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Abstract 

 Shape optimization of fuel channels in solid oxide fuel cells (SOFC) is presented. 

A three-dimensional, implicit, multi-species fuel cell solver is developed to compute the 

baseline solution. Sensitivity derivatives required for the optimization are computed using 

the discrete adjoint method. A gradient based optimizer is utilized to update the design 

variables. The geometry of the fuel channel is parameterized to obtain meaningful design 

variables using a recently developed technique that is applicable for multi-disciplinary 

design optimization. During the design process, the mesh is continually modified to reflect 

the changes in the underlying geometry. An automated environment to sequentially 

execute the aforementioned processes is developed.  Cost functions representating the cell 

voltage and uniform distribution of fuel among all channels are optimized with respect to 

the shape of the fuel channels.  

Keywords: SOFC, fuel cell, shape, design, adjoint, sensitivity analysis 

1. Introduction 

Development of alternative energy producing devices has attracted a lot of attention 

from researchers all over the world in recent years.  Due to its capability of producing 
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energy at higher efficiency and flexibility towards various hydrocarbon fuel types, Solid 

Oxide Fuel Cells (SOFCs) present a promising technology of the future.  Even though 

SOFCs are still in the developmental stage, numerical techniques can be effectively 

utilized to find solutions to may of the design hurdles affecting the commercial application 

of the technology.   Experimental and numerical approaches have been undertaken by 

several researchers [1-8] to study the behavior of SOFC.  Some of the advantages of the 

numerical simulations over the experiments are the cost effectiveness and the fact that the 

simulations provide a wealth of data that is difficult or impossible to obtain experimentally 

and can be used to perform in-depth analysis of the SOFC unit/system.  Numerical 

simulations can contribute greatly toward better designs that can produce more power, 

increased efficiency and extended life expectancy of various SOFC components.  

To date, numerical simulations have been primarily focused on analysis of fuel 

cells or fuel cell components, without strong emphasis on utilizing the simulations in a 

design optimization environment.  In particular, optimization procedures that may be 

efficiently used for a large number of design variables have not been developed.  Because 

of the emphasis on analysis instead of design, sensitivity information to determine the 

effects of variations in design parameters on performance has been primarily implemented 

by simply changing the parameter of interest, re-running the simulation, and comparing the 

results with those from the original simulation [1,5-6,8].  While this approach can be used 

to determine the effects of parameter variations on fuel cell performance, a more rigorous 

approach toward optimization would likely lead to better designs, and can also provide 

improved insight into the parameters affecting the performance of the fuel cell.  For SOFC 
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problems, example cost functions that can be used for improving performance include 

minimizing temperature variations, obtaining equal distribution of fuel in each of the 

channels, or maximizing power.  Design variables may be related to the shape/size of the 

fuel channels, electrodes, electrolyte, and interconnect, but may also be coupled to the 

stoichiometric composition of fuel or material properties such as the porosity or tortuosity 

of the electrodes. 

In references [9] and [10], optimization algorithms have been used to improve the 

performance of a polymer-electrolyte-membrane fuel cell (PEM) using four design 

variables, where the sensitivity derivatives used for the optimization algorithm have been 

obtained using a finite-difference approach. While finite differences are often a viable 

means for computing sensitivity derivatives, this method can be computationally restrictive 

when a sufficiently large number of design variables are present.  In addition, accurate 

derivatives can sometimes be difficult to obtain using finite differences because of 

subtractive cancellation errors [11], which occur when the function evaluations in the 

numerator become computationally indistinguishable [12] when very small perturbations 

are used.  By using a discrete adjoint method, sensitivity derivatives that are consistent 

with the flow solver may be obtained for use in a design optimization environment.  A 

particular strength of adjoint methods is that sensitivity information can be obtained with a 

computational cost that is only weakly dependent on the number of design variables, and is 

therefore enabling technology for design studies where many design variables are required.  

Secanell et al. [13] performed gradient-based optimization of a planar self-

breathing polymer electrolyte membrane (PEM) fuel cell cathode using a two-dimensional 
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fuel cell model.  Sensitivity derivatives of the current density were obtained using a direct-

differentiation method with respect to the electrode design parameters.  Although direct 

differentiation is an accurate method of obtaining sensitivity derivatives, application of this 

method for a practical design problem with many design variables is computationally 

expensive.  Recently, Huang et al. [14] studied influence of flow uniformity in various 

interconnects on cell performance of SOFC.  Even though shape optimization performed in 

the paper using Levenberg-Marquardt method (LMM) was interesting, sensitivity 

derivatives of the cost function with respect to each parameter were computed separately 

using finite difference method.  This approach is not practical for design problems with a 

large number of parameters and finite difference method also suffers from subtractive 

cancellation errors.  Similarly, channel design of proton exchange membrane fuel cell 

(PEMFC) performed by Lee et al. [15] lacked the inclusion of a technique to compute 

sensitivity derivatives.  Lee et al. [15] utilized an approach to change the parameter of 

interest and study the effect on the final cost function.  Even though such approach is 

useful, optimization performed with accurate sensitivity derivatives would be more 

efficient and effective, particularly when dealing with a complicated geometry and a large 

number of design variables.  

