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- Pre-Publication Manuscript - 

This article was prepared by invitation to discuss the history and progress of joint work related to 
the authors’ 1973 implicit method for solution of the compressible Navier-Stokes equations.  It will 
appear (with possible revision) in a future special issue of Computers and Fluids. 
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We are very grateful for the editor’s invitation to reflect on the history and progress of our joint 
work on implicit solution of the Navier-Stokes equations.  It has prompted us to better appreciate 
how far our field has come since the early days of limited computer resources and of incomplete 
understanding of the important and necessary advances that would emerge to solve really 
complicated problems.  We will briefly comment here on the development of our own 
noniterative time-linearized, block-coupled, alternating-direction implicit (ADI) scheme reported 
during 1973-1977, and then give some personal reflections on the subsequent evolution of these 
ideas and some of the progress achieved through related ideas and innovations introduced by 
others.  References for much of the work mentioned here are given in our 2001 article in volume 
30 of this journal, which commemorates the retirements of R.M. Beam and R.W. Warming.  The 
literature on even this subset of CFD includes many more contributions than we could possibly 
mention here, however, and so we ask forbearance for the unavoidable omission of important 
work by our colleagues and even our own coworkers at the UTC SimCenter. 

The impetus for implicit viscous flow solvers has been the need to solve complex flows requiring 
highly nonuniform grids and with multiple time and length scales.  Such problems can present 
severe algorithmic challenges when resolving disparate local length scales introduced by 
geometry, very thin shear layers, and other localized flow structures.  In addition, the differing 
time scales of convection, diffusion, sound propagation, and chemical reaction can result in 
equation stiffness, a term used for ordinary differential equations whose system matrices have a 
wide range of eigenvalues.  In both instances, the enhanced stability properties available from 
implicit schemes can help by allowing larger time steps, within an objective of either time 
accuracy or convergence to a steady solution. 

The challenge facing our community at that time is exemplified by considering a three-
dimensional flow of Reynolds number 108 past a moderately complex geometry.  Allowing for 
possible length-scale variations of 10-3 for small geometric features, 10-3 for shear layers and 
another 10-3 for viscous sublayer resolution, it was easy to foresee grids with 10 million points 
and with minimum to maximum cell-volume ratios of 10-12 and perhaps much worse.  Such 
variations in mesh length scale and cell-volume ratios required for resolution of geometry and 
thin shear layers greatly affect the stability and convergence behavior of Navier-Stokes 
algorithms.  Such algorithmic challenges appeared very formidable or even intractable in the 
early days of CFD. 
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Our work in this area began in 1968 with McDonald’s work on implicit compressible boundary-
layer methods and Briley’s dissertation on a two-dimensional ADI scheme for the 
incompressible vorticity and stream-function equations.  This use of ADI schemes for the 
vorticity and stream function equations was successful in producing validated, time-accurate 
incompressible solutions for axisymmetric flow in a cylindrical vessel for Re < O (103), using 
time steps with Courant number over 20.  However, some of the advantage of using large 
Courant number enabled by implicit methods was erased by the need for 4-5 iterations at each 
time step to couple the equations and vorticity boundary conditions.  Given that computing 
resources were extremely limited by current standards, a more efficient implicit Navier-Stokes 
algorithm was needed.  We initially explored extensions of the vorticity-based algorithm and 
developed a coupled ADI scheme requiring 2x2 block-tridiagonal solutions.  This was used for 
prediction of laminar and transitional separation bubbles using both the Navier-Stokes and 
boundary-layer equations with a local viscous-inviscid interaction model.  This block-tridiagonal 
ADI scheme was significant because it eliminated the need for iteration to couple equations and 
boundary conditions in this particular case.  Looking ahead to three-dimensional and 
compressible flow applications, however, we soon abandoned vorticity-based algorithms. 

