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Adjoint Based Shape Optimization for Electromagnetic Problems
using High-order Discontinuous Galerkin Methods
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Nomenclature

b = Hicks-Henne bump function
B0 = amplitude of a magnetic wave
c = speed of light
D = design variables
D0 = amplitude of an electric wave
K = mesh stiffness matrix
L = objective functional
m, n = integers related to wave numbers
M = mass matrix
N = number of time steps
Ns = number of surface grid points
x = Cartesian coordinates = (x,y)

R = discretized spatial residual
Re = discretized unsteady residual
q = conservative electromagnetic variables
T = time period
α, β, ω = parameters for electric and magnetic waves
∆t = time-step size
λq, λx = primal-adjoint and mesh-adjoint variables
φ = basis function
ε,µ = permittivity and permeability
∗ = target values
˜ = modal coefficients
s, q = surface grid points and additional quadrature points

Introduction

In recent years, discontinuous Galerkin (DG) methods have received considerable interests in solving a wide range of
convection-dominated problems, such as in computational fluid dynamics1–3 and electromagnetics4. The main benefits of
using the DG methods arises from their capability of obtaining optimal error convergence rates and suitability for efficient
parallel computing. In addition, sensitivity analysis techniques enable better understanding of the impacts of shape or
material parameters to the results of the numerical simulations, thus becoming a potentially indispensable component for
the overall design process. The recent work5 developed a discrete adjoint approach for high-order discontinuous Galerkin
discretizations associated with the use of unstructured curvilinear meshes, and the developed techniques were applied to
unsteady inviscid flow design problems.

The purpose of the work presented in this report is to extend the research described in references5 and6 for applications
to Maxwell’s equations. The accuracy of the DG scheme is examined to demonstrate that the design order is achieved
through 5th order accuracy. A time-dependent adjoint method is also developed to obtain sensitivity derivatives, which
are subsequently coupled with a formal optimization procedure to determine the shape of an airfoil by matching a desired
magnetic field on the airfoil surface over a specified time period.

Equations and Discretizations

The following conservative form of the two-dimensional source-free Maxwell equations for a transverse electric (TE)
field is considered:

∂q(x, t)
∂t

+
∂F(q(x, t))

∂x
+

∂G(q(x, t))
∂y

= 0 (1)

where q is the vector of the electric flux density and magnetic induction:

q = {Dx,Dy,Bz}T (2)

and the Cartesian flux vector~F = (F,G) is given by,
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F = {0,Bz/µ,Dy/ε }T and G = {−Bz/µ,0,−Dx/ε}T (3)

where ε and µ denote the permittivity and permeability, respectively, which are set to be constant (and equal to one) due to
homogeneous materials being considered in the current work. The electric and magnetic field constants satisfy the relation
ε0µ0c2 = 1 in vacuum, where c denotes the speed of light.

In the discontinuous Galerkin method, the solution approximation, qp, is expanded as a series of modal solution
coefficients and hierarchical basis functions {φi}7, expressed as,

qp =
M

∑
i=1

q̃pi
φi(x) (4)

then a discontinuous Galerkin weak formulation to this problem is written as,Z
Ωk

φ j
∂qp

∂t
dΩk−

Z
Ωk

[
∂φ j

∂x
F(qp)+

∂φ j

∂y
G(qp)

]
dΩk +

Z
∂Ωk

φ jH(q+
p ,q−p ,n)dS = 0 (5)

for each element (e.g. k) in the computational domain. The discontinuities at elemental boundaries, as denoted by the
interior and exterior traces q+

p and q−p , are resolved by the implementation of a Riemann flux function such as Lax-
Friedrichs8 or Roe9. For edges or faces coinciding with physical boundaries, a perfectly conducting wall condition is
applied, where the tangential components of the electric field vanish, expressed as:

(Dx/ε,Dy/ε)T × (nx,ny)T = 0 or nxDy/ε−nyDx/ε = 0 (6)

where n = (nx,ny)T represents the unit normal vector outward to the boundary. The evaluation of the first derivatives,
volume and face integrals in Eq. (5) requires a reference-to-physical transformation for each individual element in the
computational domain, given by,

xk =
M

∑
i=1

x̃kiφi (7)

and additional surface quadrature points are used for determining the geometric transformation of high-order curved
boundary elements5. As a consequence, the variation of additional surface quadrature points and the effects to the objective
sensitivities must be considered when the surface geometry is deformed.