In recent years, adjoint methods have been developed and utilized for numerical 

simulations in the aerodynamic community for sensitivity analysis, error estimation, and 

adaptive meshing [16-27].  Recently, Kapadia et al. [28] performed a sensitivity analysis 

for a three-dimensional fuel cell type geometry where the cost function was based on the 

requirement of equally distributing fluid through the channels.  This numerical experiment 
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included all the mesh points defining the surface of the geometry as parameters, totaling 

more than 180,000 design variables.  The adjoint method is particularly suited to this class 

of problem because the sensitivity derivatives can be obtained for all design variables with 

the computational cost of a single solution of the nonlinear system used for analysis, a 

single solution of the linear adjoint system, and a matrix-vector multiply.  Although the 

numerical model used in this problem did not include diffusion or chemistry, it 

demonstrated the applicability of the adjoint method for solving problems with many 

design variables.  To further demonstrate the use of the discrete adjoint method for SOFC 

applications, Kapadia et al. [28-30] implemented the adjoint method for one-dimensional 

[28], two-dimensional [29] and three-dimensional [30] SOFC models.  In these studies, 

Kapadia et al. [26-28] computed sensitivity derivatives of several cost functions reflecting 

the performance of SOFC with respect to geometric and material properties of the fuel cell. 

In addition, an optimization of two-dimensional SOFC model [29] is performed that 

included material properties, operating conditions and fuel channel-anode assembly 

thickness as design parameters.  One of the interesting cost functions optimized in this 

study was the standard deviation of the temperature inside that anode. 

The primary goal of this paper is to formulate and develop adjoint methodology 

that accounts for high-fidelity physical modeling and can be applied to design various 

SOFC components in three-dimensions. Even though the methodology is general enough 

to address general shape design problems, this paper focuses on computing sensitivity 

derivatives of important cost functions with respect to shape of the fuel channel.  

Subsequently, sensitivity derivatives are used with a formal optimization method to modify 
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the shape of the fuel channels in order to improve the cost function.  Two cases are 

demonstrated to emphasize the importance of shape optimization.  The first case is a 

seventeen-channel manifold optimized to distribute the flow equally amongst all channels.  

This case does not include chemistry or electrochemistry, but demonstrates the capability 

of a design tool to tackle large scale problems.  The second case represents a simplified 

geometry as compared to the first case, but includes complex physics present inside the 

fuel cell.  The geometry for the second case can be termed as a single-channel SOFC, 

which includes fuel channel, air channel, anode, cathode, electrolyte and interconnects.  

The shape of the fuel channel is modified using the simulation tools to improve the cell 

voltage.   

2. Governing Equations and Numerical Details 

2.1 Governing Equations and Boundary Conditions 

Case 1 

 As mentioned previously, two design problems have been included in this paper. 

The first problem deals with a complicated geometry but with simplified physics.  The 

geometry is made up of a fuel cell manifold containing 17 fuel channels as shown in 

Figure 1(a) and (b).  Geometrical dimensions are given in Table 1.   

Inlet diameter 3.5 mm 

Outlet diameter 3.5 mm 

Channel length 46.0 mm 

Channel width  2.0 mm 

Channel height  1.5 mm  

Distance between two consecutive channels 1.0 mm 

Table 1. Geometrical dimensions of a manifold with 17 channels (Case 1) 
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 This case does not include any other SOFC components (for example, anode, 

cathode etc.), chemistry or electrochemistry.  The computational model, Figure 1(b), is 

based on an experimental geometry from the University of Arizona, Figure 1(a), but has 

been modified to only 17 fuel channels to reduce computational costs. The flowfield has 

been computed using an incompressible fluid assumption, with viscous flow in the laminar 

regime (Reynolds number is 182.0 based on inlet pipe diameter of 3.5 mm). 

  

Figure 1(a) & (b). Experimental geometry and computational model (Case 1) 

 All solid walls present in the computational geometry, Figure 1(b) are treated as 

adiabatic walls and applied with no-slip boundary conditions.  The mass flow rate is 

specified at the inlet of the manifold and back pressure is specified at the outlet of the 

manifold. 
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Case 2 

 The second design problem consists of a simplified geometry and more 

sophisticated physics including, multi-species diffusion, low-speed convection and 

chemical/electrochemical reactions.  Various SOFC components including the anode, 

cathode, electrolyte, interconnects, the air and fuel channels are included in the geometry 

as shown in Figure 2.  The figure shows the front view of the actual geometry used in the 

numerical simulation.  Fuel and air channels are bored through the interconnects and a very 

thin electrolyte (0.05 mm) is sandwiched between the porous electrodes.  Dimensions of 

the geometry are given in Table 2. 

