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Introduction and Motivations

Consider the general form of linear time-dependent problems

∂u

∂t
= R = L (t, u) =

∑

k

∑

i

αki

∂ku

∂xi
k
, (1)

where the residual vector R contains high-order derivatives
of the dependent variable u(t, x1, x2, . . . , xn) with respect to
independent variables. Equation (1) is an abstract represen-
tation of a generic Partial Differential Equation (PDE) in the
residual form where the linear operator L accounts for a linear
combination of the kth partial derivative in the ith direction,
i.e. ∂k/∂xi

k. When discretized using a suitable discretiza-
tion method like Finite-Differences, Finite Elements or Finite
Volume [5], the resulting equations can be written in the fol-
lowing semi-discrete form

d

dt
u = L u. (2)

The fully discrete from is obtained after eq.(2) is discretized in
time. There are many choices available for time-discretization
[6]. However a common step in these algorithms, which is the
most costly part of the solution, is simply an Euler implicit
scheme presented below

un+1 − un

∆t
= Lun+1, (3)

which leads to the solution of the following system of linear

equations

(I−∆tL)
︸ ︷︷ ︸

A

un+1 = un, (4)

where A = (I−∆tL) is typically a huge sparse matrix
for practical problems. For this reason, a direct solution of
eq.(4) is impossible and thus an iterative algorithm is usually
used for the solution. These algorithms range from stationary
methods including Jacobi, Gauss-Seidel, SOR to more sophis-
ticated Krylov subspace methods CG (Conjugate Gradient)
and GMRES (Generalized Minimal Residual). The reader
should refer to [4] and references therein for more detail. In

this work, the GMRES algorithm [1]1 is used as the base algo-
rithm however the statistical preconditioning proposed here
can be readily applied to all Krylov subspace methods because
they are based on matrix-vector multiplication.

The important point is that for many practical problems
the matrix A in eq.(4) is so huge that it does not fit in the
physical memory of the current machines. This situation typ-
ically happens in Large Eddy Simulation (LES) or Direct Nu-
merical Simulations (DNS) of a turbulent fluid flow [8]. In
this situation a full implicit solution procedure is avoided to
prevent the problem of storing the full Jacobian matrix. Yet
still another possibility is available by using a matrix-free im-
plementation [7]. In this approach the matrix A is never
computed/stored but eq.(4) is solved by replacing the matrix-
vector product in the GMRES algorithm with residual com-
putation. However the only disadvantage of this approach is
that preconditioning is almost impossible since entries aij of
A are not available. This is the motivation for current work
where a simple statistical method is used to estimate A by
least-squaring the history of matrix-vector product obtained
in the GMRES algorithm.

The PSP-GMRES Algorithm

The details of the Progressive Statistical Preconditioning for
GMRES is covered in algorithms (1) and (2) below. To solve
the linear system eq.(4), the original GMRES algorithm starts
as usual in algorithm (1). However when a matrix-vector
product is performed in lines 4 and 11 of (1), for the given
vector Px(:, i), the result is stored in the ith column of matrix
Py, i.e. Py(:, i). Therefore the statistical dataset Py versus
Px is obtained progressively in a sense that the more matrix-
vector product is performed the better dataset is obtained.
Now, the primary goal is to find a relation between Py and
Px such that it has minimum error compared to the exact
relation Py = APx. This relation, which is estimated using
a banded diagonal matrix N such that Py ≈ NPx will be
further used as a preconditioner in the GMRES algorithm (1)
when eq.(4) is solved for the next time step ∆t. The approxi-
mation of A with the banded diagonal matrix N is illustrated
in fig.(1). As shown, all off-diagonal entries on a given rows of
the original huge matrix A are reduced to a banded matrix N

where the matrix-vector product would be cheap. This reduc-
tion procedure is completely described in algorithm (2) using
a multi-regression estimation of matrix Py versus matrix Px.
As shown, the output of the GMRES algorithm, i.e. Px and
Py are sent to MREP (Multi regressor Preconditioner) where
for d = 1, a tridiagonal estimation (three regressors) is en-
forced. The emphasis on three regressor model is based on
the fact that this approach leads to a tridiagonal matrix N

which can be solved efficiently in O(n) FLOPs using Thomas
algorithm. Thus it is expected that this three-regressor model
would save a lot when the preconditioned equations need to
be solved in lines 10 and 42 of alg.(1).

