sleeping Less	☐ Fatigue/Drowsiness	How frequently has to O	the worst problem been of 1 O Rare to Occasional	experienced over the past 2 ○ Occasional to Frequent	3 0
3. Mood-Related Problems □ Nervousness/Anxiety	☐ Sadness/Depression	☐ Irritability/Stress	When was the most 1 > 1 Year Ago	recent occurrence of the 2 O > 6 Months Ago	worst problem among the 3 O	se that were selected? 4 ○ Current Week
4. Musculoskeletal Problems (During Activities of Daily ☐ Joint Stiffness	y Living) Muscle Spasms/Tightness	Estimate the severity 1 O Mild to Moderate		any point over the past co 2 O rate to Severe	ouple of years? 3 O Severe
5. High-Intensity Performance Running Speed Limitation		ation 🕒 Endurance Limitation				
						8

Injury Surveillance

Injury definition:

□ Any core or lower extremity sprain or strain that was evaluated, regardless of whether or not time was lost from participation

CLEI:	Female CLEIs:	Male CLEIs:	All Recorded CLEIs:
Core or Lower Extremity Injury	Occurrence: Ankle: 7 Knee: 4 Hip/Groin: 1 Low Back: 1 Total: 13	Occurrence: Ankle: 5 Knee: 1 Hip/Groin: 1 Low Back: 0 Total: 7	Ankle: 12 Knee: 5 Hip/Groin: 2 Low Back: 1 Total: 20
	32% (13/41)	26% (7/27)	29% (20/68)

• Receiver operating characteristic and cross-tabulation analyses used to quantify strength of associations between predictors and outcome (CLEI)

9

Core or Lower Extremity Injury

N=68 (Male=27 + Female=41) Injured: 29% (20/68)

Results of Univariable Cross-Tabulation Analyses of Binary Predictors							
Variable	AUC	Cut-Point	P*	Sensitivity	Specificity	OR (95% CI)	
Hx SRC ≥ 2	-	yes/no	.016	0.30	0.94	6.43 (1.42, 29.10)	
Arm Response Time Avg	.690	≥ 1.258	.004	0.70	0.69	5.13 (1.65, 15.96)	
Step Response Time IIV	.652	≥ 0.301	.005	0.75	0.63	5.00 (1.55, 16.09)	
RCS Response Time Avg	.618	≤ 0.694	.060	0.55	0.69	2.69 (0.92, 7.85)	
Neck Perceptual Latency IIV	.613	≥ 0.321	.076	0.60	0.63	2.50 (0.86, 7.28)	
Neck Perceptual Latency Avg	.610	≥ 0.673	.240	0.65	0.48	1.71 (0.58, 5.03)	
Arm Perceptual Latency Avg	.593	≥ 0.811	.044	0.50	0.75	3.00 (1.01, 8.96)	

AUC: Area Under Curve P*: Fisher's Exact 1-Sided P-Value OR: Odds Ratio Hx SRC: History of Sport-Related Concussion

CI: Confidence Interval RCS: Rate Correct Score IIV: Intra-Individual Variability

Core or Lower Extremity Injury

Male=27 Injured: 26% (7/27)

Results of Univariable Cross-Tabulation Analyses of Binary Predictors								
Variable	AUC	Cut-Point	Р	Sensitivity	Specificity	OR	(95% CI)	
Neck Perceptual Latency Avg	.764	≥ 0.654	.048	0.86	0.60	9.00	(0.90, 89.61)	
Arm Response Time Avg	.721	≥ 1.257	.024	0.57	0.90	12.00	(1.48, 97.18)	
Step Response Time IIV	.721	≥ 0.282	.048	0.86	0.60	9.00	(0.90, 89.61)	
Neck Perceptual Latency IIV	.679	≥ 0.330	.088	0.57	0.80	5.33	(0.83, 34.09)	
Arm Perceptual Latency Avg	.629	≥ 0.742	.088	0.57	0.80	5.33	(0.83, 34.09)	
RCS Response Time Avg	.621	≤ 0.83	.161	0.86	0.45	4.91	(0.50, 48.62)	

AUC: Area Under Curve P*: Fisher's Exact 1-Sided P-Value RCS: Rate Correct Score IIV: Intra-Individual Variability

OR: Odds Ratio

CI: Confidence Interval

11

Core or Lower Extremity Sprain or Strain

Female=41 Injured: 32% (13/41)

Results of Univariable Cross-Tabulation Analyses of Binary Predictors								
Variable	AUC	Cut-Point	Р	Sensitivity	Specificity	OR (95% CI)		
Hx SRC ≥ 2	-	yes/no	.008	0.39	0.96	16.88 (1.71, 166.21)		
Arm Response Time Avg	.695	≥ 1.385	.029	0.62	0.75	4.80 (1.18, 19.61)		
GWBI Mood-Related Problems	.643	≥7	.045	0.54	0.79	4.28 (1.04, 17.62)		
Step Response Time IIV	.615	≥ 0.301	.043	0.77	0.57	4.44 (1.00, 19.75)		
RCS Response Time Avg	.615	≤ 0.67	.048	0.62	0.71	4.00 (1.00, 15.99		
Arm Perceptual Latency Avg	.573	≥ 0.881	.066	0.46	0.82	3.94 (0.92, 16.94)		
Neck Perceptual Latency IIV	.549	≥ 0.347	.113	0.62	0.64	2.88 (0.74, 11.21)		
Neck Perceptual Latency Avg	.497	≥ 0.702	.163	0.54	0.68	2.46 (0.64, 9.49)		