The Noniterative Time-Linearized Block-Coupled ADI Scheme 
With much appreciated support from Dr. Morton Cooper at the Office of Naval Research, we 
began work that led to our 1973 implicit algorithm for the three-dimensional compressible 
Navier-Stokes equations in primitive variables.  This algorithm combined a) a noniterative 
implicit time or local linearization, b) a coupled block-tridiagonal adaptation of the 1963 
Douglas-Gunn formalism for generating n-dimensional ADI schemes from any linear scalar 
implicit time-marching scheme, and c) the use of implicitly coupled, characteristic-compatible 
boundary conditions.  Once we recognized the utility of the Douglas-Gunn formalism to generate 
a three-dimensional block-tridiagonal ADI scheme for coupled sets of linear 
parabolic/hyperbolic equations, we needed to develop a suitable linearization for the Navier-
Stokes equations and stable boundary conditions.  We did this by experimenting with different 
techniques using the trivial one-dimensional test problem of inviscid uniform flow at constant 
Mach number.  This test problem was ideal because a) the exact solutions to the differential and 
difference equations are known and identical, b) solutions with central differences are 
independent of artificial dissipation, and c) it is parametric in Mach number.  We became 
convinced that the noniterative time linearization was a key ingredient when it provided stability 
for large Courant numbers over a full range of Mach numbers without added dissipation, 
provided that implicit characteristic-compatible inflow/outflow boundary conditions were used.  
The time linearization fully coupled the equations, thus obviating ad hoc decoupling techniques, 
and it was also unambiguous in guiding the implicit treatment of nonlinear boundary conditions, 
for example the subsonic “wind tunnel” conditions of total pressure and temperature at inflow 
and static pressure at outflow.  A somewhat related two-dimensional scheme for 
magnetohydrodynamics was developed independently in 1973 by I. Lindemuth and J. Killeen.  
They applied the Peaceman-Rachford ADI scheme without linearization, and then linearized 
progressively about the two successive solutions obtained for each of the half steps. 

During the period 1973-1980, our group applied the time-linearized ADI scheme to numerous 
three-dimensional steady subsonic flows in straight and curved ducts and pipes, multiphase 
multispecies turbulent combusting flows, horseshoe vortex flows, and discrete-hole cooling jets. 
It was also used in 1975 as a spatial marching algorithm for three-dimensional supersonic flow.   
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It was significant that the noniterative linearization has second-order time accuracy and does not 
reduce the order of first or second-order time differencing.  Thus Newton iteration to solve a 
nonlinear implicit equation was unnecessary in principle because halving the time step could 
reduce both linearization and time differencing errors at the same cost as a single Newton 
iteration.  Furthermore, both of these errors vanish in steady solutions, and the use of a pseudo-
time iteration avoided the need for an accurate initial guess for Newton iteration.  In fact, the 
time step could control the linearization error during iteration toward a steady solution. 

The cost of a single time step using the noniterative implicit scheme was only about twice that of 
explicit methods, and it generally had much faster convergence to steady solutions.  This 
efficiency was needed for implicit solution at a time when computers were inadequate for many 
practical CFD problems, especially in three dimensions.  However, many subsequent 
improvements in implicit algorithms and solution methodology would be needed to achieve 
modern high-fidelity simulations, as increasingly powerful computers enabled them. 

In our view, the primary long-term contribution of our Navier-Stokes algorithm was to introduce 
the noniterative time or local linearization to systems of nonlinear partial differential equations 
and boundary conditions, and to recognize the value of the scalar Douglas Gunn formalization to 
generate implicit coupled ADI schemes for the time linearized equations.  This stimulated 
considerable interest and further research in implicit algorithms for the Navier-Stokes equations. 

Early Work at NASA Ames Research Center 
Our 1974 seminar at NASA Ames helped to generate some of this interest, and many important 
contributions were made there.  In 1976, Beam and Warming developed an implicit approximate 
factorization (AF) algorithm for the Euler equations using conservative equations that admit 
discontinuous solutions.  They gave a very concise and elegant derivation of their algorithm by 
expressing the time linearization in terms of flux Jacobian matrices for conserved variables Q, 
and then using approximate factorization in terms of the implicit solution variable Q 

n+1 to 
generate the one-dimensional block-tridiagonal systems.  Their 1978 Navier-Stokes algorithm 
was similar but introduced the “delta-form” factorization in terms of ∆ Q = (Q 

n+1 - Q 
n).  

Although written in a different form, the approximate factorization in terms of ∆ Q and the 
Douglas-Gunn procedure for generating ADI methods give the same result for Q 

n+1; however, 
approximate factorization is much more direct and quickly became the standard derivation.  J. L. 
Steger and P. Kutler also gave an early adaptation of this time-linearized AF scheme for 
incompressible flows in 1977, using Chorin’s artificial compressibility formulation. 

