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2 Abstract

The problem of applying sensitivity analysis to a one-dimensional high pres-
sure radio frequency plasma discharge simulation is considered. The deriva-
tions of forward mode direct differentiation and the reverse mode adjoint
method are presented. Sensitivity derivatives computed from these methods
are then shown to match derivatives computed using complex perturbations.
It is then demonstrated how sensitivity derivatives can be used within a design
cycle to change experimentally variable quantities so as to increase or decrease
a given cost function. It is also shown how sensitivity analysis could be used
in conjunction with experimental data to obtain better estimates for rate and
transport parameters. Finally, it is described how sensitivity derivatives of de-
sign variables can be used to compute error bounds for the computation of a
given cost function.
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3 Introduction

Since the seminal work of Graves and Jensen [1], there have been numerous
efforts to accurately simulate plasma discharges [2] [3] [4] [5] [6] [7] [8], which
are used in a variety of applications including microelectronics manufacturing,
lighting, and plasma display panels. Many of these simulations have been
motivated by a need to better understand the underlying physics in plasma
discharges. A variety of approaches have been used including particle-in-cell
methods, fluid simulations, and hybrid models.

There have also been efforts to use simulations of plasma discharges to per-
form parameter studies, or qualitative sensitivity analysis [9] [10] [11] [12]. The
typical approach that is used is to change a given parameter for a plasma dis-
charge (e.g. pressure, temperature) and run the simulation with the new value
for the parameter to see what changes have taken place. This can provide
valuable information about the sensitivity of the plasma behavior to vari-
ous parameters and can be useful for optimization or design. However, this
can be computationally expensive, as the simulation must be run every time
that a parameter is changed. In addition, although this approach can provide
qualitative information, it does not yield any quantitative information about
sensitivity derivatives.

Quantitative sensitivity analysis, using direct differentiation or adjoint meth-
ods, can be used to compute numerical sensitivity derivatives of cost functions
to given design variables. In recent years, sensitivity derivatives have been
computed for unsteady time-dependent problems [13] [14] [15]. In a previous
paper, the authors used time-dependent sensitivity analysis to compute sensi-
tivity derivatives for a one-dimensional low-pressure helium discharge simula-
tion[16], where only electrons and helium monomer ions were modeled. To the
knowledge of the authors, this was the first time that quantitative sensitivity
derivatives were computed for a plasma discharge simulation.

High pressure glow (HPG) discharge systems are more economical than low
pressure discharge systems since no vacuum pump is needed. For this rea-
son, there has been a plethora of research done on HPG plasmas in the last
decade. Many applications of HPG discharges have been reported including
etching and deposition [17] [18], decontamination of chemical and biological
warfare agents [19], the treatment of dental cavities [20], and as a means for
sterilization [21] [22].

In the current paper, quantitative sensitivity analysis has been applied to a
one-dimensional high pressure helium/nitrogen glow discharge simulation. The
paper is organized in the following manner. Section 4 describes the equations
and boundary conditions used in the simulation. Section 5 describes the nu-
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merical methods and discretization used to obtain a periodic solution. Section
6 presents the algorithms for forward mode direct differentiation and reverse
mode adjoint, which are used in sensitivity analysis. Section 7 presents the
computed sensitivity derivatives and several applications of sensitivity anal-
ysis for a plasma discharge simulation. The paper is summarized in Section
8.
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4 Description of the Model

A one-dimensional fluid model accounting for ten chemical species is used to
simulate a plasma discharge that was modeled in a previous work [11]. All val-
ues of coefficients for chemical reactions, diffusion coefficients, and mobilities
used in this simulation are the same as those used in this previous work.

4.1 Governing Equations

The discharge gas is assumed to be predominantly helium with a very small
amount of nitrogen. It is assumed that the nitrogen has an impurity mole
fraction of 5 × 10−7. The following chemical species are used in the model:
electrons(e), helium atoms (He), monomer helium ions (He+), dimer helium
ions (He+

2 ), monomer helium metastables (He∗), dimer helium metastables
(He∗2), monomer nitrogen atoms (N), dimer nitrogen molecules (N2), monomer
nitrogen ions (N+), and dimer nitrogen ions (N+

2 ). A continuity equation of
the following form is used for each species:

∂ni

∂t
+

∂Γi

∂x
= Ġi, (1)

where ni is the density of species i, Γi is the flux for species i, and Ġi is the
net production or destruction of species i through chemical reactions. Time
is denoted as t and the interelectrode axial distance is denoted as x. A drift-
diffusion approximation is used to compute the particle fluxes, where the flux
for each species is composed of a term corresponding to drift from the electric
field and a term that corresponds to diffusion. This is formally denoted as

Γk = −Di
∂ni

∂x
+ µiniE, (2)

where Di is the diffusion coefficient for species i, µi is the mobility for species
i (the mobility is zero for neutral species), and E is the electric field which is
defined by

E = −∂V

∂x
, (3)

where V is defined to be the potential. The ions and neutral particle species are
assumed to be in thermal equilibrium with the background gas temperature.
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However, as the plasma is nonthermal, one must have an equation for the
electron temperature. The electron energy equation is given as