 

Figure 2(a) & (b). Computational model (Case2, side view and front view) 
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Fuel and air enter through the inlet of the channels and diffuse inside the anode and 

cathode, respectively.  Oxygen atoms combine with the electrons and get converted into 

oxygen ions ( 2

20.5 2O e O
− −+ → ).  These oxygen ions migrate through the solid electrolyte 

to reach the anode-electrolyte interface and combine with hydrogen to generate steam and 

release electrons ( 2

2 2 2H O H O e
− −+ → + ).  Both these reactions take place inside 

extremely thin layers near the cathode-electrolyte and the anode-electrolyte interfaces, 

respectively.  Because modeling the details of the interface region is impractical due to the 

small size, the cumulative effect of the electrochemical reactions is modeled as a jump in 

the electric potential, similar to the approach used by Ferguson et al.[1]. 

 The three-dimensional SOFC model [30] utilized in this paper solves multi-species 

Navier-Stokes equations along with an electric potential equation that governs the 

distribution of electric potential and current density in the field.  The three-dimensional 

model accounts for all components of the SOFC, including the anode, cathode, electrolyte, 

interconnects, and the fuel and air channels.  Note that the model is not limited to any 

particular type of SOFC, i.e. planar as well as tubular type SOFC can be simulated using 

Length (z-direction) 40.0 mm 

Width (x-direction) 9 mm 

Height (y-direction) 16.925 mm 

Anode thickness (y-direction) 0.625 mm 

Cathode thickness (y-direction) 1.25 mm 

Electrolyte thickness (y-direction) 0.05 mm 

Channel width (x-direction) 5.0 mm 

Channel thickness (y-direction) 5.0 mm  

Table 2. Geometrical dimensions of planar type SOFC (Case 2) 
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this model.  Results obtained using this model have previously been presented in [30] for a 

planar type porous-electrode supported SOFC as explained by Wang et al. [31]. 

Governing equations for the mass, momentum and energy conservation are solved 

simultaneously with the equation governing the electric potential in the numerical model.  

The system of equations utilized in the model is given by equations (1) - (6), which 

represent the conservation statements for the species concentrations, momentum (x, y and 

z), energy and current, respectively.   

( )
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i i i i                           (5) 

( ) 0σ φ∇ ∇ =i                                                                                                                       (6) 

 Equations (1) – (5) are modified Navier-Stokes equations valid for both porous and 

fluid regions.  Detailed discussion on flux formulation for these equations can be found in 

previous work [26-28].  Equation (6) represents the electric potential equation. 

Electric/ionic conductivity,σ , in equation (6) is a strong function of the temperature.  

Expressions describing the relationships between the electric/ionic resistivity (reciprocal of 

conductivity) and the temperature for various components of SOFC are presented in Table 
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3 [31,32] along with thermal conductivities and other material properties of different 

components of the SOFC.   

As presented, equation (6) is an elliptic equation contrary to the rest of the 

governing equations, equations (1) - (5), which are hyperbolic-parabolic equations.  

Equation (6) is solved in the entire domain except for the fuel and air channels, which are 

pure fluid regions.  The lower boundary of the SOFC shown in Figure 2 (bottom surface of 

the interconnect) is assumed to be at zero potential while average current density is 

specified on the upper boundary of the interconnect at the top of the cell.  Thus, the 

computed potential on the top surface of the interconnect gives the operating voltage of the 

SOFC.  Similar boundary conditions have also been used in references [1, 6, 31].   
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The voltage output of the SOFC strongly depends on several irreversibilities or 

losses encountered in the flowfield including activation polarization, concentration 

polarization and ohmic polarization.  Noren and Hoffman [33] have provided extensive 

discussion on accurately modeling the activation polarization.  The SOFC model used in 

this work employs the Butler-Volmer equation to compute activation polarization [33].  

The Butler-Volmer equation can be written as,    

0 exp exp (1 )e e
act act

u u

n F n F
i i

R T R T
α η α η

    
= − −    

    
                                                                (7) 

The activation polarization is denoted by
act

η .   

Electric resistivity of anode ( )mΩ −  52.98 10 exp( 1392 / )T−× −

 Electric resistivity of cathode ( )mΩ −  58.11 10 exp(600 / )T−×  

Electric resistivity of interconnect ( )mΩ −  86.41 10−×  

Ionic resistivity of electrolyte ( )mΩ −  52.94 10 exp(10350 / )T−×

 Thermal conductivity of anode ( )_1 _1W m K  6.23 

Thermal conductivity of cathode ( )_1 _1W m K  9.6 

Thermal conductivity of interconnect ( )_1 _1W m K  9.6 

Thermal conductivity of electrolyte ( )_1 _1W m K  2.7 

Porosity of anode 0.38 

Porosity of cathode 0.5 

Tortuosity of anode 1.5 

Tortuosity of cathode 1.5 

Permeability of anode ( 2)m  101.0 10−×  

Permeability of cathode ( 2)m  101.0 10−×  

Pore diameter of anode ( )m  62.0 10−×  

Pore diameter of cathode ( )m  62.0 10−×  

Table 3. Material properties of various components of SOFC [31, 32] 
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α  is the charge transfer coefficient and assumed to be 0.5 in the current work.   

e
n  represents the number of electrons involved in the electrochemical reaction, which is 2 

in the current simulation.   

0i  is the exchange current density and it is computed using equations (8) and (9) for the 

anode and cathode [34], respectively. 