Warming and Beam did extensive work on stability of implicit schemes, and one important 
development was their local stability analysis indicating that the Douglas-Gunn ADI scheme for 
the first-order wave equation is unconditionally unstable in three dimensions.  In the context of 
implicit algorithms, the von Neumann stability analysis assumes linear equations with constant 
coefficients, a uniform grid, and periodic boundary conditions.  We later performed a matrix 
stability analysis for this inviscid equation showing that when the periodic conditions are 
replaced by characteristic-based inflow/outflow conditions, the algorithm is conditionally stable 
for inviscid Courant number less than about 1.2.  This may explain why many researchers 
including ourselves were able to obtain numerous steady solutions in three dimensions.  
Although it is unlikely that any algorithm would be unconditionally stable for complex nonlinear 
systems, the lack of unconditional stability for this model problem properly motivated the 
subsequent development of much improved two-factor AF schemes for three dimensions, most 
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notably the lower-upper (LU) factorization. 

Some Post-1980 Developments  
Characteristic-Based Upwind Schemes - A major algorithmic advance came in the early 1980s 
when Steger and Warming, B. van Leer, A. Harten, P. L. Roe, and others developed high-
resolution characteristic-based (upwind) numerical fluxes.  These flux formulas are used with 
conservative finite-volume or integral formulations that are capable of preserving discontinuities, 
with consequent higher resolution properties than finite-difference schemes for flows with 
discontinuities and/or thin viscous layers.  Upwind flux formulations are also widely used for 
artificial compressibility formulations.  While perhaps originally motivated by their 
discontinuity-preserving properties, their local upwind properties later were a key to developing 
more effective two-factor three-dimensional implicit methods. 

Reducing Factorization Error in Time-Linearized Schemes - The efficiency of the noniterative 
implicit algorithms was procured at expense of both time-linearization and factorization errors.  
Both of these errors are absent in converged steady solutions, which was their primary use at the 
time, especially in three dimensions.  However, it became evident that stability and convergence 
were degraded by factorization error, especially by the three-factor stability limitation and by 
increased stiffness at very low Mach numbers.  Two additional algorithmic advances were 
significant in reducing these factorization errors. 

Steger and Warming’s 1981 noniterative implicit lower-upper factorization (LU/AF) algorithm 
based on flux-vector splitting was a very important development.  The well-posed and stable 
steps of this and other LU/AF schemes are enabled by characteristic-based numerical flux 
formulas and a suitable technique for obtaining exact or approximate implicit flux Jacobian 
matrices.  They provide a stable two-factor framework for three dimensions and were eventually 
a key ingredient in developing effective implicit schemes for unstructured grids.  Riemann-based 
numerical fluxes such as Roe’s 1981 flux-difference scheme are now widely used in conjunction 
with LU/AF schemes. 

Another means for reducing factorization error is the use of low Mach number preconditioning 
techniques, and in 1983 we first developed a constant global preconditioning matrix that reduced 
factorization error at low Mach number and greatly improved convergence to steady solutions.  
This basic idea has evolved into other well known preconditioning techniques that alter system 
eigenvalues locally, as introduced by E. Turkel (1984) and D. Choi and C. L. Merkle (1985). 

Iterative Time-Linearized Schemes for Structured and Unstructured Grids – More progress 
came with the use of iteration at each time step to completely eliminate the factorization error.  
S. R. Chakravarthy (1984) and R. W. MacCormack (1985) began using iterative relaxation 
methods that eliminated factorization errors in the time-linearized scheme.  Iterative schemes 
later became the basis for successful implicit algorithms that are applicable to unstructured grids.   

Although line-oriented factorizations are not applicable for unstructured grids, the time-
linearized equations can be solved by point or line iterative methods and by LU relaxation or 
factorization.  Iterative time-linearized implicit schemes for unstructured meshes were 
introduced in the early 1990s by J. T. Batina using point-implicit, two-sweep Gauss-Seidel, and 
two-sweep point-Jacobi relaxation, by V. Venkatakrishnan and D. J. Mavriplis using 
preconditioned generalized minimal residual (GMRES) iteration, and by W. K. Anderson using 
multicolor vectorizable Gauss-Seidel relaxation.  
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Iterative Newton-Linearized Unsteady Schemes – Another significant advance came when 
Chakravarthy and M. M. Rai (1986) introduced an (approximate) Newton linearization with 
iterative relaxation that, upon convergence, gives a solution of the nonlinear unsteady discrete 
approximation.  This introduction of Newton-iterative schemes became feasible with 
improvements in computer processing speed and memory, which allowed both larger problem 
sizes and algorithm improvements.  Although the Newton iterations themselves were solved 
approximately using relaxation or factorization techniques, the converged Newton iteration 
eliminates both time-linearization and factorization errors at each time step.  Newton-linearized 
iterative schemes were also developed for the incompressible artificial compressibility equations 
by D. Pan and Chakravarthy (1989), and S. E. Rogers and D. Kwak (1990).  The Newton-
linearized methods are distinct from time-linearized methods, which approach Newton 
linearization of the steady equations as the time step becomes infinite. 