∂

∂t

(
3

2
nekBTe

)
+

∂Qe

∂x
= −eΓeE−e

r∑
j=1

∆Ee
j Gj−3nekB

me

mHe

(Te − Tgas) ν̄e, (4)

where kB is the Boltzmann constant, Te is the electron temperature, Qe is the
electron energy flux, ∆Ee

j is the energy lost per electron for reaction j, me is
the electron mass, mHe is the mass of a helium atom, and ν̄e is the electron
momentum transfer collision frequency for elastic collisions between electrons
and the background gas. The electron energy flux is composed of a conductive
and a convective term and is given as

Qe = −ηe
∂Te

∂x
+

5

2
kBTeΓe, (5)

where ηe is the electron thermal conductivity, which is computed as

ηe =
5

2
nekBDe. (6)

To complete the set of equations, the total current density in the discharge is
specified, allowing the electric potential to be determined using the equation

ε0
∂

∂t

(
∂V

∂x

)
= −jtot +

i=ns∑
i=1

eZiΓi, (7)

where ε0 is the permittivity of free space, jtot is the specified current density,
ns is the total number of charged particle species, and Zi is the charge number
of species i. It should be noted that jtot varies sinusoidally during each RF
cycle.

Bringing all the equations together allows one to express them in conservative
form as

∂Q

∂t
+∇ · F = S, (8)

where
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Q =



ne

nHe

nHe+

nHe+
2

nHe∗

nHe∗2

nN

nN2

nN+

nN+
2

3
2
nekBTe

∂V
∂x



, F =



Γe

ΓHe

ΓHe+

ΓHe+
2

ΓHe∗

ΓHe∗2

ΓN

ΓN2

ΓN+

ΓN+
2

Qe

0



, (9)

S =



Ġe

ĠHe

ĠHe+

ĠHe+
2

ĠHe∗

ĠHe∗2

ĠN

ĠN2

ĠN+

ĠN+
2

−eΓeE − e
r∑

j=1

∆Ee
j Gj − 3nekB

me

mHe

(Te − Tgas)

−jtot +
i=ns∑
i=1

eZiΓi



. (10)
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4.2 Transport Properties

The values for transport properties are found in the literature [23] [24] [25] and
are summarized in a previous work [11]. Diffusion coefficients can be computed

from reduced diffusion coefficients as Dk = D′
k

(
760
p

)
, while mobilities can be

computed from reduced mobilities as µk = µ′k
(

760
p

)
, where p is measured in

Torr.

The values for reduced diffusion coefficients and reduced mobilities are shown
in Table 1.

Species D′
k (m2/sec, K, eV) µ′k (m2/V-sec)

e 1.737× 10−1
(

Te
17406

)
−1.132× 10−1

He+ 5.026× 10−5 1.482× 10−3

He+
2 8, 148× 10−5 2.403× 10−3

N+ 9.710× 10−5 2.863× 10−3

N+
2 1.015× 10−4 2.993× 10−3

He∗ 4.116× 10−4 -

He∗2 2.029× 10−4 -

He 4.116× 10−4 -

N 1.955× 10−4 -

N2 1.075× 10−4 -
Table 1
Transport Properties for species in plasma discharge model

4.3 Chemical Reactions

The values used for reaction rate coefficients and other coefficients in deter-
mining production and destruction of chemical species are found in previous
works [6] [26] [27] [28] and are compiled in a previous work [11]. The reactions
are summarized in Table 2. The electron energy gains and losses for given
reactions are shown in Table 3.
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Reaction Numerical Model (m, molecules, sec, K)