AUC: Area Under Curve P*: Fisher's Exact 1-Sided P-Value Hx SRC: History of Sport-Related Concussion

OR: Odds Ratio

CI: Confidence Interval RCS: Rate Correct Score IIV: Intra-Individual Variability

Cross-Tabulation Analyses

Males + Fer	Core or LE Injury			
		Yes	No	Incidence
Concussion	Yes	6	3	67%
History ≥ 2	No	14	45	24%
	Total	20	48	
	Sensiti	vity 30%	Specificity 94%	
	χ^2 (1)=6.93 1-Sided <i>P</i> =.016		OR=6.4 95% CI: 1	43 .42, 29.10

Malas	Core or			
Males		Yes	No	Incidence
Concussion	Yes	1	2	33%
History ≥ 2	No	6	18	25%
	Total	7	20	

Sensitivity 14% Specificity 90% $\chi^2(1)$ = .096 **OR=1.50** 95% CI: 0.12, 19.64

	Core or			
Female	Yes	No	Incidence	
Concussion	Yes	5	1	83%
History ≥ 2	No	8	27	15%
	Total	13	28	

Sensitivity 39% Specificity 96%

χ²(1)=8.65 **OR=16.88** 1-Sided *P*=.008 95% CI: 1.71,166.21

13

Arm Response Time (40-Trial Average [seconds])

Males: $1.186 \pm .134$ Females: $1.326 \pm .251$ Diff: 0.140 P = .004

Females: GBWI Mood-Related Problems (Category 3)

(Nervousness/Anxiety - Sadness/Depression - Irritability/Stress)

Famalas	Core or			
Females		Yes	No	Incidence
GWBI Category 3	Yes	7	6	54%
≥ 7 points	No	6	22	21%
	Total	13	28	
Sensiti $\chi^2(1)=4.3$ 1-Sided P 0		tivity 54%	Specificit	y 79%
			OR=4.2 95% CI: 1.	-

15

Discussion

- □ Both sex-specific and sex-combined analyses included Arm Response Time Avg and Step Response Time IIV among strongest predictors of CLEI
- ☐ Arm Response Time Avg 140 ms faster for Males than Females (P=.004)
- □ Neck Perceptual Latency Avg strongest predictor of CLEI for Male athletes
- □ History of ≥ 2 SRCs strongest predictor of CLEI for Female athletes
- □ GWBI Mood-Related Problems also important for Female athletes

Discussion

- □ Each of the factors associated with CLEI occurrence may relate to impaired functional connectivity within and between brain networks³
 - □ Slowed information processing prolonged Arm and Neck Perceptual Latency Avg and Arm Response Time Avg
 - □ Impaired cognitive flexibility elevated trial-to-trial performance inconsistency (Step Response Time IIV and Neck Perceptual Latency IIV)
- ☐ Immersive VR may provide a means to identify a subtle perceptualmotor processing deficiency that otherwise remain undetected²

17

17

Clinical Relevance

- ☐ Injury risk reduction may need to address sex-specific considerations
 - ☐ Male Neck Perceptual Latency Avg may relate to vestibular dysfunction⁸
 - ☐ Sex-specific Arm Response Time Avg cut points needed to estimate risk
 - ☐ Intervention for Mood-Related Problems especially important for Females³
- □ VR assessment of perceptual-motor function appears to provide data relevant to interrelated manifestations of impaired brain connectivity

References

- 1. Wilkerson GB, Bruce JR, Wilson AW, et al. Perceptual-motor efficiency and concussion history are prospectively associated with injury occurrences among high school and collegiate American football players. Orthop J Sports Med. 2021;9(10):23259671211051722.
- Wilkerson GB, Colston MA, Acocello SN, Hogg JA, Carlson LM. Subtle impairments of perceptual-motor function and well-being are detectable among military cadets and college athletes with self-reported history of concussion. Front Sports Act Living. 2023;5:1046572. doi:10.3389/fspor.2023.1046572
- 3. Wong JKY, Churchill NW, Graham SJ, Baker AJ, Schweizer TA. Altered connectivity of default mode and executive control networks among female patients with persistent post-concussion symptoms. *Brain Inj.* 2023;37(2):147-158.
- 4. Stawski RS, Cerino ES, Witzel DD, MacDonald SW. Daily stress processes as contributors to and targets for promoting cognitive health in later life. *Psychosom Med.* 2019;81(1):81-89.
- 5. Singh H, Conroy DE. Systematic review of stress-related injury vulnerability in athletic and occupational contexts. *Psychol Sport Exerc.* 2017;33:37-44.
- 6. Ivarsson A, Johnson U, Lindwall M, Gustafsson H, Altemyr M. Psychosocial stress as a predictor of injury in elite junior soccer: a latent growth curve analysis. *J Sci Med Sport*. 2014;17(4):366-370.
- 7. Edmed S, Sullivan K. Depression, anxiety, and stress as predictors of post-concussion-like symptoms in a non-clinical sample. *Psychiatr Res.* 2012;200(1):41-45.
- 8. Loyd BJ, Dibble LE, Weightman MM, et al. Volitional head movement deficits and alterations in gait speed following mild traumatic brain injury [published online ahead of print, Oct 14]. *J Head Trauma Rehabil*. 2022; doi:10.1097/HTR.000000000000831.