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Abstract

Finite-element discretizations for Maxwell’s first-order curl equations in both the time domain and frequency 
domain are developed. Petrov-Galerkin and discontinuous-Galerkin formulations are compared using higher-order 
basis functions. Verification cases are run to examine the accuracy of the algorithms on problems with exact 
solutions. Comparisons with other, well accepted, methodologies are also considered for problems for which exact 
solutions do not exist. Effects of several parameters, including spatial and temporal refinement, are also examined 
and the relative efficiency of each scheme is discussed. By considering test cases previously considered by other 
researchers, it is also demonstrated that the algorithms developed during the current program do not exhibit spurious 
solutions. Finally, three-dimensional results are compared with test results for a rectangular waveguide for which 
experimental data has been obtained with the explicit purpose of code-validation. The ability to predict changes in 
scattering parameters caused by variations in geometric and material properties are examined and it is demonstrated 
that the algorithms predict these changes with good accuracy.

Introduction

For more than 40 years,  researchers have been developing computational methods for obtaining simulation-
based solutions to Maxwell’s equations. One of the most ubiquitous methods for engineering applications is the 
Finite-Difference Time-Domain (FDTD) method first introduced by Yee in 1966 [1]. In this method, the field is 
discretized into a series of uniform hexahedral volumes on which the electric field intensities are stored at the 
centers of the square faces forming the boundaries of the cube, while the magnetic flux intensities are stored along 
the edges at the intersection of the faces. The spatial derivatives in the first-order form of Maxwell’s equations are 
approximated with second-order central differences and the leapfrog method is used for temporal discretization [2]. 
As discussed in Ref. [2], the resulting scheme is able to maintain tangential continuity of field intensities across 
dissimilar materials,  yields divergence-free fields for charge-free domains,  and obtains non-decaying solutions for 
propagating waves. The simplicity of this approach has contributed greatly to its wide use in the engineering 
community where it has been used for analysis of many electromagnetic devices. Despite the successful application 
of this methodology, it suffers from several shortcomings, most notably the stability-imposed time-step limitations 
and the lack of fidelity in modeling non-planar surfaces or devices with a widely varying range of geometric scales.

To eliminate the “staircase” geometries typically used in the FDTD approach, finite-element methodologies 
have been developed for both frequency-domain and time-domain applications. The most prevalent formulations of 
this approach solve for either the electric or magnetic fields, with the other field variables being obtained by 
numerical differentiation [3]. Significant effort has gone into the development of numerical simulations based on 
this technique that are both accurate and efficient [3].  Furthermore, through the development of so-called “edge 
elements,” spurious solutions that often vitiated the results obtained with earlier implementations can be avoided. 
While this method can be used to accurately model complex geometries, it has the disadvantage that because either 
the electric or magnetic field is first obtained, with the other field variables being determined in a post-processing 
step, the order of truncation error of the secondary field variables is one order less than that of the primary variables. 

Another approach that has been used for the numerical simulation of Maxwell’s equations is the finite-volume 
method. Here, the first-order curl form of the equations is recast into divergence form and integrated over non-
overlapping control volumes where the volume integrals involving spatial derivatives are first converted to surface 
integrals that are subsequently evaluated numerically. In this form the matrices obtained by linearizing the flux 
vectors with respect to the dependent variables have real eigenvalues and a complete set of eigenvectors [4]. 
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Consequently, because of the mathematical similarities between this form of Maxwell’s equations and the 
compressible Euler equations from fluid mechanics, many of the techniques developed for fluid-dynamic problems 
can be applied to the solution of Maxwell’s equations. In Refs. [4-9], finite-volume methods have been described 
taking advantage of these relationships.  In recent years, this approach has been further developed and applied to 
difficult electromagnetic problems with complex geometries. However, in this approach the discretization of the 
spatial derivatives results in a scheme with only second-order accuracy, which may be insufficient for applications 
involving high-frequencies, particularly for electrically large structures.  While the order-of-accuracy of these 
methods can be raised using an extended stencil [10, 11], this adds significant complexity in book keeping, and the 
resulting code is cumbersome to linearize when developing implicit schemes or obtaining sensitivity derivatives.

The objective of the present study is to develop solution methodologies for time-domain and frequency-domain 
applications that can be used in the analysis and design of large electromagnetic structures. To this end, Petrov-
Galerkin (PG) and discontinuous-Galerkin (DG) methods are developed that are extendable to high-order spatial and 
temporal discretization, and can accurately represent complex geometries. For time-accurate simulations, fully 
implicit methods are used such that time-step sizes are determined by accuracy considerations and not by stability 
considerations. While this requires solving a sparse matrix at each time step, this approach increases robustness that 
is needed in an eventual design environment and is also important when combined with adaptive meshing because of 
potentially very large disparities in cell resolution throughout the domain. 

The discontinuous-Galerkin method, originally developed for modeling neutron transport [12],  has been widely 
used in fluid dynamics applications [13-18] and has recently been extended by numerous researchers for 
electromagnetic applications [16,  19-29]. The DG scheme has the advantage that it is easily implemented using 
higher-order temporal and spatial accuracy and the solution can be advanced using explicit time-stepping. The later 
advantage stems from the assumption of discontinuous field variables across element boundaries that results in mass 
matrices defined over individual elements instead of being globally coupled. Despite the advantages of the DG 
approach, in the typical implementation the field variables are stored separately for each element thereby leading to 
duplication of storage at the vertices of the mesh. The result is that there are more degrees of freedom when 
compared to methods with single-valued variables defined at the nodes. While the additional degrees of freedom 
clearly translate into increased computational effort on a given mesh, it is unclear whether the extra work also 
provides improved accuracy. 

An alternative approach, also with origins in fluid mechanics,  is the Petrov-Galerkin approach [18, 30-36]. 
Here, the field variables are stored at the vertices of the mesh and are single-valued, thereby reducing the number of 
unknowns when compared to the DG approach. Despite the success of this method for fluid dynamic problems, this 
methodology has not been widely used for electromagnetic applications, although it has been applied to second-
order equations for scalar and vector potentials [37-39] and for the second-order wave equation [40]. 

In the present work, Petrov-Galerkin and discontinuous-Galerkin methods are developed for both time-domain 
and frequency-domain applications. High-order (greater than linear) spatial discretizations are used, as is fully 
implicit time-stepping. The effects of several discretization-related parameters are examined and the resulting 
schemes are evaluated against known solutions, as well as with experimental data.

Governing Equations

The physical laws describing time-dependent electromagnetic phenomena are given by Maxwell’s equations

   
∇×E = −

∂B
∂t

(1)

   
∇×H =

∂D
∂t

+ J (2)

   ∇ ⋅B = 0 (3)

    ∇ ⋅D = ρc
(4)
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where E is the electric field intensity,  H is the magnetic field intensity,  D  is the electric flux density, and B is the 
magnetic flux density.  The electric current density,  J , and the electric charge density,   ρc ,  are both zero for the 
applications considered here and will not be repeated. The flux densities and field intensities are related using linear 
constitutive relations

   D = εE (5)

   B = µH (6)

where  ε  is the permittivity and  µ  is the permeability. Note also that in the present work Eqs. 3 and 4 are not 
considered as they will be satisfied,  at least to discretization error,  with the solution of Faraday’s law (Eq. 1) and 
Ampere’s law (Eq. 2) [41, 42].

For implementation, the governing equations are rewritten in a divergence form as opposed to their more 
commonly used curl form given by Eqs. 1-4.

    

∂Q
∂t

+ ∇ ⋅F Q( ) = 0 (7)

    
Q = Dx ,Dy ,Dz ,Bx ,By ,Bz( )T (8)

    F = îf + ĵg + k̂h (9)

    
f = 0,Hz ,−Hy ,0,−Ez ,Ey( )T (10)

    
g = −Hz ,0,Hx ,Ez ,0,−Ex( )T (11)

    
h = Hy ,−Hx ,0,−Ey ,Ex ,0( )T (12)

Note that with the equations written in this form, the matrices 
  
A⎡⎣⎢
⎤
⎦⎥ , 

  
B⎡⎣⎢
⎤
⎦⎥ ,  and 

  
C⎡⎣⎢
⎤
⎦⎥  associated with the 

linearization of the flux vectors,  f ,  g , and  h , each have real eigenvalues and a distinct set of eigenvectors [4].
For time-periodic data, Eq. 7 can be expressed in a frequency-domain formulation as

      
iω Q + ∇ ⋅ F Q( ) = 0 (13)

where   
Q  and   F  are generally complex-valued variables and result from assuming time-periodic solutions.

Numerical Solution

As discussed in the introduction, it is desirable for the methodology developed during this study to accurately 
represent complex geometries and be amenable to high-order spatial discretization. The ability to include multiple 
materials throughout the domain without the occurrence of spurious solutions is also required, as is the ability to 
implement the resulting formulations using implicit schemes on parallel architectures. Because both time-domain 
and frequency-domain technologies are developed, similar discretizations are utilized to promote code reuse. To 
achieve these goals, Petrov-Galerkin and discontinuous-Galerkin formulations are pursued.