e + He → He∗ + e G1 = (2.308× 10−16)nenHeT
0.31
e e−2.297×105/Te

e + He∗ → He + e G2 = (1.099× 10−17)nenHe∗T
0.31
e

e + He → He+ + 2e G3 = (2.584× 10−18)nenHeT
0.68
e e−2.854092×105/Te

e + He∗ → He+ + 2e G4 = (4.661× 10−16)nenHe∗T
0.6
e e−5.546×104/Te

e + He∗2 → He+
2 + 2e G5 = (1.268× 10−18)nenHe∗2

T 0.71
e e−3.945×104/Te

e + He+
2 → He∗ + He G6 = (5.386× 10−13)nenHe+

2
T−0.5

e

He∗ + He∗ → He+ + He + e G7 = (2.7× 10−16)nHe∗nHe∗

He∗ + 2He → He∗2 + He G8 = (1.3× 10−45)nHe∗nHenHe

He+ + 2He → He+
2 + He G9 = (1.0× 10−43)nHe+nHenHe

He∗ + N2 → N+
2 + He + e G10 = (7.0× 10−17)nHe∗nN2

He∗2 + N2 → N+
2 + 2He + e G11 = (7.0× 10−17)nHe∗2

nN2

He+ + N2 → N+
2 + He G12 = (5.0× 10−16)nHe+nN2

He+ + N2 → N+ + N + He G13 = (7.0× 10−16)nHe+nN2

He+
2 + N2 → N+

2 + 2 He G14 = (5.0× 10−16)nHe+
2
nN2

He+
2 + N2 → N+ + N + 2 He G15 = (7.0× 10−16)nHe+

2
nN2

2e + N+
2 → N2 + e G16 =

(
5.651× 10−39

)
nenenN+

2
T−0.8

e

e + N+
2 → N + N G17 =

(
2.540× 10−12

)
nenN+

2
T−0.5

e

e + N2 → N + N + e G18 =
(
1.959× 10−12

)
nenN2T

−0.7
e e−1.132×105/Te

e + N → N+ + 2e G19 =
(
8.401× 10−11

)
nenNe−1.682×105/Te

e + N2 → N+
2 + 2e G20 =

(
4.483× 10−13

)
nenN2T

−0.3
e e−1.81×105/Te

Table 2
Reaction Mechanisms Used in Plasma Discharge Model
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Reaction Energy Gain or Loss (eV)

e + He → He∗ + e ∆Ee
1 = 19.8

e + He∗ → He + e ∆Ee
2 = −19.8

e + He → He+ + 2e ∆Ee
3 = 24.6

e + He∗ → He+ + 2e ∆Ee
4 = 4.78

e + He∗2 → He+
2 + 2e ∆Ee

5 = 3.4

He∗ + He∗ → He+ + He + e ∆Ee
7 = −15.0

e + N2 → N + N + e ∆Ee
18 = 9.757

e + N → N+ + 2e ∆Ee
19 = 14.5

e + N2 → N+
2 + 2e ∆Ee

20 = 15.6
Table 3
Electron Energy Gains and Losses Used in Plasma Discharge Model
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4.4 Boundary Conditions

The fluxes for the electrons, metastable species and monomer nitrogen atoms
at the boundaries are assumed to be kinetically limited thermal fluxes. The
ion fluxes are assumed to be mobility limited. Recombination is assumed to
occur at the boundaries, and all helium and nitrogen particles are assumed to
return to the discharge as either He or N2 particles. The electron temperature
is set equal to 0.5 eV at each boundary. At one boundary of the discharge, the
potential is grounded. At both boundaries, the voltage is computed using the
specified boundary fluxes of the charged particles. It is assumed that there is
no secondary electron emission at the boundaries. The boundary conditions
for each particle species are summarized in Table 4.

Species Boundary Condition

e Γe = ∓1
4ne

√
8kBTe

πme

He+ ΓHe+ =

 µHe+nHe+E if ~E · n̂ > 0

0 if ~E · n̂ ≤ 0

He+
2 ΓHe+

2
=

 µHe+
2
nHe+

2
E if ~E · n̂ > 0

0 if ~E · n̂ ≤ 0

He∗ ΓHe∗ = ∓1
4nHe∗

√
8kBTgas

πmHe

He∗2 ΓHe∗2
= ∓1

4nHe∗2

√
8kBTgas

2πmHe

N ΓN = ∓1
4nN

√
8kBTgas

πmN

N+ ΓN+ =

 µN+nN+E if ~E · n̂ > 0

0 if ~E · n̂ ≤ 0

N+
2 ΓN+

2
=

 µN+
2

nN+
2

E if ~E · n̂ > 0

0 if ~E · n̂ ≤ 0

He ΓHe = −
(
ΓHe+ + 2ΓHe+

2
+ ΓHe∗ + 2ΓHe∗2

)
N2 ΓN2 = −

(
1
2ΓN+ + ΓN+

2
+ 1

2ΓN

)
Table 4
Boundary conditions for species in plasma discharge model
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5 Numerical Method

5.1 Mesh Discretization

The domain is discretized into control volumes by distributing mesh points
across the domain according to an algorithm that clusters the points close to
the boundaries, which has been used in previous simulations [29]. The faces of
the control volumes are designated to be halfway in between the mesh points
except for at the boundaries, where the mesh points are coincident with the
cell faces. The mesh setup is shown in figure 1.

The spatial discretization is represented with subscripts by the index k. Integer
values such as k and k+1 denote a value within a given cell. Half-integer values
such as k + 1

2
and k− 1

2
, denote the values at cell faces. The distance between

points k and k + 1 is denoted as ∆xk while the distance between faces k + 1
2

and k − 1
2
, the cell volume, is represented by Ωk.

0 1 MM-1M-22

1/2 3/2 M - 1/2M - 3/2

Δx0 Δx1 ΔxM-1ΔxM-2

Ω0 Ω1 ΩMΩM-1

Fig. 1. Discretization of domain into M control volumes with M + 1 grid points
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5.2 Spatial Discretization

A finite volume approach is used to discretize the equations. A staggered
mesh and non-staggered mesh approach have each been implemented for the
simulation. Although both approaches yield the same results, only results for
the staggered grid approach are presented here. In this approach, the values for
the potential V are stored at cell faces, and values for the remaining variables
(species densities and electron energy) are stored at cell centers. For M control
volumes, there are M unknowns for each species densities and the electron
energy, with M + 1 unknowns for the voltage. However, since the voltage is
grounded at one electrode, and its value does not change during the simulation,
this results in M unknowns for the voltage, making this a straightforward
system of equations to solve since each of the M control volumes has 12
unknown variables associated with it, corresponding to the 10 particle species
densities, the electron energy and the voltage.