2 2 ,

0, exp
H H O act a

a a

ref ref u

P P E
i

P P R T
ζ
    

= −          
                                                                                   (8) 

2

0.25

,

0, exp
O act c

c c

ref u

P E
i

P R T
ζ
   

= −       
                                                                                           (9)    

Various constants in the above equations are given in Table 4 [34].  Once the 

values of α  and 
e

n are inserted in equation (7), the activation polarization can be 

computed using the following expression. 

1

0

sinh
2

u
act

R T i

F i
η −   

=   
   

                                                                                                  (10) 

 

α  0.5 

e
n  2 

(  _ 2)
a

A mζ   85.5 10×  

(  _ 2)
c

A mζ   87.0 10×  

, (  _1)
act a

E J kmol  81.0 10×  

, (  _1)
act c

E J kmol  81.2 10×  

(  _ 2)
ref

P N m  101325 

Table 4. Constants used to compute activation polarization [34] 
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Ohmic polarization is a direct consequence of the resistance offered to the flow of 

electrons/ions inside various components of the SOFC.  Voltage drop due to ohmic 

resistance is directly proportional to the current and the resistance.  The effect of ohmic 

polarization on the voltage loss is directly included in the potential equation, equation (6), 

through the electric conductivity,σ , which is the reciprocal of the electric resistivity.  

 Concentration polarization is caused by reductions in the concentrations of the 

reacting species at the interface between the electrodes and the electrolyte.  The effect of 

the reduction in concentrations can be seen from the well-known Nernst potential equation, 

given by equation (11).  Also, exchange current densities at the anode-electrolyte interface 

and the cathode-electrolyte interface, represented by equations (8) and (9), respectively, are 

strongly affected by the concentration polarization.     

Equation (11) computes the electromotive force (EMF) or electric potential under 

reversible conditions, i.e. in the absence of activation, ohmic or any other losses.   

2 2

2

0.5

0 ln
2

H O

H O

P PRT
EMF EMF

F P

 
= +   

 
                                                                                     (11)  

i
i

ref

P
P

P
=                                                                                                                               (12) 

 The electromotive force at standard pressure is given by 0EMF .  The value of 
ref

P  

is taken as one atmosphere in above equation.   

The electrochemical reaction reduces the concentration of the reactants and 

increases the concentration of the products at the electrode-electrolyte interface.  Thus, the 

partial pressures of the reactants and products are affected in the same manner.  This will 
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reduce the value of the second term on the right-hand side of the equation (11) thereby 

affecting the EMF of the cell adversely.  Concentration polarization strongly depends on 

the material properties of the electrodes that are responsible for the transport (diffusion and 

convection) of the reactants and products, to and from the electrode-electrolyte interface.   

No-slip, adiabatic wall boundary conditions are applied at the top wall, bottom wall 

and side walls of the computational geometry shown in Figure 2.  As mentioned earlier, 

fixed potential ( 0φ = ) boundary condition is applied at the bottom wall.  The top wall is 

treated by specifying average current density (
applied

i i= ).  

Inflow boundary conditions with specified mass flow rate and species mole 

fractions are applied at both fuel and air channel inlets.  The temperature of the air and fuel 

mixture entering at their respective channels is 1123 K.  Also, both channels are operating 

at atmospheric pressure. Specified back pressure outflow conditions are applied at both air 

and fuel channel outlets. 

Several transport processes take place at the anode-electrolyte and the cathode-

electrolyte interfaces that strongly affect the overall behavior of the SOFC.  The 

conversion of oxygen molecules into oxygen ions at the cathode-electrolyte interface is 

modeled by applying a mass flux condition at the interface using Faraday’s law. In 

equation (13), i is the local current density and F is Faraday’s constant.  A negative sign 

implies that the flux is leaving the interface. 

2 24
O O

i
J M

F
= −                                                                                                                  (13) 
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Similarly, the following mass flux conditions for hydrogen and steam are applied at 

the anode-electrolyte interface. 

2 22
H H

i
J M

F
= −                                                                                                                  (14) 

2 22
H O H O

i
J M

F
=                                                                                                                 (15) 

 In order to account for the heat generated due to electrochemistry, heat flux 

proportional to the entropy change associated with the electrochemical reaction is applied 

at the anode-electrolyte and cathode-electrolyte interfaces.  This heat flux is proportional to 

the molar formation rate, “ 
e

i

n F
”, where 

e
n  is the number of electrons participating in the 

electrochemical reaction. 

 

2.3 Solution Procedure 

Flowfield variables are computed using an unstructured, implicit, finite-volume 

solver.  The solver is vertex centered and the discrete residual at each node is computed by 

integrating the governing equations, (1) – (6) over a median dual control volume.  Because 

a steady-state solution is the primary goal of the current work, time accuracy of the 

solution is sacrificed by allowing local time-stepping to accelerate convergence. 

  To reduce computer time, the solution is obtained using multiple processors 

utilizing the message passing interface (MPI) [35]
 
and necessary grid decomposition is 

achieved using METIS [36].  Original grids are generated using the commercial software 

Gridgen [37].   
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  An implicit Euler scheme is used to solve the non-linear system as given by 

equations (1) - (6).  A flux-difference splitting scheme based on the ROE scheme [38,39] 

for a multi-component mixture is derived to model the convective fluxes.  A central-

difference formulation is used to compute all the second-order derivative terms.  Linear 

systems encountered in both the flowfield and sensitivity solvers are solved using the 

GMRES [40] method. 