Both the Petrov-Galerkin and discontinuous-Galerkin methods are formulated as weighted residual methods, 
which can be cast in the form shown below

      

φ⎡⎣⎢
⎤
⎦⎥
∂Q
∂t

+ ∇ ⋅F
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Ω
∫∫∫ ∂Ω = 0 (14)

where  φ is a weighting function.
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For both schemes, the domain of interest is discretized into a series of non-overlapping elements, such as 
triangles for two-dimensional applications and tetrahedra for three-dimensional applications. The primary 
differences between the Petrov-Galerkin and discontinuous-Galerkin schemes are the location of the unknowns 
within an element, the form of the test function,  and the assumptions regarding continuity of the solution variables 
between the elements.

Petrov-Galerkin 

In the Petrov-Galerkin finite-element approach,  field variables are assumed continuous across element 
boundaries. Therefore, single-valued data is stored at the vertices of the elements and the solution is assumed to vary 
within each element according to a linear combination of polynomial basis functions

    
Qh = Ni

i=1

n

∑ Qi (15)

Here,   Qh represents the dependent variables approximated within each element,   Qi  is the corresponding data at 
each node of the element, and each  Ni  represents a basis function. The weighting function,  φ , consists of two 
parts, the first part being composed of a linear combination of the same basis functions used in Eq. 15 for defining 
the variables within the element. The second contribution to the weighting function is a stabilizing term that 
provides dissipation along preferential directions to eliminate odd-even point decoupling that often occurs with the 
standard Galerkin scheme that is obtained if the second contribution is neglected. In the present work, the 
Streamlined Upwind Petrov-Galerkin (SUPG) method is used in defining the weighting function [34]

   
φ⎡⎣⎢
⎤
⎦⎥ = N I⎡⎣⎢

⎤
⎦⎥ +
∂N
∂x

A⎡⎣⎢
⎤
⎦⎥ +
∂N
∂y

B⎡⎣⎢
⎤
⎦⎥ +
∂N
∂z

C⎡⎣⎢
⎤
⎦⎥

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ τ
⎡
⎣⎢
⎤
⎦⎥ = N I⎡⎣⎢

⎤
⎦⎥ + P⎡⎣⎢

⎤
⎦⎥ (16)

   
N = Ni

i=1

n

∑ ci (17)

where  ci are arbitrary constants and 
  
τ⎡⎣⎢
⎤
⎦⎥ can be obtained using the following definitions [33]

    
τ⎡⎣⎢
⎤
⎦⎥
−1

=
∂Nk

∂x
A⎡⎣⎢
⎤
⎦⎥ +
∂Nk

∂y
B⎡⎣⎢
⎤
⎦⎥ +
∂Nk

∂z
C⎡⎣⎢
⎤
⎦⎥

k=1

n

∑ (18)

   

∂Nk

∂x
A⎡⎣⎢
⎤
⎦⎥ +
∂Nk

∂y
B⎡⎣⎢
⎤
⎦⎥ +
∂Nk

∂z
C⎡⎣⎢
⎤
⎦⎥ = T⎡⎣⎢

⎤
⎦⎥ Λ
⎡
⎣⎢
⎤
⎦⎥ T
⎡
⎣⎢
⎤
⎦⎥
−1

(19)

Here, 
  
T⎡⎣⎢
⎤
⎦⎥  and 

 
Λ⎡⎣⎢
⎤
⎦⎥  are the right eigenvectors and eigenvalues, respectively, of the matrix on the left side of Eq. 19 

whereas the inverse of 
  
T⎡⎣⎢
⎤
⎦⎥  is given by 

   
T⎡⎣⎢
⎤
⎦⎥
−1

. The resulting weak statement may be written as

     

N
∂Q
∂t

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
−F ⋅ ∇N

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟∂Ω

Ω
∫∫∫ + P⎡⎣⎢

⎤
⎦⎥

Ω
∫∫∫

∂Q
∂t

+ ∇ ⋅F
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
∂Ω + N

Γ
∫∫ F ⋅ n̂∂Γ = 0 (20)

In evaluating the volume and surface integrals, Gaussian quadrature rules are used where for polynomial 
representations of the dependent variables of order p, the volume integrals are evaluated using quadrature formulas 
appropriate for integrating polynomials of order 2p whereas surface integrals are integrated using formulas for 
integrating polynomials of order 2p+1 [43]. Note that because the field variables are assumed to vary continuously 
in the interior of the domain, the surface integral typically vanishes on the boundaries of the interior elements and 
need only be evaluated on the boundaries of the domain where appropriate boundary conditions are weakly enforced 
by incorporating them into the surface integral. 
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When multiple materials of differing permittivity or permeability are present in the domain,  the surface integral 
must be evaluated at the interface between the materials because of the discontinuous jump in the tangential 
components of flux densities across the interface[44, 45]. To accurately capture these jumps, duplicate nodes are 
created on either side of the interface and the flux-difference-splitting methodology is borrowed from fluid dynamic 
applications for determining the normal flux on the interface [20,  22, 46]. Here, the flux on the boundary between 
materials is determined using a Riemann solver and given as

     
F qL,qR( ) ⋅ n̂ =

1
2

F(qL) + F(qR)− T⎡⎣⎢
⎤
⎦⎥
Λ T⎡⎣⎢

⎤
⎦⎥
M⎡⎣⎢
⎤
⎦⎥ Δq⎡

⎣⎢
⎤
⎦⎥ (21)

where the tilde over the matrices indicates that they are formed from average values and

   Δq = qR −qL (22)

represents the difference in values across the interface and

    
q = Ex ,Ey ,Ez ,Hx ,Hy ,Hz( )T (23)

   
M⎡⎣⎢
⎤
⎦⎥ =

∂Q
∂q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ (24)

Note that while flux densities, Q , serve as the fundamental variables and are obtained at each mesh point during the 
simulations, the field intensities are used in defining the flux in Eq. 21. The motivation for this is that using jumps in 
the field intensities makes it possible to satisfy the jump conditions exactly whereas a similar expression using the 
flux densities directly can not be obtained.

Discontinuous Galerkin

For the discontinuous-Galerkin (DG) approach, there are two primary differences in the underlying assumptions 
when compared to the Petrov-Galerkin scheme. First, the weighting function for DG does not include the 
stabilization term and corresponds to that used in a standard Galerkin method.

   
φ⎡⎣⎢
⎤
⎦⎥ = N I⎡⎣⎢

⎤
⎦⎥ (25)

Second, because the standard Galerkin approach is not able to effectively damp odd-even oscillations, the 
solution inside each element is assumed to vary independently from the neighboring element. This allows a 
discontinuity to exist across the element boundaries so that the surface integral in Eq. 20 needs to be evaluated at the 
interface between each element in the mesh. The evaluation of this integral is performed using the same flux-
difference-splitting approach described above in Eqs. 21-24. It should be noted that in the DG approach, there is no 
need to create additional nodes along the interface between elements with disparate material properties. Also, by 
treating each element in the mesh as if it has different material properties from its neighboring elements, the PG and 
DG algorithms are easily unified into one code by simply not adding the second term to the weight function for DG.

Note that on a given mesh, the DG approach will typically have more degrees of freedom than the PG approach. 
For example, in the PG approach for linear tetrahedra in three dimensions, the number of degrees of freedom 
corresponds to the number of vertices in the mesh. In the DG method,  because the variables in each tetrahedron are 
stored independently from those in the neighboring tetrahedra, there will be four degrees of freedom for each 
element. Noting that because there are approximately six times as many tetrahedra compared to the number of 
vertices (nodes) in a mesh, the number of unknowns for the DG scheme will be roughly 24 times that of the PG 
scheme. Table 1 summarizes the relationship between the number of unknowns in a simulation for PG and DG 
schemes assuming linear, quadratic, and cubic elements.
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Table 1. Approximate Degrees of Freedom for 3D Simulations on TetrahedraTable 1. Approximate Degrees of Freedom for 3D Simulations on TetrahedraTable 1. Approximate Degrees of Freedom for 3D Simulations on Tetrahedra

Petrov Galerkin Discontinuous Galerkin

Linear  V    4C ≈ 24V

Quadratic    V + E ≈ 8V    10C ≈ 60V

Cubic    V + 2E + F ≈ 17V    20C ≈ 120V

In the table,  V represents the number of vertices in the mesh, whereas C,  E, and F represent the number of 
tetrahedra, edges, and faces respectively. Using data derived from typical meshes, the table above reflects that there 
are approximately six times as many tetrahedra as there are vertices,  whereas there are about seven times as many 
edges and twice as many faces. A similar accounting is provided in Table 2 for two-dimensional triangles where it is 
noted that the number of cells (triangles) and edges each account for approximately twice as many vertices in the 
mesh.