Applying a finite volume method to the governing equations and applying
Green’s theorem to Eq. 8 results in the following discretization:

Ωk
∂Qk

∂t
+ Fk+ 1

2
− Fk− 1

2
= ΩkSk. (11)

The species continuity equation is discretized for species i as:

∂ni,k

∂t
Ωk = −

(
Γi,k+ 1

2
− Γi,k− 1

2

)
+ ΩkĠi. (12)

For neutral and metastable particles, the flux is entirely diffusive and is dis-
cretized as

Γi,k+ 1
2

= −Di

(
ni,k+1 − ni,k

∆xk

)
. (13)

For charged particles, the flux is composed of a diffusive term and convective
term and is discretized as

Γi,k+ 1
2

= −Di,k+ 1
2

(
ni,k+1 − ni,k

∆xk

)
+ µini,k+ 1

2

(
1

2
(Ek + Ek+1)

)
. (14)
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In Eq. 14, the species density that is used at the electric field is computed
differently based on the sign of the electric field and the species charge. It is
computed as:

ni,k+ 1
2

=


ni,k + 1

2
∆xk

(
∂n
∂x

)
i,k

if ZiE ≥ 0

ni,k+1 − 1
2
∆xk

(
∂n
∂x

)
i,k+1

if ZiE < 0
(15)

The electric field in Eq. 14 is computed as

Ek = −

(
Vk+ 1

2
− Vk− 1

2

)
Ωk

. (16)

The electron energy equation is discretized as

∂

∂t

(
3

2
nekTe

)
i,k

Ωk = −
(
Qe,k+ 1

2
−Qe,k− 1

2

)
− (17)

− 1

2

(
eΓe,k+ 1

2
Ek+ 1

2
∆xk + eΓe,k− 1

2
Ek− 1

2
∆xk−1

)
−

− e
r∑

i=1

∆Ee
i GiΩk + 3kBne,k

me

mHe

(Te,k − Tgas) ν̄eΩk,

where the electron energy flux is discretized as

Qe,k+ 1
2

= −ηe,k+ 1
2

(
Te,k+1 − Te,k

∆xk

)
+

5

2
kBΓe,k+ 1

2

[
1

2
(Te,k+1 + Te,k)

]
, (18)

and the electron thermal conductivity is computed as

ηe,k+ 1
2

=
5

2
De

([
1

2
(Te,k + Te,k+1)

]) [
1

2
(ne,k + ne,k+1)

]
kB. (19)

The current conservation equation is discretized as
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∂

∂t

(
Vk+ 1

2
− Vk− 1

2

Ωk

)
Ωk = −jtotΩk+ (20)

+
i=ns∑
i=1

eZi

(
1

2
∆xkΓi,k+ 1

2
+

1

2
∆xk−1Γi,k− 1

2

)
.

All of the above equations are nondimensionalized for stable and efficient
computation. They are nondimensionalized in a way that is similar to previous
computational models [7] [29].

5.3 Temporal Discretization

All time derivatives are computed using a second order backwards difference
formula as

(
∂a

∂t

)n

k

=
3an

k − 4an−1
k + an−2

k

2∆t
, (21)

where ∆t is the time step used in the simulation. A fully implicit method is
used, meaning that all fluxes and source terms are evaluated at the current
time step n.

5.4 Solving the Linear System

Newton’s method is used to solve the discretized linear equations at each time
step. At each time step, the residual is driven to zero and is defined using Eq.
11 as

Rn
k (Q) = Ωk

(
∂Qk

∂t

)n

+ Fn
k+ 1

2
− Fn

k− 1
2
− ΩkS

n
k = 0 (22)

For a given Newton iteration m+1 for a given time step n, the update (∆Qm,n)
to the variable vector from the previous Newton iteration m is computed as:

(
∂R

∂Q

)m+1,n

(∆Q)m,n = −R
(
Qm+1,n

)
, (23)

∆Qm,n = Qm+1,n −Qm,n (24)
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The Newton iterations continue within a given time step until the norm of
the residual in a given Newton iteration falls below a specified tolerance. This
indicates that the updated value Qn has been computed, and the solution
is advanced to the next time step. This process is repeated until a periodic
solution has been computed.

In this simulation, the logarithms of the charged particle densities and the
logarithm of the electron energy are used as fundamental variables. This is
done because these quantities are inherently positive, and because second order
spatial accuracy in the finite volume scheme is achieved by extrapolating values
from cell centers to cell faces. In regions where there are steep gradients, this
extrapolation can lead to negative densities or a negative electron energy.