Equation (5) can be written in the following ordinary differential equation (ODE) form as:

M
dq̃p

dt
+R(q̃p) = 0 (8)

where R represents the discretized spatial residual and M denotes the mass matrix. The time integration is performed using
an implicit, second-order backwards difference Euler (BDF2) scheme. The formulation for the BDF2 scheme is derived
by starting from the set of ODEs given by Eq. (8), written as,

Rn
e(q̃

n
p) =

M
∆t

(
3
2

q̃n
p)+R(q̃n

p)−
M
∆t

(2q̃n−1
p − 1

2
q̃n−2

p ) = 0 (9)

where Rn
e represents the unsteady residual at time step n. To solve each implicit scheme efficiently, we employ a p-

multigrid approach driven by a linearized Gauss-Seidel smoother6.

Adjoint-Based Sensitivity Analysis

In the current work, surface nodes and additional surface quadrature points are deformed through the superposition
of the Hicks-Henne bump function10 placed at a set of designated surface nodes, and the deformations are related to the
values of the corresponding design variables, D. In response to changing locations of surface points, mesh points in the
interior of the domain are deformed based on a linear tension spring analogy11 to prevent the generation of overlapping
elements. The resulting adjoint-based sensitivity derivative of a scalar-valued objective functional, L, with respect to the
set of design variables is formulated by starting with the forward linearization and then performing a transpose operation
to the problem. The discrete adjoint sensitivity formulation is shown in Eq. (10), while a detailed derivation can be found
in Ref.5.

dL
dD

T
=

(
∂xs

∂D

T

[K]−T ∂x̃
∂x

T

+
∂xq

∂D

T
∂x̃
∂xq

T
)(

∂L
∂x̃

T

−
¯∂Re

∂x̃

T [
∂Re

∂q̃

]−T
∂L
∂q̃

T
)

(10)

It is noted that the objective sensitivities with respect to the mesh configuration must consider effects arising from both
mesh grid points and additional surface quadrature points. [K] refers to the stiffness matrix from the discrete mesh motion
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equations, and [ ¯∂Re/∂x̃] denotes the sensitivities of the unsteady residual with respect to the mesh configuration, whose
contribution from time step n in the BDF2 scheme is obtained by,

¯∂Rn
e

∂x̃
=

∂Rn
e

∂x̃
+(δ1n +δ2n)

[
∂Rn

e

∂q̃0

]
∂q̃0

∂x̃
+
[

∂Rn
e

∂qn
b

]
∂qn

b
∂x̃

(11)

where δ represents the Kronecker-delta operator which takes on the value of 0 or 1, and the last two terms involve the
explicit-dependence relations specified by the respective initial condition, q̃0, and unsteady boundary condition, qb. Re-
turning to Eq. (10), to avoid a direct solve of the inverse of the transposed Jacobian matrix, the primal-adjoint variables
are introduced, satisfying: [∂Re/∂q̃]−T (∂L/∂q̃)T = λq or [∂Re/∂q̃]T λq = (∂L/∂q̃)T . A backward time-integration is used
for solving the unsteady primal-adjoint solution, where the primal-adjoint solution at the final time step (n = N) is first
solved, followed by the solutions at earlier time steps (n = N− 1,N− 2, · · · ,1). In particular, the implicit BDF2 scheme
for obtaining the the primal-adjoint solution is applied using the following sequential formulation:

[
∂Rn

e

∂q̃n

]T

λ
n
q =

∂L
∂q̃n

T

(n = N) (12)[
∂Rn

e

∂q̃n

]T

λ
n
q =

∂L
∂q̃n

T

−
[

∂Rn
e

∂q̃n+1

]T

λ
n+1
q (n = N−1) (13)[

∂Rn
e

∂q̃n

]T

λ
n
q =

∂L
∂q̃n

T

−
[

∂Rn
e

∂q̃n+1

]T

λ
n+1
q −

[
∂Rn

e

∂q̃n+2

]T

λ
n+2
q (1≤ n≤ N−2) (14)

Thus the primal-adjoint solution at time step n (n ≤ N− 2) requires the computed adjoint solution at its later time steps
n+1 and n+2. A p-multigrid solver driven by a Gauss-Seidel smoother6 is employed for solving the adjoint solution at
each discrete time step location. Substituting the primal-adjoint variables into Eq. (10) yields,

dL
dD

T
=

∂xs

∂D

T

[K]−T ∂x̃
∂x

T
∂L̄
∂x̃

T

+
∂xq

∂D

T
∂x̃
∂xq

T
∂L̄
∂x̃

T

(15)

where

∂L̄
∂x̃

T

=
∂L
∂x̃

T

−
N

∑
n=1

¯∂Re
n

∂x̃

T

λ
n
q (16)

Furthermore, by introducing a mesh-adjoint variable satisfying [K]T λx = ( ∂x̃
∂x )T ( ∂L̄

∂x̃ )T , the final formulation for evaluating
sensitivity derivative via the discrete adjoint approach is expressed as:

dL
dD

T
=

∂xs

∂D

T

λx +
∂xq

∂D

T
∂x̃
∂xq

T
∂L̄
∂x̃

T

(17)

The current work employs the PORT trust region optimization strategy12 to obtain a new set of design variables. A
typical design iteration follows the procedure shown in Fig. 1. The main cost of one design iteration arises from both the
electromagnetic solution and the primal-adjoint solutions, which are roughly equivalent for the unsteady case considered
in the present work.