Table 2. Approximate Degrees of Freedom for 2D Simulations on TrianglesTable 2. Approximate Degrees of Freedom for 2D Simulations on TrianglesTable 2. Approximate Degrees of Freedom for 2D Simulations on Triangles

Petrov Galerkin Discontinuous Galerkin

Linear  V    3C ≈ 6V

Quadratic    V + E ≈ 3V    6C ≈ 12V

Cubic    V + 2E +C ≈ 6V    10C ≈ 20V

Temporal Differencing and Solution Methodology

For the PG and DG schemes in the time-domain, second-order backward differences are currently used and an 
approximate solution to a sparse linear system has to be solved at each time step. For this purpose, the Generalized 
Minimal Residual (GMRES) method [47] is used in conjunction with an incomplete LU decomposition as a 
preconditioner [48]. For the frequency-domain formulation the same methodology is used, although minor 
modifications, invoked at compiler time, have been included to account for matrices with complex entries. In the 
time domain, zero fill level is typically used and the residual of the linear system is reduced eight-orders of 
magnitude, which typically requires a Krylov subspace with 100 vectors. For the frequency domain, one level of fill 
is typically used along with 5-10 restarts.
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Boundary Conditions

The boundary conditions are weakly enforced by incorporating them into the boundary integral in Eq. 20. On 
perfect conducting boundaries, the flux normal to the surface, which in the interior is given as

    

F ⋅ n̂ =

−nyHz + nzHy

nxHz − nzHx

−nxHy + nyHx

nyEz − nzEy

−nxEz + nzEx

nxEy + nyEx

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

(26)

is re-expressed to reflect the fact that the components of the electric field tangential to the boundary are zero, 
thereby resulting in the following flux at the surface

    

F ⋅ n̂ =

−nyHz + nzHy

nxHz − nzHx

−nxHy + nyHx

0
0
0

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

(27)

For port boundaries the flux is determined using the Riemann solver given by equation 21, where the data on 
the exterior side of the interface is obtained using a “driving” wave, and the data on the interior of the interface is 
obtained from the field variables.  As an example, consider the 2-port iris bandpass filter shown in Fig. 1. In the 
center section of the figure is the actual filter, whereas a perfectly-matched layer (PML) [49-53] is placed on both 
the left and right sides to absorb outward moving waves. In the left PML only scattered variables are considered, 
while in the right PML the solution to the full wave is obtained. On the interface between the left PML and the filter, 
a   TE10  wave is used to supply the energy for the simulation. For the Petrov-Galerkin scheme, duplicate nodes are 
required along the interface between the left PML region and the  filter, similar to the technique used in treating the 
interface between multiple materials. To evaluate the surface integral on this interface, a separate flux is evaluated 
for the nodes on the left and right sides. Assuming an outward-pointing normal oriented with respect to the filter 
(pointing from the filter into the left PML), the functional dependence of the flux on the interface when evaluating 
the residual for the nodes in the PML region is given as

     F(qL, qR) ⋅ n̂ = F(qL −qD , qR) ⋅ n̂ (28)

whereas the residual for nodes in the filter region is computed using a flux obtained using the full-wave variables

     F(qL,qR) ⋅ n̂ = F(qL, qR + qD ) ⋅ n̂ (29)

In these equations,  a tilde over the dependent variable represents a scattered field variable so that in Eq. 28, 
which is used when computing the residual for the PML region,  the data on the side of the interface corresponding to 
the filter is computed by subtracting the driving field, thereby forming a perturbation that is consistent with the 
scattered-field formulation within the PML. Similarly, for evaluating the surface integral in Eq.  29,  the total field 
data is obtained in the PML region by adding the driving field to the perturbation field stored on that side of the 
interface. Details of the driving state variables are given below for each application.
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Left PML 2-Port Iris Right PML

Figure 1. Application of Boundary Conditions for Excitation of 2-Port Iris Bandpass FilterFigure 1. Application of Boundary Conditions for Excitation of 2-Port Iris Bandpass FilterFigure 1. Application of Boundary Conditions for Excitation of 2-Port Iris Bandpass Filter

When required, the perfectly-matched layer (PML) approach described in Ref. [53] is used for time-domain 
simulations, whereas that of Ref. [52] is used for the frequency domain.

Verification

Several studies have been conducted to verify that the PG and DG methods provide expected results for known 
datum-type solutions. In the first case, time-domain and frequency-domain solutions are obtained using the PG and 
DG methods and compared to an exact solution for a  TMz incident wave, with angular frequency of  π ,passing over 
a cylinder with permittivity and permeability of 2.25 and 2.0, respectively [41, 54].  The radius of the cylinder is 0.6 
with the coordinates of the outer boundary extending from -1.0 to 1.0 in both directions.  In Fig. 2, qualitative 
comparisons of the exact solution for the x-component of magnetic flux density at several times during a cycle are 
shown along with the corresponding contours obtained from a time-domain solution obtained using the PG method. 
In the figure, the top row depicts the exact solution evaluated at each node in the mesh, whereas the lower row 
shows contours of the numerical solution.  While the figure shows results for quadratic elements, solutions with 
linear elements look very similar.  As seen in the figure by comparing details of the contours, excellent qualitative 
agreement is obtained between the simulations and the exact solution.

Exact Solution
    t = 0

Exact Solution
     t = π 2

Exact Solution 
   t = π

Exact Solution
     t = 3π 2

Petrov Galerkin 
   t = 0

Petrov Galerkin
     t = π 2  

Petrov Galerkin 
   t = π

Petrov Galerkin 

    t = 3π 2

Figure 2. Comparison of Magnetic Flux Density Between Exact Solution and Petrov-Galerkin MethodFigure 2. Comparison of Magnetic Flux Density Between Exact Solution and Petrov-Galerkin MethodFigure 2. Comparison of Magnetic Flux Density Between Exact Solution and Petrov-Galerkin MethodFigure 2. Comparison of Magnetic Flux Density Between Exact Solution and Petrov-Galerkin Method
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Quantitative comparisons are shown in Tables 3-6 for both the PG and DG schemes using linear and quadratic 
elements.  In the tables the   L1  and   L2 norms of the errors are given as well as the slopes indicating the order of 
spatial accuracy. For linear elements, given in Tables 3 and 4, it is seen that the errors in the  L1 norm between the PG 
and DG schemes are almost identical, whereas in the   L2 norm the errors associated with the PG scheme are 
approximately 70% higher than that of the DG scheme. As noted in the text accompanying Table 2, on a given mesh 
the number of degrees of freedom for the DG scheme is higher than that for the PG scheme. As a consequence,  in 
the   L1  norm, which is a measure of global accuracy, the DG scheme does not compare favorably with the PG 
scheme because the errors are almost identical whereas the number of unknowns, and hence the amount of work 
required to obtain a solution, for the DG scheme is between five and six times that of the PG scheme. A similar 
conclusion can be made when comparing the errors in the   L2  norm, although the extra work involved in the DG 
scheme is somewhat mitigated by the lower errors.

A similar comparison is given in Tables 5 and 6 for the PG and DG schemes using quadratic elements. In this 
case, errors in the   L1 norm are again almost identical whereas the   L2  errors for the PG scheme are approximately 
80% higher than for the DG scheme on the same mesh. As with linear elements, the DG scheme does not compare 
favorably with the PG scheme in the   L1  norm but performs somewhat better when considered in the   L2  norm. Note 
that while the PG scheme has been implemented using linear and quadratic elements, the DG scheme has also been 
implemented with elements as high as quartic and the design order of accuracy has been verified. Finally, while not 
shown, the divergence of the magnetic flux density has also been monitored and in all cases exhibits one order lower 
convergence rate when compared to the solution error. This behavior is consistent with theoretical estimates because 
derivatives typically converge at a rate one order less than solution variables. 

Table 3. Accuracy Study for Petrov-Galerkin Scheme With Linear ElementsTable 3. Accuracy Study for Petrov-Galerkin Scheme With Linear ElementsTable 3. Accuracy Study for Petrov-Galerkin Scheme With Linear ElementsTable 3. Accuracy Study for Petrov-Galerkin Scheme With Linear ElementsTable 3. Accuracy Study for Petrov-Galerkin Scheme With Linear Elements

Degrees of Freedom   L1
 Error

  L1
 Slope   L2  Error   L2  Slope

369 2.528E-01 2.373E-01

1348 5.998E-02 2.2209 5.599E-02 2.2289

5153 1.488E-02 2.0786 1.394E-02 2.0740

Table 4. Accuracy Study for Discontinuous-Galerkin Scheme With Linear ElementsTable 4. Accuracy Study for Discontinuous-Galerkin Scheme With Linear ElementsTable 4. Accuracy Study for Discontinuous-Galerkin Scheme With Linear ElementsTable 4. Accuracy Study for Discontinuous-Galerkin Scheme With Linear ElementsTable 4. Accuracy Study for Discontinuous-Galerkin Scheme With Linear Elements

Degrees of Freedom   L1
 Error

  L1
 Slope   L2  Error   L2  Slope

1824 2.534E-01 1.422E-01

7314 6.001E-02 2.0740 3.353E-02 2.0800

29376 1.489E-02 2.0050 8.296E-03 2.0090
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Table 5. Accuracy Study for Petrov-Galerkin Scheme With Quadratic ElementsTable 5. Accuracy Study for Petrov-Galerkin Scheme With Quadratic ElementsTable 5. Accuracy Study for Petrov-Galerkin Scheme With Quadratic ElementsTable 5. Accuracy Study for Petrov-Galerkin Scheme With Quadratic ElementsTable 5. Accuracy Study for Petrov-Galerkin Scheme With Quadratic Elements

Degrees of Freedom   L1
 Error

  L1
 Slope   L2  Error   L2  Slope

1345 1.029E-02 1.045E-02

5133 1.226E-03 3.2834 1.205E-03 3.3350

20097 1.504E-04 3.1300 1.514E-04 3.0929

Table 6. Accuracy Study for Discontinuous-Galerkin Scheme With Quadratic ElementsTable 6. Accuracy Study for Discontinuous-Galerkin Scheme With Quadratic ElementsTable 6. Accuracy Study for Discontinuous-Galerkin Scheme With Quadratic ElementsTable 6. Accuracy Study for Discontinuous-Galerkin Scheme With Quadratic ElementsTable 6. Accuracy Study for Discontinuous-Galerkin Scheme With Quadratic Elements