Newton’s method requires the computation of the Jacobian matrix ∂R
∂Q

, the
linearization of the residual vector R with respect to the variable vector Q.
The Jacobian matrix is computed analytically for computational efficiency.
For this one-dimensional simulation with second-order spatial accuracy, the
Jacobian matrix is block pentadiagonal. The problem is parallelized to run on
four processors and uses GMRES [30] with an approximate ILU preconditioner
[31].
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6 Computing Sensitivity Derivatives

6.1 Perturbation Methods

Perturbation methods rely on a perturbation in a design variable β to compute
the sensitivity with regard to a cost function I. Using a Taylor series approx-
imation, a sensitivity derivative can be computed using finite differences as

dI

dβ
=

I (β + ∆β)− I (β)

∆β
. (25)

This can be useful in some cases, but it is subject to cancellation error and
can be sensitive to the size of the perturbation ∆β. One way to avoid the
cancellation error is to use a complex perturbation [32] [33] [34]. In this case,
the entire computer code is converted to complex numbers and the design
variable is perturbed in the complex plane, allowing the sensitivity derivative
to be computed as the imaginary part of the computed cost function as

dI

dβ
= Imag

(
I (β + i∆β)

∆β

)
. (26)

The cancellation error is eliminated in this case, but using complex numbers
can significantly increase the computational load for a simulation. Both per-
turbation methods can compute a sensitivity derivative vector for multiple
cost functions with respect to one design variable, but they suffer from the
fact that the process must be repeated for each design variable.

6.2 Differentiation Methods

Two different types of differentiation methods are used to compute sensitivity
derivatives. The first method is forward mode direct differentiation [35], which
can be used to compute the sensitivity derivatives of an unlimited number of
cost functions with respect to one design variable. In direct differentiation,
the sensitivity derivatives are computed as the solution advances in time. The
second method is the reverse mode adjoint method [36] [37] [13], which com-
putes the sensitivity of one cost function to an unlimited number of design
variables. In this case, after the periodic solution has been reached, the sen-
sitivity derivatives are computed using solution values at each previous time
step, going all the way back to the initial conditions.
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Differentiation methods can be implemented continuously [38] [39] [40] or dis-
cretely [41] [42] [43]. The continuous sensitivity method differentiates the gov-
erning equations first with respect to the design variables, and then discretizes
them, while a discrete sensitivity method discretizes the governing equations
first and then differentiates them with respect to design variables. Discrete
sensitivity methods are used in this work.

Much of the following nomenclature for time-dependent sensitivity analysis
has been expressed in previous papers [15] [16].

6.2.1 Forward Mode Direct Differentiation

For a periodic solution, a given cost function depends on data at each time
step during the periodic cycle. For this reason, it is convenient to define a
global cost function Ig along with a local cost function In for each time step,
where

Ig =
1

N

n=N∑
n=1

In, (27)

and there are N time steps in the given period. Note that the local cost
function In is only computed at time steps during the periodic cycle when the
cost function is computed, and is not computed at every time step during the
solution process. For a time-dependent simulation that runs for ntot time steps,
the global sensitivity derivative with respect to a design variable (ignoring
mesh sensitivity) can be expressed in terms of the local sensitivity derivatives
as

dIg

dβ
=

n=ntot∑
n=1

dIg

dIn

[
∂In

∂Qn

∂Qn

∂β
+

∂In

∂β

]
(28)

At each time step, the residual function R is driven down to zero. Differenti-
ating the residual function with respect to β, one obtains

dRn

dβ
=

∂Rn

∂Qn

∂Qn

∂β
+

∂Rn

∂Qn−1

∂Qn−1

∂β
+

∂Rn

∂Qn−2

∂Qn−2

∂β
+

∂Rn

∂β
= 0. (29)

Thus, one can solve for ∂Qn

∂β
as

∂Qn

∂β
= −

[
∂Rn

∂Qn

]−1 (
∂Rn

∂Qn−1

∂Qn−1

∂β
+

∂Rn

∂Qn−2

∂Qn−2

∂β
+

∂Rn

∂β

)
. (30)
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Substituting Eq. 30 into Eq. 28 results in the following expression for the
global sensitivity derivative:

dIg

dβ
=

n=ntot∑
n=1

dIg

dIn

− ∂In

∂Qn

[
∂Rn

∂Qn

]−1
∂Rn

∂Qn−1

∂Qn−1

∂β

+ (31)

+
n=ntot∑

n=1

dIg

dIn

− ∂In

∂Qn

[
∂Rn

∂Qn

]−1
∂Rn

∂Qn−2

∂Qn−2

∂β

+

+
n=ntot∑

n=1

dIg

dIn

− ∂In

∂Qn

[
∂Rn

∂Qn

]−1
∂Rn

∂β
+

∂In

∂β

 .

Forward mode direct differentiation computes sensitivity derivatives by com-
puting ∂In

∂Qn and ∂In

∂β
at each time step. In addition, the quantity ∂Q

∂β
is computed

at each time step using Eq. 30. Once the solution has converged to a periodic
state, the sensitivity derivatives of a vector of cost functions Ig with respect
to one design variable can be computed over the course of one period. It is
most useful in situations where there are many cost functions and only a few
design variables. The algorithm is as follows:

(1) Compute the sensitivity of initial conditions to the design variable ∂Q0

∂β
.