As a summary, the output of the matrix-vector product
in the GMRES alg.(1) is stored in two matrices Px and Py

which are used as dataset for further modeling of the unavail-

1The least-squares is used in Ref.[1] to solve a system containing an upper Hessenberg matrix. However in this work it is used to estimate the
preconditioner from a regression point of view.
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able matrix A. Subsequently, in the next immediate stage,
the matrices Px and Py are used in alg. (2) where a three re-
gressors least square procedure (four unknowns) is used (d=1)
to obtain the tridiagonal entries of the approximate matrixN.
This matrix is guaranteed to approximate the exact matrix
A with minimal residual. Finally the computed matrix N

is used as a preconditioner in the GMRES algorithm (1) to
improve the convergence. Obviously, the more convergence
of GMRES is improved the closer N to A is and vice versa.
Now, it is interesting to see the results of this method in the
implementation.

1 subroutine (X, R, Px, Py) ← PSPGMRES (A, B,
N, ǫ, nA, X0, nr);

2 i← 1;
3 for l← 1 to nr do

4 Px(:, i)← X0, Py(:, i)← A X0;
5 R̄← B −Py(:, i), i← i+ 1;
6 V(:, 1)← R̄/‖R̄‖ ;
7 G(1)← ‖R̄‖;
8 for k ← 1 to nA do

9 G(k + 1)←0;
10 Yk ← N

−1
V(:, k);

11 Px(:, i)← Yk, Py(:, i)← A Yk;
12 Uk ← Py(:, i), i← i+ 1;
13 for j ← 1 to k do

14 H(j, k)← V(:, j)
′

Uk ;
15 Uk ← Uk −H(j, k) V(:, j) ;

16 end

17 H(k + 1, k)← ‖Uk‖;
18 V(:, k + 1)← Uk/H(k + 1, k);
19 for j ← 1 to k − 1 do

20 δ ← H(j, k);
21 H(j, k)← δC(j) + S(j)H(j + 1, k);
22 H(j + 1, k)← −δS(j) +C(j)H(j + 1, k);

23 end

24 γ ←
√

H(k, k)2 +H(k + 1, k)2;
25 C(k)← H(k, k)/γ;
26 S(k)← H(k + 1, k)/γ;
27 H(k, k)← γ;
28 H(k + 1, k)← 0;
29 δ ← G(k);
30 G(k)← C(k)δ + S(k)G(k + 1);
31 G(k + 1)← −S(k)δ +C(k)G(k + 1);
32 R(k)← ‖G(k + 1)‖;
33 if R(k) ≤ ǫ then

34 finish-flag gets 1;
35 break;

36 end

37 end

38 Q← H
−1G;

39 for j ← 1 to k do

40 Zk ← Zk +Q(j)V(:, j);
41 end

42 X ← X0 +N
−1Zk;

43 X0 ← X;
44 clean G,V,H, C, S;
45 if finish-flag is set then

46 break;
47 end

48 end

Algorithm 1: The Progressive Statistical Preconditioned
GMRES algorithm (PSPGMRES) with possible restarting.

1 function N ← MREP (Px, Py , d);
2 n ← number of rows of Px;
3 m ← number of columns of Px;
4 for i← 1 to d do

5 (β0, β1) ← linear fit(Px(i, :), Py(i, :));
6 N(i, i)← β1;

7 end

8 for i← (d+ 1) to (n− d) do

9 P
∗

x ←
















[
1 1 . . . 1

]

1×m

Px(i− d, :)
...

Px(i− 1, :)
Px(i, :)

Px(i+ 1, :)
...