Degrees of Freedom   L1
 Error

  L1
 Slope   L2  Error   L2  Slope

3648 1.002E-02 5.826E-03

14628 1.198E-03 3.0590 6.692E-04 3.1160

58752 1.478E-04 3.0100 8.417E-05 2.9820

A comparison between the exact value of the y-component of the magnetic flux density and the simulations is 
shown in Fig. 3a, with a similar comparison for the z-component of electric flux density shown in Fig. 3b. The data 
is extracted along a line extending from the minimum x-coordinate to the maximum x-coordinate and passing 
through the center of the circle. Note that along this line and at this particular time, Bx is zero and is therefore not 
shown. As seen in the figures,  the solutions obtained with the PG and DG schemes are in excellent agreement and 
are both indistinguishable from the exact solution. In particular, the jumps across the interface between the cylinder 
and the free stream are very accurately modeled, thereby confirming that the Riemann solver works well in this 
region.
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Figure 3. Comparison of Simulated Field Data with Exact SolutionFigure 3. Comparison of Simulated Field Data with Exact Solution
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Although the discretization of the spatial derivatives in the time- and frequency-domains is identical, a separate 
order-of-accuracy study has also been completed for a frequency-domain implementation of the Petrov-Galerkin 
scheme with results shown in Table 7. In the table, the rate of convergence in the   L1  norm for individual 
components of the field is given.  As seen in the second column, linear elements provide second-order convergence 
for all the variables, as expected. Note that for linear elements, the geometry is modeled as a sequence of straight-
line segments. When the same approximation is used for higher-order elements, the geometry is not reproduced to 
the same order-of-accuracy as the interior scheme because curvature is not properly taken into account. As seen in 
the table, the consequence of using a linear representation of the surface for quadratic elements is that the design 
order of accuracy is not obtained and is less than when linear elements are used.  However, although not shown, the 
error levels for the nominally higher-order scheme are one order of magnitude less than for the linear scheme. As 
seen in the fourth column, by properly representing the surface to account for curvature, the design order of 
accuracy is achieved. While properly accounting for curvature is fairly trivial for simple geometries, such as 
cylinders, this presents a much more challenging task for complex geometries in three dimensions. To properly 
account for the curvature of the geometry requires close coupling between a computer aided design (CAD) model, 
the mesh generation, and the field solvers. An intermediate solution, albeit not very elegant, is to generate a highly 
refined representation of the surface and then “snap” all the nodes on the surface to the higher-fidelity 
representation. In the present work, this procedure is not followed for complex cases but will be implemented in the 
future.

Table 7. Order of Accuracy of Petrov-Galerkin Scheme for Dielectric 
Cylinder

Table 7. Order of Accuracy of Petrov-Galerkin Scheme for Dielectric 
Cylinder

Table 7. Order of Accuracy of Petrov-Galerkin Scheme for Dielectric 
Cylinder

Table 7. Order of Accuracy of Petrov-Galerkin Scheme for Dielectric 
Cylinder

Frequency DomainFrequency DomainFrequency Domain

Linear Quadratic
(Linear 

Geometry)

Quadratic
(Quadratic 
Geometry)

 Bx
2.2181 2.0675 2.9667

 
By

2.3263 2.0546 3.0138

 Dz
2.4441 2.0697 3.0666

In the previous section, exact solutions have been used to quantitatively determine the accuracy of the PG and 
DG schemes for a two-dimensional problem. In this section, qualitative results are obtained to test various aspects of 
the implementation.  In Fig. 4, a frequency-domain solution for the dielectric cylinder is again considered, but 
instead of using exact data to drive the solution in the far field,  eight PML regions are included to absorb outward 
moving waves, and the solution is driven using the Riemann solver described in connection with Eqs. 28 and 29. In 
this regard, the driving solution along the interfaces between the PML and the interior region is given by a simple 
propagating wave as described in Eqs. 30-32 [45]. 

   Bx = 0 (30)

    
By = −cos ω x − x0( )( )− i sin ω x − x0( )( ) (31)

    
Dz = cos ω x − x0( )( )− i sin ω x − x0( )( ) (32)
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Figure 4 depicts contours of the real part of the x-component of magnetic flux density similar to that shown in 
Fig. 2.  As seen, the contours obtained using the PG scheme agree qualitatively very well with the exact solution 
interpolated onto the same mesh, demonstrating that using the Riemann solver along the interfaces is effective at 
driving the correct solution. In particular, note that for the driving solution, the x-component of the magnetic flux 
density is zero and the direction of propagation, determined from the Poynting vector, is solely dependent on the y-
component of the magnetic flux density and the z-component of the electric flux density. With the presence of the 
cylinder, clearly the x-component of the magnetic flux density is no longer zero and the final solution agrees well 
with the exact solution. Also shown in Fig. 4c is a far-field view of the domain where it is observed that the contours 
are continuous across the interfaces between the interior region and the PML regions,  and that they vanish at the far-
field boundary. By probing the contours in the far-field, all the variables, which represent deviations from the 
incoming wave, are all below negative 100 dB indicating that the PML is damping the outgoing waves very well.

a) Exact Solution b) Petrov-Galerkin Solution 
Quadratic Elements

c) Petrov-Galerkin Solution 
Entire Domain Including PML

Figure 4. Frequency-Domain Solution for Dielectric Cylinder with Eight PML Regions in Far FieldFigure 4. Frequency-Domain Solution for Dielectric Cylinder with Eight PML Regions in Far FieldFigure 4. Frequency-Domain Solution for Dielectric Cylinder with Eight PML Regions in Far Field

A series of tests have been conducted comparing scattering parameters computed with the PG and DG codes 
with those obtained from a mode-matching formulation for an H-plane 2-pole iris band-pass filter [55-57]. This case 
is used to verify the procedure for computing scattering parameters, as well as further verification of the port 
boundary conditions and the PML implementation in the frequency domain. It should be noted that the mode-
matching results are not exact solutions but provide useful comparisons with accepted methodologies for solving 
this type of problem. 

The geometry for the filter is shown in Fig. 5a, providing the dimensions in millimeters, and clearly indicating 
that the geometry is slightly different between the upper and lower portions of the filter. A “baseline” mesh for the 
iris, consisting of 2,936 nodes, is shown in Fig. 5b, whereas Fig. 5c shows the mesh with PML regions on either end.
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b) Mesh for Band-Pass Filter

a) Dimensions for Geometry (mm) c) Mesh with PML on Each End

Figure 5. Geometry and Baseline Mesh for Two-Pole Iris Band-Pass Filter SimulationFigure 5. Geometry and Baseline Mesh for Two-Pole Iris Band-Pass Filter Simulation

For this simulation, a   TE10  wave is used as the driving waveform in the Riemann solver at the interface 
between the left PML region and the filter. For calculating the scattering parameters, the time-average power is first 
computed on the interfaces between the PML regions and the iris

     
Preflected =

1
2
Ereflected ×

H *
reflected∫ dΓ (33)

     
Pincident =

1
2
Eincident ×

H *
incident∫ dΓ (34)

Assuming an outward-pointing normal relative to the iris,  the reflected variables correspond to those on the right 
side of the interface between the PML and the iris, whereas the incident values are obtained using those on the left 
side of the same interface after subtracting the reflected variables.  Similarly, transmitted power can be obtained on 
the interface with the right PML where it should be noted that variables on either side of the interface can be used. 
After computing the time-average incident, reflected, and transmitted powers, the scattering parameters are 
computed as the square root of the ratio of the reflected power and transmitted power divided by the incident power 
[58].

   
S11 =

Preflected

Pincident

(35)

   
S21 =

Ptransmitted

Pincident

(36)

Figures 6a and 6b depict scattering parameters computed using the PG scheme with linear and quadratic 
elements,  respectively.  For the solution obtained with linear elements, a mesh consisting of 13,050 nodes (including 
the PML regions) has been used, whereas the comparable mesh for quadratic elements has only 3,315 nodes, which 
corresponds to 12,851 degrees of freedom. As seen, the agreement is very good across the frequency range between 
the present simulations and those obtained using mode-matching[55].
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Figure 6. Scattering Parameters for Frequency-Domain Petrov-Galerkin Solution 
Compared with Mode Matching [55]

Figure 6. Scattering Parameters for Frequency-Domain Petrov-Galerkin Solution 
Compared with Mode Matching [55]

Similar results are shown in Figs.  7a and 7b for the discontinuous-Galerkin scheme. It should be noted that the 
mesh used for these simulations is different from the meshes used above due to the difference in the number of 
degrees of freedom in the DG scheme compared to the PG scheme. The mesh used here has only 875 nodes and 
1,544 triangles, which corresponds to 4,632 degrees of freedom for linear elements and 15,440 degrees of freedom 
for cubic elements. It should be noted that the purpose of this computation is not to provide a comparison with the 
PG scheme, but is intended to verify that the routine for computing the scattering parameters is correct and that the 
port boundary condition and PML each operate as expected. It is seen in the figures that the agreement between the 
DG solution and the mode-matching solution is good, although the linear elements show some slight discrepancies 
due to the coarseness of the mesh.
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Figure 7. Scattering Parameters for Frequency-Domain Discontinuous-Galerkin Solution
Compared with Mode Matching[55]