Numerical Examples

A spatial accuracy examination for the discontinuous Galerkin Maxwell solver is first conducted using a rectangular
waveguide along with the assumption that the electric field is transverse to the direction of propagation. An exact solution
of this problem is readily available and is given by13:

Dx(x, t) =− B0β

ωµ
cos(αx)sin(βy)sin(ωt) (18)

Dy(x, t) =
B0α

ωµ
sin(αx)cos(βy)sin(ωt) (19)

Bz(x, t) =B0 cos(αx)cos(βy)cos(ωt) (20)

where α = mπ/xL, β = nπ/yL and ω =
√

(α2 +β2)/ε/µ. B0 refers to the amplitude of the magnetic flux density, which
is set to be 1 in this case. m/2 and n/2 denote the number of waves in the x and y directions of the computation domain
{(x,y)| 0 < x < xL,0 < y < yL}. In the following we set m and n to be 16 and 10, respectively. A perfect conducting
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Figure 1. Illustration of the optimization algorithm.

wall condition is applied to all computational domain boundaries and the Roe Riemann flux approximation9 is employed
at the interior elemental boundaries. Contours of the magnetic flux density after one period (t = T ) are illustrated in Fig.
2, using a p= 4 spatial DG discretization (fifth-order accurate) and the BDF2 implicit temporal scheme with a time-step
size of ∆t = 0.01. Note that each wave in the y direction, for example, is resolved by only about three elements. Fig. 3(a)
displays a more quantitative comparison, where profiles of the magnetic flux density along x = 40 are compared with the
exact solution at t = T as well as t = 10T . It can be observed that the fifth-order DG solution exhibits very good accuracy,
where there is no visual deviation between the computed and exact solutions, even for the longer time-integration case.
Three grids, consisting of 1600, 2500 and 6400 structured triangular elements, are used to examine convergence of the
spatial discretization error of the DG schemes ranging from p= 1 to p= 4. Here, the BDF2 temporal scheme is used to
obtain the unsteady electromagnetic solution, with a time-step size sufficiently small to ensure that the temporal error has
a negligible contribution to the total error. Fig. 3(b) shows the convergence of the spatial discretization error as a function
of grid spacing for various orders of DG discretization in the TE wave test case. The L2 norm of the solution error is
measured at about t = T/2 with the corresponding exact solution, in which the optimal error convergence rate (∼ hp+1) is
approximately attained in this study. In particular, the asymptotic slopes of the p=1, p=2, p=3 and p=4 DG schemes are
2.209, 3.165, 4.030 and 4.970, respectively, which are close to the respective design values of 2 3, 4, and 5.

The next example considers an unsteady shape optimization case for an electromagnetic scattering problem, in which
the adjoint-based sensitivity technique discussed previously is used to calculate the objective gradients at each design
iteration. The goal of this shape optimization case is to match a time-dependent magnetic-field profile on the target
NACA65(1)-212 airfoil by changing the shape of the original NACA0012 airfoil geometry. The objective functional for
this purpose is defined as,

L =

√
∑

N
n=1 ∑

Ns
i=1(Bz

n
i −B∗z

n
i )

2

N×Ns
(21)

where Bz
n
i and B∗z

n
i denote the values of the magnetic solution at time step n for surface point i on the respective current

and target airfoil surfaces. N and Ns represent the total number of time steps and the number of surface grid points.
A computational mesh containing 4367 unstructured triangular elements is employed, along with 118 design variables
spanning about 99% of the chord locations on the upper and lower airfoil surfaces. The surface deformation occurs in
the y-coordinate direction alone since it is not desired to change the chord length of the airfoil. A fifth-order DG scheme
(i.e. p = 4) and the BDF2 temporal scheme with a time-step size of ∆t = 8× 10−3 are used for the respective spatial
and temporal discretizations. An initial electromagnetic-field solution (i.e. t = 0) is prescribed ahead of the airfoil and is
allowed to propagate downstream, thereby impacting the airfoil. This initial distribution is given by,
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(a) Computational mesh and magnetic field solution (b) 3D-view of the magnetic field solution

Figure 2. Computational mesh (containing 803 elements) and magnetic field solution for a transverse electric wave at t = T using a p = 4 (i.e.
fifth-order accurate) spatial DG discretization and the BDF2 implicit scheme, where approximately three elements are employed to resolve each
wave in the y direction.