Px(i+ d, :)
















;

10 P
∗

y ← Py(i, :);

11 N∗ ←
(

P
∗

x(P
∗

x)
′

)
−1

P
∗

x

(

P
∗

y

′

)

;

12 for j ← 2 to 2(d+ 1) do
13 N(i, i− j − d+ 1)← N∗(j);
14 end

15 end

16 for i← (n− d+ 1) to n do

17 (β0, β1) ← linear fit(Px(i, :), Py(i, :));
18 N(i, i)← β1;

19 end

Algorithm 2: The algorithm for Multi-Regressor Estima-
tor of the Preconditioner (MREP).

Results

The algorithms are implemented in a computer program. In
a mock test case, the matrix An×n in eq.(4) is a seven diag-
onal random matrix which is generated on fly in a way that
diagonal dominance is preserved. This vector un is just a vec-
tor from 1 to n. The size of the system of equation, i.e. n
is varied to n = {20, 80, 150, 350, 700}. The structure of the
original matrix A for the case 20x20 and the preconditioner
N is shown in fig.(3). As shown for d = 1, a tridiagonal ma-
trix is generated. Figure (2) compares the convergence of the
PSP-GMRES method with the original GMRES algorithm.

The original matrix of discretization The statistically estimated preconditioner

Multivariate
regression
formulation

Figure 1: The schematic of the statistical reduction of the
sparse matrix A into the banded diagonal matrix N.

As shown for case 20x20, the convergence is decreased
from 40 iterations to 30 iterations. This indicates a factor
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4/3 in the speed-up of original algorithm. Interestingly more
impressive results would be obtained for larger systems. Ac-
cording to the same figure, as the size of the linear system
is increased, the speed-up genrated by the PSP algorithm is
also increased. As shown in fig.(2), the new statistical pre-
conditioning approach reduces the convergence of the original
GMRES from approximately 400 iterations to approximately
200 iterations when A is 700x700 matrix! This is a numeri-
cally validated indication of the robustness of the statistical
approach.
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Figure 2: The residual norm versus number of GMRES itera-
tions. From top-left to bottom-right: 20x20, 80x80, 150x150,
350x350 and 700x700.

More Regressors and Conclusions

It should be noted that the number of regressors used in
alg.(2) was chosen to be three (d = 1) in the presented im-
plementation in order to obtain a tridiagonal preconditioner.
However other alternatives might be available for d > 1 for
future works. For example, all off-diagonal entries might be
selected as regressors in the initial model. Therefore the ini-
tial model might have n regressors. As the GMRES progress

and more matrix-vector multiplications are performed, a stan-
dard model selection procedure, like backward elimination,
might be used to eliminate inappropriate regressors[3, 2]. This
would result in optimum model which might result in opti-
mum speed-up of the convergence of the GMRES algorithm.
However this approach has two expensive parts that should
be analyzed mathematically in a separate paper.

The first disadvanage is that elimination of inappropriate
regressors requires to generate some models at startup. This
would require at least the cost of O(n3) for generating the
first model using all regressors which is not acceptable be-
cause the cost is even higher than solving the system without

preconditioning! In addition, more models are needed to be
created and compared to each other during this procedure
which makes it even more expensive.

The second disadvangate of increasing the number of re-
gressors is that the final preconditioner matrix would not be
tridiagonal therefore the cost of solution of preconditioned
system in lines 10 and 42 of alg.(1) would increase dramati-
cally in this case!
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Figure 3: Left) The original pattern of the matrix. Right)
The statistically reduced matrix used as preconditioner. The
size of the matrix is n = 20.

As a final conclusion, the three regressor model presented
here has already generated impressive results in improving
the convergence of the original GMRES algorithm according
to fig(2). However, there might be situations that adding
more regressors, i.e. d > 1 would result in outstanding im-
provements in the convergence rate. It was mentioned that
a backward elimination method is not practical in this case
thus a forward selection is appropriate. This situation should
be considered more rigorously in the future works.
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