Figure 7. Scattering Parameters for Frequency-Domain Discontinuous-Galerkin Solution
Compared with Mode Matching[55]

To examine the effect of mesh size on the PG solutions,  simulations have been run using several mesh sizes and 
the scattering parameters are compared. Here, the time-domain version of the PG code has been used where a 
Gaussian pulse is used to excite the incoming wave and a Fourier transform of the field variables is accumulated 
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during the solution process for each of 150 evenly-spaced frequencies ranging between 7.5 and 11 GHz. In Fig. 8a, 
solutions on coarse (875 nodes), medium (3,315 nodes), and fine (13,050 nodes) meshes have been obtained using 
linear elements, where it should be noted that the number of nodes includes the PML regions. As seen, the solution 
with only 875 nodes is not particularly accurate but is steadily improved with mesh refinement, as expected. A 
similar plot for quadratic elements is shown for solutions on the 3,315 node mesh and the 875 node mesh, showing 
much less variation between the meshes due to the increased order of accuracy. Note that the minimum value of   s11  
occurring at about 9.5 GHz is not captured as well with the time-domain simulation as it is with the frequency-
domain simulation, even though the spatial discretization of the schemes is identical. Because the PML effectively 
determines the boundary conditions for the problem, it is believed that the cause is attributable to the PML, which is 
implemented differently between the time-domain and frequency-domain codes. In the frequency domain, the PML 
is implemented by applying a stretching to the complex component of the coordinates for the regions in the PML[52, 
53]. In contrast, the PML for the time-domain is implemented using an auxiliary equation as discussed in Ref. [53].
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Figure 8. Grid Resolution Studies for Two-Pole Iris Band-Pass Filter with Petrov-Galerkin SchemeFigure 8. Grid Resolution Studies for Two-Pole Iris Band-Pass Filter with Petrov-Galerkin Scheme

A study to examine the sensitivity of the time-step size on the qualitative solution accuracy has also been 
conducted for the PG scheme with quadratic elements using the mesh with 3,315 nodes.  The results,  shown in Fig. 
9a, indicate that the time-step variation ranging from 0.005 to 0.02 (nondimensionalized by speed of light and the 
height at the inlet) does not yield significant differences in the solution. In the previous solutions, a step size of 0.01 
has been used, which is sufficiently small to have only a secondary effect on the scattering parameters. 

As seen in Fig. 9b, a more pronounced effect on the solutions is seen by varying the loss coefficient associated 
with the PML, which determines how rapidly the solution is damped between the entrance to the PML and the end 
of the computational domain. It is obvious that a coefficient that is too small will reflect outgoing waves back into 
the interior of the mesh.  However, as noted in Ref. [53], a coefficient that is too large will also cause reflected waves 
in a discrete implementation even though no reflections would be present in the continuous formulation.  This effect 
is typically mitigated using a polynomial ramping function where the loss coefficient varies from zero at the 
entrance to the PML and reaches a maximum value at the end [53]. In this study, the maximum loss coefficient has 
been varied over a range between 15 and 250 and either a quadratic or quartic polynomial has been used. Although 
not shown, the differences precipitated by using the quadratic or quartic polynomial are much less than those 
observed by varying the maximum loss coefficient. As seen in Fig.  9b, a coefficient of 15 is clearly inadequate, 
while significantly less variation in the solutions is observed for coefficients greater than 50. For all the results 
previously shown, a loss coefficient of 50 has been used.

15



-50

-40

-30

-20

-10

 0

 10

 7.5  8  8.5  9  9.5  10  10.5  11

S1
1/

S2
1 

(d
B)

Frequency (GHz)

Frequency Domain S11
Frequency Domain S21

Mode Matching S11
Mode Matching S21

Time Domain S11 (Dt=0.005)
Time Domain S21 (Dt=0.005)
Time Domain S11 (Dt=0.010)
Time Domain S21 (Dt=0.010)
Time Domain S11 (Dt=0.020)
Time Domain S21 (Dt=0.020)

-50

-40

-30

-20

-10

 0

 10

 7.5  8  8.5  9  9.5  10  10.5  11

S1
1/

S2
1 

(d
B)

Frequency (GHz)

Frequency Domain S11
Frequency Domain S21

Mode Matching S11
Mode Matching S21

Time Domain S11 (PML=250)
Time Domain S21 (PML=250)
Time Domain S11 (PML=150)
Time Domain S21 (PML=150)

Time Domain S11 (PML=50)
Time Domain S21 (PML=50)
Time Domain S11 (PML=15)
Time Domain S21 (PML=15)

a) Effects of Time Step on Scattering Parameters b) Effects of PML Coefficient on Scattering Parameters

Figure 9. Time-Step Size and PML Coefficient Studies for Petrov-Galerkin Scheme with Quadratic ElementsFigure 9. Time-Step Size and PML Coefficient Studies for Petrov-Galerkin Scheme with Quadratic Elements

To determine whether the design order of accuracy is obtained for the three-dimensional PG and DG codes, an 
accuracy study has been conducted where the exact solution for a resonant cavity [59] is used for comparison. 
Figure 10 shows a comparison of solutions obtained using both the PG and DG schemes on the same mesh. In the 
figure, the x-component of the magnetic flux density from a time-domain solution is shown and is seen to be 
qualitatively the same between the two schemes. A quantitative comparison of the accuracy for each scheme is given 
in Fig. 11 where Fig. 11a shows a comparison between PG results and the exact solution  and Fig. 11b shows similar 
results for the DG scheme. As seen in the figure, the accuracy of the PG and DG schemes are extremely close and 
are, in fact, the same within the first 3 decimal places. As expected due to the small differences in actual errors, the 
slopes of the   L1 norm of the error are the same between the two schemes. Furthermore, in both cases the design 
order of accuracy is achieved where a slope of 2.02 is obtained for linear elements and 3.09 for quadratic elements. 
Because the PG scheme appears to achieve similar error levels as the DG scheme but at lower cost, the majority of 
results presented henceforth are obtained with the PG finite-element formulation.

a) Petrov-Galerkin Solution b) Discontinuous-Galerkin Solution

Figure 10. X-Component of Magnetic Flux Density using Petrov-Galerkin and 
Discontinuous-Galerkin Schemes for Resonant Cavity

Figure 10. X-Component of Magnetic Flux Density using Petrov-Galerkin and 
Discontinuous-Galerkin Schemes for Resonant Cavity
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a) Petrov-Galerkin Scheme b) Discontinuous-Galerkin Scheme

Figure 11. Comparison of Order of Accuracy Between Petrov-Galerkin and Discontinuous-Galerkin Schemes for 
Resonant Cavity

Figure 11. Comparison of Order of Accuracy Between Petrov-Galerkin and Discontinuous-Galerkin Schemes for 
Resonant Cavity

Examination of Spurious Solutions

There has been a significant amount of literature on the occurrence and prevention of spurious solutions in 
electromagnetic simulations [60-63].  In the present formulation, the methodology is essentially the same used in 
many fluid dynamics applications involving inviscid compressible flow, whose equations have very similar 
mathematical structure. By providing appropriate dissipation through either the weighting term in the Petrov-
Galerkin formulation,  or through the Riemann solver in the discontinuous-Galerkin formulation,  extensive regions 
of odd-even decoupling of solution values are precluded and spurious solutions are not expected. To verify this 
assertion,  two-dimensional and three-dimensional tests have been conducted and the results are compared to 
accepted solutions. Results of these comparisons are shown in Figs.  12-14 while two examples of spurious solutions, 
taken from Refs. [63] and [64] are given in Fig. 15 for reference purposes. 

The first test,  described in Ref. [60] is for a circular cylinder divided into upper and lower halves, each with 
constant permittivity and permeability, but differing significantly between the two halves.  In the upper half, the 
complex permittivity is given by     ε = 3− i5  and the permeability is 1.0. On the bottom half of the cylinder, both 
the permittivity and permeability are set to unity. For this case,  the governing equations are the two-dimensional 
time-harmonic versions of Maxwell’s equations assuming an electric field transverse to the z-direction.

     
iωε Ex −

∂ Hz

∂y
= 0 (37)

     
iωε Ey +

∂ Hz

∂x
= 0 (38)

     
iωµHz +

∂ Ey

∂x
−
∂ Ex

∂y
= 0 (39)

Contours of the real and imaginary parts of the magnetic field intensity are shown in Figs.  12a and 12b, 
respectively, from a Petrov-Galerkin solution using quadratic elements on a mesh with 804 nodes. Also shown in 
Fig. 12c are vectors formed from the real components of the electric field intensity.  For comparison,  similar results 
from Ref. [60] are shown in Figs. 13a-13c. As seen, the contours for both solutions are smooth and the vectors are 
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similar. In contrast, spurious solutions from Ref. [63] are shown in Fig. 15a, where the vectors are widely oscillatory 
and clearly do not satisfy the boundary conditions on the electric field that are required by the specification of 