 

3. Design and Sensitivity Analysis 

3.1 Discrete Adjoint Method 

The goal of an adjoint method is to determine sensitivity derivatives that can be 

used in a formal optimization procedure for minimizing a specified cost function, which is 

indicative of the performance of the system.  A general optimization procedure begins by 

first defining a meaningful cost function and a desired set of design variables. A numerical 

analysis of the baseline system is then performed.  The results of the analysis include the 

solution variables Q  of the discretized partial differential equations, which are 

subsequently used to determine the initial cost. Because the numerical analysis involves 

discretization of the partial differential equations on a computational mesh, it should be 

noted that Q  represents the vector of solution variables where each element of the vector is 

representative of one or more physical variables located at each mesh point, χ .   

The cost function may have an explicit dependence on the vector of design 

variables, β , but will also have an implicit dependence because Q  and χ may also depend 
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on the design variables.  Therefore, the cost function is typically written to indicate the 

implicit and explicit dependence on the design variables as,  

)),(),(( ββχβQff =                                                                                                         (16) 

If R  represents the vector of discrete residuals at each mesh point, an augmented 

cost function L  can be defined in the terms of the original cost function and the vector of 

discrete residuals as following. 

( ( ), ( ), , ) ( ( ), ( ), ) ( ( ), ( ), )TL Q f Q R Qβ χ β β β χ β β β χ β βΛ = + Λ                                     (17) 

In equation (17), Λ  is the vector of Lagrange multipliers (also known as costate 

variables).  Note that the augmented cost function, L , is a scalar quantity that is identical to 

the original cost function f , when ( )R Q  is zero, indicating that the steady-state solution is 

obtained.  Differentiating the augmented cost function with respect to each of the design 

variables yields the following set of equations for
dL

dβ
, which is a column vector where 

each element represents the derivative of the augmented cost function with respect to a 

particular design variable. 

TT T T T T

dL f f Q f R R R

d Q Q

χ χ

β β β χ β β β χ

               ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
= + + + Λ + + Λ               ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                  

           (18) 

 Because the elements of Λ  are arbitrary, the second term, which involves the 

derivatives of the dependent variables with respect to the design variables, can be 

eliminated by solving a linear system of equations for the costate variables, also known as 

the adjoint equation. 
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T

R f

Q Q

  ∂ ∂
Λ = −   ∂ ∂  

                                                                                                           (19)                                                             

 Once the costate variables are obtained, the derivatives of the cost function with 

respect to all the design variables are obtained using a matrix-vector multiplication. 

d
T T T T

L f f R R

d

χ χ

β β β χ β β χ

         ∂ ∂ ∂ ∂ ∂ ∂ 
= + + + Λ          ∂ ∂ ∂ ∂ ∂ ∂          

                                                  (20) 

In numerical simulations, the largest computational cost of computing sensitivity 

derivatives using the adjoint equations is due to the solution of the analysis equations and 

the adjoint equation, both of which are independent of the number of design variables. The 

only dependency on the number of design variables is in the evaluation of equation (20), 

which is generally much cheaper to compute than either the analysis or adjoint solutions.  

 Note that the terms in equations (18) - (20) involve differentiation of the discrete 

residual R , the cost function f , and the computational mesh χ with respect to the 

dependent variables Q , the design variables β , and the location of the mesh points χ .  

Correct implementation of this procedure can be extremely tedious to accomplish by hand 

and the resulting code can be difficult to maintain.  To overcome the difficulties associated 

with hand differentiation, the complex-variable technique of Burdyshaw et al. [18] and 

Nielsen et al. [26] has been used for evaluating all the terms in the matrices required for 

solving the adjoint equations and for evaluating equation (20) once the costate variables 

have been obtained.  Step-by-step derivation of complex variable technique is 

demonstrated by Kapadia et al. [28] along with the detailed discussion on relative benefits 
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and drawbacks of complex variable method with respect to automatic differentiation 

[41,42] and finite difference methods.   

3.2 Mesh Sensitivity 

As described earlier, the optimization procedure presented using the three-dimensional 

SOFC model in this work allows shape parameters as design variables.  To maintain the 

quality of the mesh during a design cycle, a methodology is required to compute the 

displacements of the interior nodes when the underlying geometry is modified.  The 

present simulations use the linear elasticity equations as applied in reference [43] to 

compute these displacements as shown in equation (21). 

[ ]
surface

χ χΓ =                                                                                                                                              (21) 

  The matrix, [ Γ ], is formed by applying a finite-volume method to the linear 

elasticity equations and 
surface

χ  denotes the displacements applied to the surface nodes.  

Note that, [ Γ ] does not depend on the vector of the design variables, β .  Thus, by 

differentiating equation (21) with respect to β , mesh sensitivities, /χ β∂ ∂  can be obtained. 