(a) Magnetic solution profiles (b) Spatial discretization error vs. grid spacing

Figure 3. (a) Comparison of magnetic-field solution at t = T and t = 10T with the exact solution, using a p = 4 spatial DG discretization and the
BDF2 implicit scheme. (b) Convergence of spatial discretization error for various orders of DG discretization as a function of grid spacing in
the TE wave example.
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(a) Original NACA0012 airoil (b) Target NACA65(1)-212 airfoil

Figure 4. Contours of the magnetic flux density for the original NACA0012 airfoil (a) and the target NACA65(1)-212 airfoil (b) at final time
t = 1.2 in the electromagnetic scattering problem, using a p = 4 spatial DG discretization and the BDF2 scheme.

Design variables

dL
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0.002

Adjoint
Finite Difference

Figure 5. Comparison of sensitivity derivative vector using the unsteady discrete adjoint method and the finite-difference method for the original
mesh and airfoil geometry.
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(a) Convergence of objective functional
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Figure 6. Convergence of the objective functional and gradient norm in terms of the number of design iterations in the electromagnetic shape
optimization case.

6 of 8



X

Y

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4
Target (NACA65(1)-212)

Original (NACA0012)

Optimized

(a) 1:1 scale
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Figure 7. Comparison of airfoil shapes among the target NACA65(1)-212 airfoil, the original NACA0012 airfoil and the final optimized airfoil
in the electromagnetic shape optimization case.

Dx(x) = 0
Dy(x) = D0 cos(α(t− x))
Bz(x) = B0 cos(α(t− x))

 for x < xw =− π

2α
, otherwise Dx(x) = Dy(x) = Bz(x) = 0 (22)

where D0 and B0 denote the amplitudes of the respective electric and magnetic waves, and α relates to the frequency of
the wave, which is set to be 36 in the scattering problem. xw indicates the x-coordinate location where the electromagnetic
waves start to propagate. The airfoil surface is treated as a perfect electric conductor and the Dirichlet boundary condition,
as specified by Eq. (22), is imposed on the outer boundaries, while interior fluxes are computed based on the Lax-
Friedrichs Riemann flux approximation8. Fig. 4 illustrates contours of the magnet flux density at the final time t =
1.2 (i.e. N = 150) for the original NACA0012 airfoil and the target NACA65(1)-212 airfoil in the test case specified.
Validation of the sensitivity calculation using the developed adjoint method is illustrated in Fig. 5 by comparing to finite-
difference gradients. One can observe that the adjoint-based sensitivity derivative provides an excellent match with the
finite-difference results, thus verifying the sensitivity formulation derived in this work. Fig. 6 plots the convergence of the
objective functional and gradient norm against the number of shape optimization iterations, where it is shown that over a
one-order magnitude reduction in the objective and an approximately two-order magnitude reduction in gradient norm are
obtained in 40 design steps. Fig. 7 compares the geometry shapes for the original, target and final optimized airfoils using
a 1:1 scale as well as an exaggerated vertical scale to show more details. One can observe that the consequent optimized
airfoil shape matches with the target geometry very well, although the original symmetric shape differs considerably with
the target. Conclusions

This report presents a discrete adjoint algorithm for calculating sensitivity information in electromagnetic shape opti-
mization problems. A high-order accurate discontinuous Galerkin method is used for solving the model electromagnetic
problems, with incorporation of a second-order backward Euler scheme to obtain the unsteady electric- and magnetic-field
solution in the time domain. Convergence of the spatial discretization error has been examined in the current work where
the optimal error convergence (∼ hp+1) is achieved. Due to the fact that curvilinear boundary elements are employed
near complicated geometries, special treatments are required for variation and re-creation of curved boundary elements
to maintain the design order of accuracy for the scheme. These treatments must also be reflected in the linearization
of the objective functional to obtain consistency with the analysis code. Results on an electromagnetic scattering shape
optimization case further provide verification of the discrete adjoint sensitivity formulation developed in this work. The
adjoint-based optimization algorithm performs efficiently for a large number of input variables, thus becoming an im-
portant approach for electromagnetic design problems. Future work will concentrate on the development of shape and
material design techniques in three-dimensional electromagnetic problems.
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