   Hz = 1  along this boundary. Specifically, the vectors on the outer boundary should be tangent to the boundary. This 
later observation is obtained by multiplying Eq. 37 by the x-component of a vector normal to the boundary and Eq. 
38 by the y-component of the normal, adding them together, and noting that the tangential derivative of  Hz  is zero 
on the boundary. From the resulting equation, Eq. 40, it is apparent that the vector formed by the components of the 
electric field intensity on the outer boundary should all point in a direction tangent to the boundary. Clearly those in 
Fig. 15a do not.

    
iωε nxEx + nyEy( ) = nx

∂Hz

∂y
− ny

∂Hz

∂x
= 0 (40)

a) Contours of Real( Hz ) b) Contours of Imag( Hz ) c) Vectors Formed using Real
( Ex )and Real(

 
Ey )

Figure 12. Petrov-Galerkin Solution for Split CylinderFigure 12. Petrov-Galerkin Solution for Split CylinderFigure 12. Petrov-Galerkin Solution for Split Cylinder

a) Contours of Real( Hz ) b) Contours of Imag( Hz ) c) Vectors Formed using Real
( Ex ) and Real(

 
Ey )

Figure 13. Solution for Split Cylinder From Reference [60]Figure 13. Solution for Split Cylinder From Reference [60]Figure 13. Solution for Split Cylinder From Reference [60]
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For examining the presence or absence of spurious solutions in three dimensions, the case described by Ise [64] 
is considered. Referring to Fig. 14, a rectangular dielectric,  with permittivity of 6.0 and permeability of 1.0, is placed 
inside a waveguide and the field is excited with a   TE10  wave. The scattering parameters are then computed for 
several non-dimensional frequencies ranging between 1.6 and 2.6, and compared with existing solutions digitized 
from Ref. [64].  As seen in Fig. 14b,  the scattering parameters are continuous over the frequency range and do not 
exhibit oscillations such as seen in Fig. 15b, which depicts spurious results also taken from Ref. [64]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.6  1.8  2  2.2  2.4  2.6

S1
1 

k*b

Christ and Hartnagel
Katzier

Petrov-Galerkin (Linear)

a) Real Part of x-Component of Magnetic Flux 
Density

b) Scattering Parameter Compared with Results 
from Ref. [64]

Figure 14. Solution for Dielectric-Loaded WaveguideFigure 14. Solution for Dielectric-Loaded Waveguide
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Fig. 3. (a) Same as Fig. 2(a) except that FEM solution using the 
conventional double-curl formulation (eq. (2)) governs. The observed 
parasite is well resolved and shows clear divergent behavior. (b) Same as 
Fig. 2(b) except that FEM solution using the conventional double-curl 
formulation (eq. (2)) governs. The observed parasite is poorly resolved, 
showing node-to-node oscillations. 

The factors which appear to determine the severity of the 
corruptions in FEM solutions via ( 2 )  are the magnitude and 
phase of the complex-valued wavenumbers of the respective 
media and the size of their ratio. An extensive search of the 
parameter space has been conducted where the ranges over 
which these factors have been varied are lk21Ax2 = + 

0.5, a / w ~  = 0 + 20, and lk21..ter/ Ik211nner = 0.1 + 10. Gen- 
erally, the most prognostic indicator has been the magnitude; 
however, the size ratio is also important. If lk21Ax2 > 0.02 
and the size ratio is near unity ((k210uter/ Ik211nner = 0.5 -+ 2), 
spurious solutions are less likely to be computed with ( 2 )  and 
their occurrence is essentially independent of the phase 
angles of the k2’s. However, the smaller/larger the magni- 
tudes of k 2 A x 2 ,  the tighter/looser the restrictions become 
on size ratio in tirder to maintain insensitivity to phase. For 
example, if l k 2 ( A x 2  = 0.005, a size ratio of unity is needed. 
When the size ratio is broadened (e.g. lk2(.uter/ Ik21inner = 5) ,  
a reduction in spurious effects is observed as the phase angle 
is increased (removal or near removal requiring ( + / w e  > 1) 
provided the magnitude requirements are met. In the limit of 
size ratio approaching unity and a vanishingly small phase 
angle, the geometry collapses to a homogeneous region which 
excites a single mode that is apparently orthogonal to the 
parasitic modes. While it is important to recognize that these 
observations are strictly problem-dependent, they have obvi- 
ous practical relevance and qualitatively agree with the ideal- 
ized dispersion analyses of real-valued wavenumbers pre- 
sented in [23]. 

(a) (b) 

Fig. 4. (a) Same as Fig. 2(a) except that FEM solution using the 
extended weak form (eq. (5)) governs. The well-resolved divergent 
parasite of Fig. 3(a) is removed. E . ;  = 0 is explicitly enforced at the 
outer boundary. The solution is essentially identical to the benchmark 
solution of Fig. 2(a). (b) Same as Fig. 2(b) except that FEM solution 
using the extended weak form (eq. (5)) governs. The node-to-node 
oscillatory parasite of Fig. 3(b) is removed. The homogeneous natural 
boundary condition V . c * E  = 0 is applied at the outer boundary. The 
solution is essentially identical to the benchmark solution of Fig. 2(b). 

Fortunately, desirable behavior results from the use of the 
extended weak form ( 5 )  regardless of whether parasitic solu- 

tions arise in ( 2 )  or not; hence, one need not fully character- 
ize the occurrence of corruptions in ( 2 )  with respect to 

parameter space, k 2 A x 2 .  Since parasites can be found to 
occur in ( 2 )  for some boundary-value problems, its general 
use is suspect and the extended form ( 5 )  is always preferable. 
As shown in Fig. 4, the use of the extended weak form 
effectively eliminates both types of corruptions observed in 
Fig. 3, and the direct vector E solution now agrees with the 
parasite-free calculations of Fig. 2.  This removal of parasitic 
solutions consistently occurred by invoking (5 )  for all of the 
combinations of parameters that we have investigated to 

date. 
It is interesting to note that in Fig. 4(b) the homogeneous 

natural boundary condition V . E * E  = 0 is applied, whereas in 
Fig. 4(a) this is insufficient to produce the desired solution 
and a stronger condition, E ’ h  = 0, must be enforced at the 
outer boundary in order to reproduce the interior field 
shown in Fig. 2(a). Fig. 5 shows the solution which results 
when V. !*E = 0 is applied in the case of Fig. 4(a). The need 
for explicit enforcement of a condition on E ’ h  is not limited 
to the geometry of Fig. l(a), but occurs in the problem of 
Fig. l(b) under certain circumstances as well. Fig. 6 shows 
such a case, for which the desired benchmark solution ap- 
pears in Fig. 7. This solution can be retrieved via (5) if, as in 
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a) Spurious Solution for Split Cylinder from Ref. 
[63]

b) Spurious Solution for Dielectric-Loaded 
Waveguide from Ref. [64]

Figure 15. Examples of Spurious SolutionsFigure 15. Examples of Spurious Solutions
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Validation with Experimental Results

For validation purposes, the three-dimensional finite-element codes have been used to compute scattering 
parameters for a rectangular waveguide. Results are compared with experimental data [see volume 3 of this report] 
obtained with the intent of evaluating the ability of the simulations to predict changes in the scattering parameters 
caused by changes in geometric configurations or dielectric properties.  A photograph of the experimental setup is 
shown in Fig. 16. In Fig. 16a, a waveguide under test is shown connected to an Agilent E8363B network analyzer, 
while Fig. 16b depicts a closeup view of the interior of the waveguide along with a protruding coax feed probe.

a) Network Analyzer and Waveguide b) Interior of Waveguide Showing Coax Feed Probe

Figure 16. Experimental Setup for Obtaining Scattering Parameters for Waveguide ConfigurationsFigure 16. Experimental Setup for Obtaining Scattering Parameters for Waveguide Configurations

For all the experiments,  a WR90 waveguide, with a 6-inch long interior cavity that is 0.9 inches wide and 0.4 
inches high, is considered.  Further details of the baseline geometry of the waveguide are given below in Fig. 17. 
Referring to Fig. 17a, it is apparent that the height of the interior of the waveguide is 0.4 inches and the length is 6 
inches.  Further, it is seen that the thickness of the lower wall is 0.315 inches. The feed probe is an Amphenol 
901-9204-CCSF connector with the dielectric surface flush with the lower wall of the waveguide and the pin 
protruding 0.2 inches above the surface.  The end view of the waveguide, shown in Fig. 17b, illustrates that the outer 
diameter of the feed probe is 0.162 inches, whereas the inner pin diameter is 0.05 inches. As shown in Fig.  17c, the 
inner pin is displaced 0.25 inches from the end wall and 0.45 inches from the side wall.
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a) Side View b) End View

c) Top View d) Three-Dimensional View

Figure 17. Geometry for Experimental Waveguide with Coax Feed ProbeFigure 17. Geometry for Experimental Waveguide with Coax Feed Probe

During the experimental program, numerous variations from the baseline configuration have been considered. 
These variations include the displacement of the feed probe from the walls, changing pin height, and insertion of a 
dielectric that can be further configured by differing the geometry and relative dielectric constants. While not all 
combinations considered in the experimental program are used for validation purposes, results are shown below for 
the baseline case,  as well as a case with the feed probe displaced from the end wall, and three cases with a dielectric 
insert.