[ ]
surface

χχ

β β

∂∂
Γ =

∂ ∂
                                                                                                                (22)                              

 Using equation (22), sensitivities are computed separately for each shape parameter 

and are then used in equation (20) for determining the sensitivity derivatives. Because this 

procedure is repeated for each design variable, it can be computationally prohibitive for 
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three-dimensional design problems when many parameters are present.  To overcome this 

difficulty, the method developed by Nielsen and Park [44] has been implemented in the 

current study.  In this technique, satisfaction of the mesh equation given by equation (21) is 

included as a further constraint in the augmented cost function.  

[ ]( )
( ( ), ( ), , ) ( ( ), ( ), ) ( ( ), ( ), )T

T

g surface

L Q f Q R Qβ χ β β β χ β β β χ β β

χ χ

Λ = + Λ

+ Λ Γ −
                                     (23) 

 Here, 
g

Λ is the vector of co-state variables associated with the mesh displacements.  

The last term in equation (23) represents the residual of the linear system presented in 

equation (21), which is zero when the solution is converged.  Thus, equation (23) 

maintains the original value of the desired cost function, f .  Equation (24) is obtained by 

following the same procedure used in deriving equation (20).  

[ ]

TT T

T T

T surfaceT

g g

dL f R Q f R

d Q Q

f R

β β β β

χχ

β χ χ β

     ∂ ∂ ∂ ∂ ∂ 
= + Λ + + Λ     ∂ ∂ ∂ ∂ ∂       

  ∂    ∂ ∂ ∂ 
+ + Λ + Γ Λ − Λ      ∂ ∂ ∂ ∂       

                                                        (24) 

  Finally, the grid adjoint problem, equation (25), is derived by solving for 
g

Λ to 

eliminate the mesh sensitivity term, ( )/
T

χ β∂ ∂ in a similar manner as the first adjoint 

problem.   

[ ]
T

T

g

f R

χ χ

 ∂ ∂
Γ Λ = − − Λ ∂ ∂ 

                                                                                                                    (25) 
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 Note that with this procedure, Λ  is first obtained and subsequently used on the 

right-hand side of equation (25).  Although equation (25) represents an additional linear 

system of equations, the effects of mesh sensitivities for each design variable are accounted 

for in a programming loop extending only over surface coordinates and eliminates the need 

for multiple solutions of equation (21).  By combining equations (19), (24) and (25), 

sensitivity derivatives of an augmented cost function can be computed using equation (26). 

T

surfaceT

g

dL f R

d

χ

β β β β

∂  ∂ ∂
= + Λ − Λ   ∂ ∂ ∂   

                                                                                 (26) 

3.3 Parameterization  

 Recently, a parameterization method has been developed to improve the 

flexibility and speed in which a shape design problem can be defined. This method uses a 

construct called a control grid [45], which is associated with the surface mesh upon which 

shape modification is desired. Design variables are defined on the boundaries of the control 

grid as perturbation sources, which are then propagated to the surface mesh. In this case, 

the perturbations are propagated via an elliptic PDE solve (Laplacian) over the control grid 

volume. The resulting surface displacements are linear functions of the design variables. 

As a consequence, the parameterization need only be computed for the original surface 

mesh. Subsequent shape deformations are then computed as a linear combination of the 

design variable values and their associated sensitivity derivatives which are also computed 

only for original surface. This tool has been used to define a parameterization for a wide 

variety of shapes, including turbomachinery blades, wing/spar combinations, and an inlet 
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s-duct. In Case 1, the parameterization technique has been used to provide design variables 

to control the width of the 17 channels, while treating the baffles as rigid bodies. In Case 2, 

design variables are located on the top and bottom walls of the fuel channel as shown in 

Figure 3.  

 

Figure 3. Parameterization applied in Case 2 

3.4 Optimization 

 The optimization method used in this case is the quasi-Newton method of Broyden, 

Fletcher, Goldfarb, and Shanno (BFGS) combined with a Trust Region method for the step 

size. Side constraints are enforced in the step size calculation where those variables at the 

bounds are excluded from the step calculation. 

 As previously mentioned, mesh movement was accomplished by modeling the 

mesh as a linearly elastic medium in which stresses are caused the rigid body motion of the 

surfaces. The forces due to these stresses are then balanced by solving the linear elasticity 

equations on the mesh, which prescribe a redistribution of the interior mesh points. 

4. Results and Discussion 

Case 1 
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 Figure 1(b) shows the computational model utilized in Case 1, which is loosely 

based on an experimental geometry from the University of Arizona as shown in Figure 

1(a). Incompressible, viscous (laminar) flow solver has been utilized to calculate the 

flowfield variables. 

 As seen in Figure 4(a), the original flow field has a significant amount of uneven 

flow distribution through the channels such that most of the fluid moves through the first 

four, and last three channels, and is relatively stagnant in the remaining ten. This design is 

clearly inefficient with respect to fuel utilization, which becomes a critical issue as current 

draw is increased. 

 To obtain better fuel distribution throughout the cell, an infinite variety of surface 

modifications may be investigated. However, for these results, the widths of the channels 

are allowed to vary, so that the final design would likely be easily manufactured.  Figure 

4(b) shows the improved design shaded with x-coordinate velocity contours.  