(2) Advance the solution by one time step.
(3) Compute ∂Rn

∂β
at the current time step.

(4) Compute ∂Qn

∂β
for the current time step using Eq. 30.

(5) Repeat steps 2-4 until the solution has converged to a periodic state. At
convergence, begin the cycle to compute the cost function and sensitivity
derivatives.

(6) Advance the solution by one time step.
(7) Compute ∂In

∂β
for the current time step.

(8) Compute ∂In

∂Qn for the current time step.

(9) Compute ∂Qn

∂β
for the current time step using Eq. 30.

(10) Compute dIg

dIn for the current time step.

(11) Using Eq. 28, add the contribution dIg

dIn

[
∂In

∂Qn
∂Qn

∂β
+ ∂In

∂β

]
to the global sen-

sitivity derivative dIg

dβ
.

(12) Repeat steps 6 - 12 until the period has been completed.

Direct differentiation does not require much storage for saving the complete
time history of ∂Q

∂β
because the quantities ∂Qn

∂β
, ∂Qn−1

∂β
, and ∂Qn−2

∂β
can be over-

written as the algorithm proceeds. However, if there are multiple design vari-
ables, direct differentiation must be repeated for each design variable.
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6.2.2 Reverse Mode Adjoint

For time-dependent problems with cost functions that are computed over a
given period, reverse mode adjoint involves advancing the solution to a ter-
minal time step, and from there stepping backwards in time to compute the
sensitivity derivatives. It allows for the efficient computation of sensitivity
derivatives where there are few cost functions Ig and numerous design vari-
ables expressed in the vector β. Thus, the reverse mode adjoint method is
useful in applications where many design variables are present.

Taking the transpose of Eq. 28 and Eq. 30, one obtains

dIg

dβ

T

=
n=nf∑
n=0

[
∂Qn

∂β

T ∂In

∂Qn

T

+
∂In

∂β

T
]

dIg

dIn

T

(32)

∂Qn

∂β

T

= −

∂Qn−1

∂β

T
∂Rn

∂Qn−1

T

+
∂Qn−2

∂β

T
∂Rn

∂Qn−2

T

+
∂Rn

∂β

T
[∂Rn

∂Qn

]−T

(33)

Since reverse mode differentiation starts at the final time step and goes back-
wards, it is convenient to rewrite Eq. 32 as

dIg

dβ

T

=
n=1∑

n=ntot

[
∂Qn

∂β

T ∂In

∂Qn

T

+
∂In

∂β

T
]

dIg

dIn

T

(34)

Substituting Eq. 33 into Eq. 34 results in

dIg

dβ

T

=
n=1∑

n=ntot

−∂Qn−1

∂β

T
∂Rn

∂Qn−1

T
 [∂Rn

∂Qn

]−T
∂In

∂Qn

T dIg

dIn

T

+ (35)

+
n=1∑

n=ntot

−∂Qn−2

∂β

T
∂Rn

∂Qn−2

T
 [∂Rn

∂Qn

]−T
∂In

∂Qn

T dIg

dIn

T

+

+
n=1∑

n=ntot

−∂Rn

∂β

T
[
∂Rn

∂Qn

]−T
∂In

∂Qn

T

+
∂In

∂β

T
 dIg

dIn

T

.

Due to the considerable expense of computing each term in Eq. 35 at each
time step, the terms are computed recursively. The algorithm is as follows:

(1) Converge the solution to a periodic state, storing the solution vector Q
at each time step.
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(2) Starting with the final time step, compute the first flow adjoint vector
Λn as

Λn = −
[
∂Rn

∂Qn

]−T
∂In

∂Qn

T dIg

dIn

T

(36)

(3) Compute the vector ∂In

∂β

T
for the current time step.

(4) Add the contribution
(

∂Rn

∂β

T
Λn + ∂In

∂β

T ∂Ig

∂In

)
from the current time step to

the global sensitivity derivative dIg

dβ
.

(5) Compute the second flow adjoint vector λn as

λn =
∂Rn

∂Qn−1

T

Λn +
∂In−1

∂Qn−1

T
dIg

dIn−1

T

(37)

(6) Compute the first flow adjoint vector for the previous time step as

Λn−1 = −
[
∂Rn−1

∂Qn−1

]−T

λn (38)

(7) Compute ∂In−1

∂β

T
.

(8) Add the contribution
(

∂Rn−1

∂β

T
Λn−1 + ∂In−1

∂β

T ∂Ig

∂In−1

)
from the current time

step to the global sensitivity derivative.
(9) Compute the second flow adjoint vector for the previous time step as

λn−1 =
∂Rn−1

∂Qn−2

T

Λn−1 +
∂Rn

∂Qn−2

T

Λn +
∂In−2

∂Qn−2

T
dIg

dIn−2

T

(39)

(10) Continue stepping backwards, computing Λ and λ at each time step as
well as adding the contribution to the global sensitivity derivative. Note
that once the time step number is less than the time step number at
which the computation of the cost function began, the sensitivity of the
global cost function with respect to the local cost function ( dIg

dIn ) is equal
to zero.