An initial mesh for the baseline geometry consisting of 9,860 nodes and 45,315 tetrahedra is depicted in Fig 18. 
In this mesh approximately 30 nodes are distributed along the length of the waveguide with 10 points across the 
width, thereby providing roughly 5 points per wavelength based on a maximum frequency of 12 GHz. Figure 18a 
shows an overall view of the mesh where the body of the waveguide is depicted in green, the portions of the coax 
cable within the thickness of the lower wall in red, and a short piece of coax extending out of each end of the 
waveguide are shown in yellow and blue. Similarly, a close-up view of the mesh in the proximity of the coax feed 
probe is shown in Fig. 18b, where the dielectric is shown in white and the center pin in orange.
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a) Far-Field View b) Closeup View Near Coax

Figure 18. Initial Mesh for Baseline CaseFigure 18. Initial Mesh for Baseline Case

Perfect electric conducting (PEC) boundary conditions are used on the walls of the waveguide, as well as on the 
shielding and pin portions of the coax. Duplicate nodes are created along the interfaces between the dielectrics and 
air-filled regions of the waveguide, and the Riemann solver is used to resolve the flux integral across these 
boundaries. Note that the dependent variables on either side of the interfaces represent full-wave components of the 
field variables and are obtained as the solution evolves. The relative permittivities of the dielectric material and the 
internal portion of the waveguide are given by 2.1 and 1.0, respectively; the permeability is 1.0 for all regions. The 
coax cables extending from the waveguide are terminated with a PML [52] for frequency-domain simulations and 
Silver-Muller boundary conditions [65] for time-domain simulations. This later boundary condition should be 
applicable in this region because the transverse electric magnetic (TEM) nature of a coax facilitates a wave traveling 
normal to this boundary.  Excitation of the field is achieved by creating duplicate faces and using the Riemann solver 
at the interface between the coax cable normally interior to the waveguide (red) and that portion protruding outward 
(yellow). Here, the driving field components used in Eqs. 28 and 29 are determined using the exact solution for a 
coax given by [58]

    

Ex = −
V0

ln b a( )
x − x0( )

r 2
(41)

    

Ey = −
V0

ln b a( )
y − y0( )

r 2
(42)

    
Ez = 0 (43)

     

Hx = −
1
η
Ey (44)

     

Hy =
1
η
Ex (45)

    
Hz = 0 (46)

Here, note that  a and  b correspond to the radius of the pin and feed probe, respectively, whereas  r  is the local 
radius at a given mesh point.

Solutions for the baseline configuration obtained using the Petrov-Galerkin scheme with quadratic elements are 
shown in Fig. 19. Contours of the x-component of the magnetic flux density are shown in Fig. 19a,for a frequency-
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domain solution at approximately 10 GHz, whereas Fig. 19b shows scattering parameters across a range of 
frequencies, computed using both the frequency-domain and time-domain versions of the codes. The frequency-
domain solutions have been obtained through a series of independent simulations obtained at each frequency with 
the results shown as symbols in the figure. For the time-domain results,  scattering parameters are obtained for 150 
evenly-spaced frequencies in a single run by applying a Gaussian pulse to the driving fields and computing the 
Fourier transforms of the solution variables along the duplicate faces. The time-averaged incident, reflected, and 
transmitted powers are then computed from which the scattering parameters are then derived. 

The contours shown in Fig.19a, clearly exhibit a discontinuity at the driving interface. The red contours 
illustrate the traveling wave whereas the lack of color in the PML region demonstrates that there is very little 
reflected power at this particular frequency. 

Scattering parameters obtained from the simulations using quadratic elements are compared with experimental 
data in Fig.  19b and demonstrate that both the frequency-domain and time-domain solutions agree well with each 
other as well as with experiment. Note that scattering parameters are obtained for the time-domain simulations at 
many more frequencies than for the frequency-domain code. Further, while 150 frequencies are used for the present 
time-domain results, data at additional frequencies adds negligible cost to the simulations. This is because each 
frequency only requires a Fourier transform computation along the interface regions where the scattering parameters 
are computed, which represents a very small subset of the overall mesh. Although the savings in computer time 
derived from using the time domain depends on the number of frequencies considered, it is clear that the time-
domain approach can be much more efficient than the frequency-domain approach for this problem. This is 
especially true when one considers that the time-domain solution reveals the nature of the scattering parameters 
across the entire frequency range in a single run whereas the same information must be incrementally extracted 
using the frequency-domain approach. In addition, in the time-domain, diagonal dominance is typically achieved 
due to the time-step contribution making this approach somewhat more reliable in practice.
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Figure 19. Comparison of Scattering Parameters Obtained From Simulations On Baseline Mesh with 
Experimental Data

Figure 19. Comparison of Scattering Parameters Obtained From Simulations On Baseline Mesh with 
Experimental Data

To examine the effect on the computed scattering parameters caused by spatial discretization errors, a refined 
mesh is used where the number of points in each direction is increased by roughly 70%. The resulting mesh, 
depicted in Fig. 20, consists of 50,058 nodes and 246,852 elements and is clearly higher resolution compared to the 
initial mesh shown previously in Fig. 18.
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a) Far-Field View b) Closeup View Near Coax

Figure 20. Refined Mesh for Baseline Case and Contours of x-Component of Magnetic Flux Density Computed 
using Petrov-Galerkin Scheme with Quadratic Elements

Figure 20. Refined Mesh for Baseline Case and Contours of x-Component of Magnetic Flux Density Computed 
using Petrov-Galerkin Scheme with Quadratic Elements

Scattering parameters computed on this mesh using the time-domain formulation of the Petrov-Galerkin code 
with quadratic elements are shown in Fig. 21 below. Also shown on the figure are the previous results obtained on 
the initial mesh,  as well as the experimental data. Only small differences are observed between the solutions on the 
initial and refined mesh with the primary difference being slightly less reflected power on the refined mesh as 
exhibited by the lower minimum values of   S11 . Because the scattering parameters obtained on the finer mesh do not 
change appreciably from those on the initial mesh, the majority of the following simulations will be conducted on  
meshes that are derived from the initial mesh and therefore have a similar number of points.
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It should be noted that on the initial mesh using the PG scheme with quadratic elements, there are 
approximately 78,880 degrees of freedom. To obtain a reasonable comparison in accuracy obtained using quadratic 
and linear elements, an additional mesh has been generated by refining the initial mesh by approximately a factor of 
two in all directions. The resulting mesh has 83,208 nodes and 431,590 tetrahedron.  Because the number of degrees 
of freedom for linear elements is approximately the same as that for the initial mesh with quadratic elements, a 
direct comparison can be made between the schemes to demonstrate the benefits of the higher-order formulation. 
Results are shown in Fig. 22 depicting the scattering parameters obtained from frequency-domain and time-domain 
solutions using quadratic elements on the baseline mesh as well as time-domain results obtained using linear 
elements on the larger 83,208 node mesh. For a fair comparison between the accuracy obtained using the linear and 
quadratic elements,  it should be emphasized that the terminology “refined mesh” in the figure is referring to the 
newly generated mesh and not the 50,058 node mesh previously discussed. As seen in the figure, although the larger 
mesh used with the linear elements contains slightly more degrees of freedom than when using quadratic elements 
on the initial mesh, the solution obtained using linear elements is noticeably inferior, thereby demonstrating the 
benefits of the higher-order formulation. In the remaining results,  only results with quadratic elements are 
considered.

-50

-40

-30

-20

-10

 0

 8  8.5  9  9.5  10  10.5  11  11.5  12

S1
1/

S2
1 

(d
B)

Frequency (GHz)

Experiment S11
Experiment S21

Frequency-Domain (Quadratic) Initial Mesh S11
Frequency-Domain (Quadratic) Initial Mesh S21

Time Domain (Quadratic) Initial Mesh S11
Time Domain (Quadratic) Initial Mesh S21
Time Domain (Linear) Refined Mesh S11
Time Domain (Linear) Refined Mesh S21

Figure 22. Comparison Between Petrov-Galerkin Results Obtained with Linear and 
Quadratic Elements

The ability to successfully simulate changes in scattering parameters associated with variations from the 
baseline geometry has been evaluated, with the results shown in Figs.  23-27. The first deviation from the baseline 
geometry is obtained by shifting the position of the feed probe inward an additional 0.5 inches resulting in a final 
displacement of 0.75 inches from the end wall. The modified position of the feed probe is evident in Fig. 23a, which 
also shows contours of the real part of the x-component of the magnetic flux density obtained from a frequency-
domain solution at 11 GHz. A comparison of simulated and experimentally determined scattering parameters is 
shown in Fig. 23b, where results are included from both time- and frequency-domain Petrov-Galerkin formulations 
with quadratic elements on a mesh with 15,648 nodes. As seen in the figure,  the scattering parameters exhibit 
marked differences from those of the baseline geometry with small reflected power only occurring at about 10.25 
GHz. As also seen in the figure,  the time-domain and frequency-domain solutions are in excellent agreement with 
each other as well as with the experimental data. 