 The design optimization was performed, in which the objective was to minimize 

the standard deviation of the flow velocity through the midpoint of each channel from the 

average velocity of all the channels. The resulting design depicted in Figure 4(b) produced 

an 80% reduction in the cost function compared with the original. Comparison of average 

velocity inside each channel between the original geometry and the optimized geometry is 

shown in Figure 5 and demonstrates that significant improvement in the distribution of the 

flow has been achieved. 
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Figure 4(a) & (b). Initial and improved manifold geometries 

 

  

Figure 5. Average velocity in each channel of baseline and improved manifold designs 

Case 2 

  The operating conditions utilized in the simulation are described in Table 5.  As 
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seen in Table 5, partially reformed fuel has been utilized and thus, two chemical reactions, 

water gas shift (27.1) and methane reforming (27.2) reactions have been considered inside 

the anode. 

CO
X  

2H OX  
2COX  

2HX  
4CHX  

2OX  
2NX  ( )T K  (  _ 2)P N m  

0.029 0.493 0.044 0.263 0.171 0.198 0.802 1123 K 101325 

Table 5. Mole fractions and operating conditions 
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r

r

kf

kb
CH H O CO H→+ +←                                                                                     (27.1)                               

2 2 2

s

s

kf

kb
CO H O CO H→+ +←                                                                                       (27.2)                               

 Reaction rates for various species have been computed using the following 

equations. 

3

224 HCOrOHCHrr ppkbppkfRate −=                                                                                  (28.1)                              

222 HCOsOHCOss ppkbppkfRate −=                                                                                  (28.2)                               

Subscripts “ r ” and “ s ” stand for reforming and shift reactions, respectively.  

Reaction rate constants, kf and kb , are computed using the methodology outlined in 

reference [29].  Mass flow rates of fuel and air are 3.0 x 10
-7

  kg/sec and  1.76 x 10
-5

  

kg/sec, respectively.  Current density of 8000 A/m
2  

is applied at the top wall of the 

computational geometry shown in Figure 2.   

  Improving power output is the ultimate goal of the SOFC design.  If current density 

is fixed, the power output can be improved by increasing the cell voltage.  Sensitivity 

derivatives of the cost function representing the cell voltage with respect to various design 
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parameters can be extremely useful in the design cycle. Thus, the following cost function 

is considered for sensitivity analysis and optimization. 

1
Surface area of the top surface 

t

t

t S

f ds S
S

φ= −∫∫                                                                       (29) 

  Eighteen design parameters are utilized in the design cycle.  Design parameters are 

located on the top and bottom surfaces of the fuel channel.  Only normal movements of 

both surfaces are allowed.  Design parameters are defined in a manner such that the inlet 

plane of the fuel channel stays fixed while allowing for movement of the outlet plane.  

Though not attempted in the present study, optimization of material properties and 

operating conditions can also be integrated with the shape optimization with ease [29]. 

  As mentioned earlier, the top and bottom surfaces of the fuel channel are allowed to 

move during the optimization cycle.  The top surface of the fuel channel is also shared by 

the anode as shown in Figure 2 and thus, the anode shape may be modified during 

optimization.  Figure 6 shows the original and modified anode shape obtained during 

optimization.  As seen, the average thickness of the anode has been increased during 

design.  An explanation of this result can be obtained by considering that the reforming 

and shift reactions, given by equations (27.1) and (27.2), are responsible for the generation 

of hydrogen.  As chemical reactions are only allowed to take place inside the anode, a 

thicker anode provides increased volumetric generation rate of hydrogen, which is not 

negated by increased ohmic losses.  As electrochemical reactions are responsible for the 

consumption of hydrogen, additional hydrogen generated due to the increased volume of 

the anode also assists in lowering concentration polarization.  An interesting feature of the 
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optimized anode in Figure 6 is that the thickness of both ends remain approximately same 

even though movement of one end located above the outlet plane has not been restricted.     

  

Figure 6. Shape of the anode before and after optimization 

 Figure 7 shows hydrogen mole fractions contours plotted at four streamwise 

locations for both baseline and optimized geometries.  Reduction in hydrogen mole 

fraction is evident as fuel moves from the inlet towards the outlet of the channel in both 

geometries.  Also, the corner indicated by “Point-A” represents the location containing the 

lowest hydrogen mole fraction in both cases.  As seen, “Point–A” is located at the anode-

electrolyte interface, directly above the interconnect.  The “Point-A” in Figure 7 is not in 

direct contact with the fuel channel and thus, fresh hydrogen from the channel has to travel 

over an extended diffusion path to provide sufficient hydrogen required by the 

electrochemical reactions taking place at the anode-electrolyte interface.  As mentioned 

earlier, reforming and shift reactions act as local sources of hydrogen inside the anode.  By 

closely comparing the first three planes for both the baseline and optimized geometries in 

Figure 7, one can observe the effect of the thicker anode in providing more hydrogen at the 

corner indicated by “Point-A”.  This effect ultimately transforms into the reduction of 

concentration polarization at the anode-electrolyte interface and thus, increases the cell 

voltage.    