(11) Once λ1 has been computed, add ∂Q0

∂β

T
λ1 to the global sensitivity deriva-

tive dIg

dβ
. Note that ∂Q0

∂β
is computed from the known initial conditions.

Thus, the expression for the total sensitivity derivative is computed as

dIg

dβ
=

∂Q0

∂β

T

λ1 +
n=ntot∑

n=1

[
∂Rn

∂β

T

Λn +
∂In

∂β

T ∂Ig

∂In

T
]

(40)

The main drawback to reverse mode adjoint is that it requires more storage
than forward mode direct differentiation since the solution vector must be
stored or recomputed at every single time step in the solution process. This
can be accomplished either by storing the solutions in memory or by writing
out the solutions to a file.
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7 Computational Results and Discussion

The simulation is run on a 161 point grid with 400 time steps per RF cycle. The
design variables considered are the reaction rate coefficients for each of the 20
reactions (k1, k2, ..., k20), the nitrogen impurity fraction fN , the gas pressure
p, the discharge gap length l, the rms current density jrms, the frequency f ,
and the gas temperature Tgas. The cost functions considered are the average
peak electron density and the rms voltage during the final RF cycle. The
simulation is defined to be converged when the average change in the solution
values at the middle of the discharge is less than 1 × 10−6 compared to the
values in the previous cycle. Using this criteria, it can take more than 60000 RF
cycles to reach full convergence. However, it is observed that the cost functions
considered obtain a value within five percent of the converged value after 3500
RF cycles. Thus, in the interests of computational efficiency, the simulation is
not run to a fully converged state. Simulation results were compared for cases
that were run with 41, 81, 161 and 321 grid points, and the results showed
good agreement.

7.1 Verification

To verify the accuracy of the sensitivity analysis, sensitivity derivatives are
computed using adjoint, direct differentiation, and complex perturbations. In
this case, the cost function is defined as the average peak electron density
over one RF cycle. The simulation is run with the reaction rate values listed
in Table 2, a nitrogen impurity mole fraction of 5 × 10−7, a gas pressure of
600 Torr, a discharge gap length of 2.4 mm, an rms current density of 21.2
mA/cm2, a frequency of 13.56 MHz, and a gas temperature of 393 K. The
sensitivity derivatives are computed after 3500 RF cycles. Good agreement
is shown between different methods as shown below in Table 5. The values
computed using adjoint and direct differentiation are identical, while the values
computed using complex perturbations are accurate to five decimal places.

7.2 Using Sensitivity Derivatives to Increase a Given Cost Function

Sensitivity derivatives can be used to increase or decrease a cost function.
There are many steepest descent or trust region optimization methods that
can be used to find a global maximum or minimum of a cost function. In this
case, open source optimization routines [44] which are based on trust region
methods are used to vary the physical design variables so as to maximize the
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β Complex Perturbation Direct Differentiation Adjoint

k1 −7.957085× 1030 −7.957095× 1030 −7.957095× 1030

k10 7.54887× 1028 7.54890× 1028 7.54890× 1028

k18 −3.355051× 1043 −3.355063× 1043 −3.355063× 1043

p 4.4412508× 1013 4.4412507× 1013 4.4412507× 1013

jrms 9.4717367× 1015 9.4717361× 1015 9.4717361× 1015

Table 5
Sensitivity derivatives computed using various methods for the average peak electron
density
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peak electron density. Bounds on the physical design variables are put in place
so as to prevent arcing, and are based on a previous experimental parametric
study [45]. The initial values and bounds are listed below in Table 6.

Design Variable Initial Value Lower Bound Upper Bound

l (m) 2.4× 10−3 1.6× 10−3 3.2× 10−3

jrms (mA/cm2) 21.2 10.0 30.0

p (Torr) 600 550 650

f (MHz) 13.56 12.0 25.0

Tgas (K) 393 250 450
Table 6
Bounds for physical design variables

The simulation is run for 10000 RF cycles. The initial peak electron density is
found to be 2.07×1017 /m3, and after two design cycles, this had increased to
its maximum value of 3.28×1017 /m3. This maximum value for the peak elec-
tron density is found when the discharge gap length, rms current density, and
pressure are at the upper bound and when the frequency and gas temperature
are at the lower bound.

7.3 Using Sensitivity Derivatives to Obtain a Better Estimate for Uncertain
Parameters

It is well known that there is a good degree of uncertainty in the computation
of reaction rate coefficients and other parameters used to simulate reaction
chemistry [12] [46]. Sensitivity derivatives can be used to obtain better esti-
mates of these parameters and coefficients, so that results from computational
models more closely match experimental data. This is accomplished by using
the reaction rate coefficients and parameters as design variables, and by defin-
ing the cost function to be a function that computes the magnitude of the
difference between experimental and computational results. The known un-
certainty in a given design variable is used to determine the maximum and
minimum value of that design variable during the design process. Once the
sensitivity derivatives are computed, the design variables are then changed to
minimize the cost function.