25



-50

-40

-30

-20

-10

 0

 8  8.5  9  9.5  10  10.5  11  11.5  12

S1
1/

S2
1 

(d
B)

Frequency (GHz)

Experiment S11
Experiment S21

Frequency Domain S11
Frequency Domain S21

Time Domain S11
Time Domain S21

a) Real Part of x-Component of Magnetic Flux Density b) Comparison of Frequency-Domain and Time-
Domain Scattering Parameters with Experiment

Figure 23. Comparison of Scattering Parameters Obtained From Simulations For Translated Coax Feed ProbeFigure 23. Comparison of Scattering Parameters Obtained From Simulations For Translated Coax Feed Probe

In the experimental program, several dielectric inserts of varying geometry and permittivity have been placed 
inside the waveguide 3 inches from the end wall closest to the feed probe. One of the dielectrics is 0.5 inches thick, 
spanning the entire width and height of the waveguide, and including a 0.4 x 0.2 inch rectangular hole through the 
material. Contours of magnetic flux density for this configuration are shown in Fig. 24a for an initial mesh 
comprised of 10,754 nodes and 49,490 tetrahedron. Here, the top of  both the waveguide and the dielectric have 
been removed to clarify the geometry. It should be noted that while the interior of the waveguide is hollow, the 
dielectric is solid. As seen in Fig. 24b, the scattering parameters are consistent between the frequency-domain and 
time-domain solutions. For this geometry, a time-domain solution on a refined mesh, with 96,626 nodes and 514,971 
tetrahedra, has also been obtained because of the extra complexity of the dielectric.  As seen in the figure, there is no 
significant change in the scattering parameters on the finer mesh. Recalling that Silver-Muller boundary conditions 
are used for the time-domain solution whereas PML regions are used for the frequency-domain, it should be noted 
that a precise agreement between the solutions is not expected because of variations in the boundary conditions. 
Nevertheless, the consistency of results between the simulations and with the experimental data is very good.

-35

-30

-25

-20

-15

-10

-5

 0

 5

 8  8.5  9  9.5  10  10.5  11  11.5  12

S1
1/

S2
1 

(d
B)

Frequency (GHz)

Experiment S11
Experiment S21

S11 Petrov-Galerkin Frequency Domain
S21 Petrov-Galerkin Frequency Domain

Time Domain S11 Refined Mesh
Time Domain S21 Refined Mesh

Time Domain S11 Baseline Mesh
Time Domain S21 Baseline Mesh

a) Real Part of x-Component of Magnetic Flux Density b) Comparison of Frequency-Domain and Time-
Domain Scattering Parameters with Experiment

Figure 24. Comparison of Scattering Parameters Obtained From Simulations For Dielectric-Loaded Waveguide 
with Relative Permittivity of 4.0

Figure 24. Comparison of Scattering Parameters Obtained From Simulations For Dielectric-Loaded Waveguide 
with Relative Permittivity of 4.0
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Scattering parameters computed with the time-domain discontinuous-Galerkin code using quadratic elements 
are presented in Fig. 25. Experimental results are also shown, as are frequency-domain results obtained using the 
Petrov-Galerkin code. Cross-referencing the PG results with those in Fig. 24, it is also observed that close agreement 
with the time-domain PG code is also achieved.  Note that using the estimates from Table 1, there are approximately 
86,032 degrees of freedom for the PG code with quadratic elements, whereas there are approximately 494,900 
degrees of freedom for the DG scheme discretized using the same order polynomial. A coarser initial mesh may be 
more appropriate for the DG scheme so the number of degrees of freedom is more consistent.  However, this is 
somewhat complicated because of the linear representation of the geometry,  which necessitates significantly more 
points in the surface definition than would be required if a quadratic definition is used. Coarsening the initial mesh is 
therefore difficult without losing the geometry. Properly accounting for the curvature in the coax cables could 
significantly reduce the degrees of freedom in both the PG and DG schemes.
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Figure 25. Comparison of Scattering Parameters Obtained From Frequency-Domain 
Petrov-Galerkin Method and Time-Domain Discontinuous-Galerkin Method 

Dielectric-Loaded Waveguide with Relative Permittivity of 4.0

Experimental data has also been obtained for the same dielectric but with a relative permittivity of 12.0. Fig. 26 
compares experimental results with those of time-domain and frequency-domain results obtained using the PG 
formulation with quadratic elements. As seen, the simulations do not exhibit good agreement with experimental data 
for this case. One possible explanation is that visual inspection of the dielectric installed in the waveguide reveals 
that small gaps are present between the dielectric and the waveguide; however this explanation would not account 
for the good agreement seen with the dielectric with lower permittivity. However, the results from the Petrov-
Galerkin code can by cross-checked with a well established commercial electromagnetic solver as a consistency 
check between the simulations. Figure 26b shows the results of this comparison where the commercial code HFSS 
[66] has been used. It is seen that the agreement between the simulation codes is very good so that it is believed that 
an undetermined inconsistency exists between the experimental and simulation setups. 

27



-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 8  8.5  9  9.5  10  10.5  11  11.5  12

S1
1/

S2
1 

(d
B)

Frequency (GHz)

Experiment S11
Experiment S21

Frequency Domain S1
Frequency Domain S21

Time Domain S11
Time Domain S21

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 8  8.5  9  9.5  10  10.5  11  11.5  12

S1
1/

S2
1 

(d
B)

Frequency (GHz)

Frequency Domain S1
Frequency Domain S21

Time Domain S11
Time Domain S21

HFSS S11
HFSS S21

a) Comparison of Petrov-Galerkin Scattering 
Parameters with Experimental Data

b) Comparison of Petrov-Galerkin Scattering 
Parameters with HFSS

Figure 26. Comparison of Scattering Parameters Obtained From Simulations For Dielectric-Loaded Waveguide 
with Relative Permittivity of 12.0

Figure 26. Comparison of Scattering Parameters Obtained From Simulations For Dielectric-Loaded Waveguide 
with Relative Permittivity of 12.0

As a final test case for evaluating the accuracy of the simulation codes, a “half-slab” dielectric with relative 
permeability of 4.0 is placed on its side 3 inches from the  end wall closest to the feed probe.  Contours of the 
magnetic flux density are shown in Fig. 27, where the presence and orientation of the dielectric are clearly 
displayed. Scattering parameters, obtained using the PG algorithm with quadratic elements on a mesh with 10,716  
nodes, are compared to experiment and with HFSS in figure 27b.  It is seen in the figure that the simulations agree  
well with one another but that there are some noticeable differences in the comparison with experiment, particularly 
between 9.5 and 11.5 GHz.
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Slab Loaded Waveguide: Relative Permittivity of 4.0
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One objective in the development of the solvers is that good performance can be obtained in a parallel 
computing environment. The current codes have been developed on an IBM compute server with four eight-core 
IBM POWER7 3.55 GHz processors and 128GB of RAM. Figure 28a depicts the initial mesh for the baseline 
waveguide partitioned into 10 domains. The partitioning software described in Ref.  [67] has been used for 
subdividing the mesh and the MPI message passing interface is used for communication among processors. As 
shown in Fig. 28b, 95% scaling is achieved on 30 processors with only a slight drop off caused by the fact that the 
initial mesh, partitioned into 30 domains, does not provide adequate work for each processor when compared to the 
communication cost. While larger meshes may be used on more processors,  this will be pursued in the future where 
special emphasis will be placed on preparation to run on “leadership class” machines.
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Summary

High-order Petrov-Galerkin (PG) and discontinuous-Galerkin (DG) finite-element algorithms for solving 
Maxwell’s equations have been developed for both time-domain and frequency-domain applications. For time-
dependent applications, a fully implicit time-stepping algorithm is used that allows the time-step size to be 
determined by accuracy considerations and not by limitations typically imposed by explicit methods. The algorithms 
can be used to accurately model geometrically complex domains containing multiple materials of differing 
electromagnetic properties.

Verification tests for two- and three-dimensional applications have been conducted to examine the order of 
accuracy of the resulting schemes. Here, it is demonstrated that in the   L1 norm, both the PG and DG schemes 
achieve very similar levels of error on a given mesh whereas in the   L2  norm, the DG scheme demonstrates errors 
about 70-80% lower than those of the PG scheme. However, when considering the number of degrees of freedom, 
the PG scheme provides the same global accuracy as the DG scheme but with lower computational cost. For both 
the   L1  and   L2  norms, both schemes exhibit the design order of accuracy.

During the order-of-accuracy studies,  it has been demonstrated that while the geometry can be modeled much 
more accurately than with a typical FDTD code, to truly obtain the design order of accuracy requires that curvature 
must be properly accounted for. While this can be handled for simple geometries, an integrated approach between 
computer aided design (CAD), mesh generation, and the solvers is recommended. Although the higher-order codes 
still demonstrate greater accuracy than the lower-order codes, even without properly accounting for curvature, the 
full potential of higher-order methods will only be achieved by addressing this issue.
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Comparisons have been made between simulations and experimental data for a rectangular waveguide. Here, 
numerous geometric variations have been systematically altered to examine the ability of the codes to successfully 
predict accompanying changes in scattering parameters. Some variations include a dielectric insert placed within the 
waveguide, where the geometry and relative permittivity of the dielectric are both configurable. The benefits of the 
higher-order formulation is demonstrated and in all but one case the simulation codes successfully predict trends 
caused by varying these parameters. For the experimental case with a relative dielectric constant of 12.0, the 
scattering parameters obtained from the simulations do not demonstrate results consistent with the experiment. 
However, comparisons made with the commercial code HFSS show consistency between the simulations.  The 
reason for the discrepancy in the experimental data for this case is unknown.
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