Baseline 

Optimized 
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Figure 7. Hydrogen mole fraction at different streamwise locations 

  This case represents a single-point optimization, where a current density of 8000 

A/m
2 

has been applied in design study to optimize the shape of the fuel channel and the 

anode as shown in Figure 7.  Using the new geometry, a series of test cases with different 

current densities and same inlet species concentrations given in Table 5 have been run to 

check the generality of the improvement achieved.  The comparison between the 

polarization curves obtained using the baseline and optimized geometries is shown in 

Figure 8.  As expected, the cell voltage reduces with increasing current density for both 

Baseline 

 

 

 

Point - A 
 

 

 

Optimized 

Interconnect 
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geometries due to the combined effects of ohmic polarization and concentration 

polarization. The steepest reduction in cell voltage can be observed between current 

densities of 7500 A/m
2
 and 8000 A/m

2
.  Also, the optimized geometry consistently 

demonstrates better performance than baseline geometries for all current densities.  

However, because the optimization cycle has been done at a single operating condition, 

this can not be expected to represent a general result.  Multipoint optimization 

methodologies are needed and are currently under development.   

 

Figure 8. Comparison of polarization curve between baseline and optimized geometry 

 Even though Figure 8 shows better results with the optimized geometry, it is hard 

to quantify the improvements achieved at each current density.  Thus, quantitative 
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improvement in the cost function is shown in Figure 9.  As expected, the percentage 

improvement in cell voltage increases with the increase in the current density.  The reason 

behind such behavior is that the consumption rate of the hydrogen at the anode-electrolyte 

interface is directly proportional to the current density as shown in equation (14).  

Therefore, the effect of the additional hydrogen resulting from the thicker anode is more 

evident for cases with higher current densities.  In Figure 9, improvement in cost function 

is almost linear (0.8% – 2.25 %) for current densities ranging from 3000 – 7000 A/m
2
, but 

increases rapidly from 2.25% to 4.6% as current density is increased from 7000 A/m
2
 to 

8000 A/m
2
.   

 

Figure 9. Quantitative analysis of cost function improvement 
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5. Conclusions and Future Work 

An automated design tool has been developed to perform shape optimization of 

SOFC components.  Various processes involving flowfield solution, sensitivity 

computation, geometric parameterization, mesh movement and optimization have been 

integrated under a single frame work.  A three-dimensional, parallel, unstructured solver 

has been developed to model complicated transport phenomena present inside all 

components (channels, electrodes, electrolyte and interconnects) of a solid oxide fuel cell.  

Two different geometries have been utilized in optimization procedure.  In the first 

problem, a manifold containing seventeen channels has been modified to obtain uniform 

distribution of fuel among all channels.  Here, the channel width is allowed to change to 

improve the cost function.  In the second problem, optimization of a single channel SOFC 

has been attempted to achieve higher cell voltage.  Average thickness of the anode has 

been increased in the optimized geometry of a single-channel SOFC.  Polarization curve 

comparison between the baseline and the optimized geometry demonstrates that the 

modified geometry can achieve improved results, particularly cases running at high current 

densities.   

Future work is targeted at developing multipoint optimization capability and for 

extending the present work for polymer electrolyte membrane (PEM) fuel cells.  Also, 

time-dependent simulations will be implemented to study the transient behavior of the 

SOFC.   
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Nomenclature 

Symbols                                                         Unit 

B  Permeability                                       m2      

Et          Total energy                                       J/m3 

f         Cost function                                      cost function depended 

H          Enthalpy                                            J kg_1                                                            

i          Current density                                   A m_2 

0i          Exchange current density                  A m_2 

J          Mass flux vector                                kg m_2s_1 

L         Augmented cost function                   cost function dependent 

m
•

         Mass flow rate                                   kg s_1                              

M       Molecular weight                               kg kmol_1 

ns          Number of species                             - 

P          Pressure                                              N m_2 

Q          Solution vector                                   solution variable dependent 
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q           Heat flux                                            J m_2 s_1 

T          Temperature                                      K 

u           x-velocity component                       m s_1 

v           y-velocity component                       m s_1 

w          z-velocity component                       m s_1 

x,y,z     Co-ordinate system                            - 

iX  Mole fraction of  i 
th

 species              - 

i
Y  Mass fraction of  i 

th
 species              - 

Greek Symbols 

β         Design variable vector                      design variable dependent 

χ        Grid vector                                         m 

ρ        Mass concentration                            kg m_3 

µ  Molecular viscosity                        kg m s_1   

φ  Electric potential                        volt   

η  Activation polarization                      volt   

Λ         Costate variable vector                      cost function dependent 

ε          Porosity                                              - 

κ          Totruosity                                          - 

∀         Control volume                                  m3 

τ         Viscous flux                                        kg m_1 s_2 

Constants 
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F          Faraday constant                                 96484.56                A- s mol_1 

uR  Universal gas Constant                       8314.4                    J kmol_1 K_1 

Indices 

a          Anode 

c           Cathode 

eff        Effective 

ji,   Chemical species 
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