In this particular case, it is demonstrated how quantitative sensitivity analysis
might be used in conjunction with experiments to obtain better estimates for
reaction rates. Three experimental data points on a V-I plot are taken from
a previous work [47], and the reaction rate coefficients and nitrogen impurity
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mole fraction are used as design variables and are changed in order to make
the computational data better match the experimental data. The cost function
is defined to be

I =
3∑

i=1

(Vi,e − Vi,c)
2 , (41)

where Vi,e is the experimental rms voltage for a given rms current density,
and Vi,c is the computational rms voltage for a given rms current density.
Reducing this cost function will result in matching the computational data
with the experimental data.

Because cross-section data often has a fifty percent uncertainty associated with
it [46], the reaction rates are bounded between 50 percent and 150 percent of
the values in Table 2. The nitrogen mole impurity fraction is bounded between
5 × 10−11 and 5 × 10−6, which is consistent with the experimental data [47].
Five design iterations using the adjoint method are run for 3500 RF cycles.
The results are shown below in figure 2.

The cost function is reduced from 3410 to 1494 over five design cycles. Al-
though the cost function is reduced and the computational data points better
match the experimental data points, the differential impedance (slope of the
V-I curve) remains nearly constant for each design cycle and limits the amount
by which the cost function can be reduced. It is thought that if mobilities and
diffusion coefficients are included as design variables, perhaps the differential
impedance would be changed to better match the impedance on the experi-
mental V-I curve.

However, even if the parameters were changed in such a way that the computa-
tional data matched the experimental data very closely, there is no guarantee
that the results obtained by one set of parameters cannot be obtained by an
entirely different set of parameters. In this case, there are 20 reaction rate
coefficients, 17 additional reaction rate parameters, 10 diffusion coefficients
and 5 mobilities to consider. There could be multiple local minima present in
the design surface. This analysis should be used as a tool that can be used in
conjunction with experimental data to help get better estimates for uncertain
parameters.
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Fig. 2. Design cycles matching computational data with experimental data on a V-I
plot
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7.4 Using Sensitivity Derivatives to Compute a Bound on Computational
Error

Sensitivity derivatives can be used to assess the effects of uncertainties in
input data on the resulting output from a computational model. Reaction
rate coefficients and parameters, mobilities, diffusion coefficients and physical
parameters (e.g. gas temperature, pressure) all have an associated uncertainty
with them. Sensitivity analysis can be used to compute a maximum bound
on computational uncertainty for a given cost function. This has been done
previously in various fields [48] [49] [50].

For a given cost function I, with nd design variables, the maximum bound on
computational uncertainty can be computed as

max
∣∣∣Î − I

∣∣∣ = max |∆Ig| =
nd∑
i=1

∣∣∣∣∣ dIg

dβn

∆βi

∣∣∣∣∣ , (42)

where ∆βi is the known physical uncertainty in design variable i. To get an
accurate measure of the upper bound on the uncertainty in this simulation one
must obtain sensitivity derivatives and uncertainties for 57 parameters. Many
of the uncertainties in these parameters were not reported in the literature, and
thus no bound on the uncertainty was computed. However, with the knowledge
of all uncertainties, this could be a useful tool for determining the maximum
uncertainty of a simulation. It should be noted that this analysis shows how
much results from the computational model are bounded, and is not a measure
of the quality of the model itself.
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8 Summary

Sensitivity derivatives are computed for a one-dimensional simulation of a
high pressure helium glow discharge. The computed derivatives show good
agreement between complex perturbations, direct differentiation, and adjoint.
Several applications for quantitative sensitivity analysis are presented. Sensi-
tivity derivatives can be used to increase or decrease a given cost function, to
obtain better estimates of uncertain parameters, and to compute a maximum
bound on computational uncertainty.

In the future, it is hoped that quantitative sensitivity analysis will be extended
to multi-dimensional plasma discharge simulations. However, there will need
to be significant improvements in efficiency to the computational model. Un-
fortunately, increasing the number of processors did not improve efficiency.
This is because the approximate ILU preconditioner in the GMRES routine
becomes an increasingly worse approximation of the Jacobian as more proces-
sors are used, requiring more GMRES iterations and increasing the time that
it takes to compute a solution.

The convergence of the computational model will need to be accelerated. There
are several approaches that could be used for this. Some authors have used
different time steps for the electrons and the ions, due to their disparate char-
acteristic time scales [3] [7]. Other authors have directly solved for the periodic
solution of the discharge [51]. It is possible that sensitivity analysis could be
used to solve for the periodic solution simply by reducing the norm of the
solution vector from one cycle to the next.

Related to the issue of efficiency is the issue of disk storage. Using adjoint
for the current problem, it requires the storage of 93 gigabytes of memory.
Extending this problem to multiple dimensions will increase these memory
requirements even further.
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