In 1991, we began our current long-term collaboration with Dave Whitfield and his group, then 
at the National Science Foundation Engineering Research Center at Mississippi State University.  
Whitfield and L. K. Taylor had developed an iterative Newton-linearized unsteady upwind 
artificial-compressibility scheme that incorporated symmetric Gauss-Seidel (LU/SGS) relaxation 
to solve the Newton linearization.  This method also used numerical differentiation to compute 
accurate Roe-flux Jacobian matrices instead of using approximate Jacobians.  Their 
implementation exploited CPU/memory trade-offs enabled by large memory resources that had 
become available, at that time Cray SSD.  By organizing the computation into sequential blocks 
and storing the residuals and large numerical Jacobian matrices, the linear LU/SGS iteration 
sweeps became extremely inexpensive, and the factorization error could be eliminated at very 
little cost.  They subsequently modified this algorithm to perform multiple Newton iteration 
cycles, using LU/SGS sub-iteration to solve each linear Newton iterate.  Another significant 
advance came in 1998, when J.C. Newman III, Anderson and Whitfield began using complex-
variable numerical differentiation to compute highly accurate flux Jacobians and sensitivity 
derivatives. 

There is some algorithmic unity in the fact that symmetric Gauss-Seidel relaxation and two-
factor AF are equivalent linear iteration schemes, although they are generally written in different 
forms.  The Newton-linearized schemes work well for steady solutions and can be used without 
the added cost of Newton iterations, but they are especially beneficial for time-accurate 
simulations, since they permit fully implicit nonlinear time-integration schemes.  Accordingly, 
the Newton linearization of the unsteady equations is commonly used instead of the noniterative 
time linearization. 

Scalable Parallel Algorithms for Structured and Unstructured Grids - In the early 1990s, we 
began exploring methods for transitioning implicit algorithms to parallel computers.  In 1995, R. 
Pankajakshan and Briley modified Taylor and Whitfield’s iterative Newton-linearized Navier-
Stokes algorithm to enable parallel solution with minimal effect on its algorithmic performance.  
The parallel algorithm used a modified block-Jacobi symmetric Gauss-Seidel (BJ-SGS) sub-
iteration scheme with coarse-grained domain decomposition for mapping to distributed-memory 
processors.  In his 1997 dissertation, Pankajakshan developed a parallel iteration hierarchy for 
time-accurate solutions that encompassed multigrid, Newton and BJ-SGS iterations, and 
evaluated both algorithmic and software performance.  A semi-empirical parallel performance 
model for his MPICH software implementation indicated constrained-memory scalability to at 
least 400 processors using contemporaneous distributed-memory computers such as the IBM-
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SP2 and Cray-T3E.  In 1997, C. Sheng and Whitfield began working with Kyle Anderson’s 
implicit unstructured time-linearized flow solver and developed a multi-block implementation to 
reduce memory requirements on single-processor machines.  Building on this work, D. G. 
Hyams’s 2000 dissertation developed a scalable parallel implicit viscous flow solver for highly 
nonuniform multi-element unstructured grids.  His work addressed issues of parallel iteration 
hierarchy for the Newton-linearized method and of the treatment of connectivity and coupling of 
the sub-domain interfaces.  Finally, after our current group was formed in 2002, K. Sreenivas, 
Hyams, D. S. Nichols III, Pankajakshan, and Taylor developed a new code (now called Tenasi) 
based on this same algorithm but with many refinements, extensions and new capabilities for 
complex computational engineering analysis and design applications.  

Implicit methods that have evolved from our early work continue to be applied to a wide range 
of problems.  Many of these methods appear sufficiently attractive that a significant number of 
researchers are exploring algorithmic development to improve or extend these methods to an 
even broader range of practical problems.  Our own work in recent years has focused on various 
application problems and related algorithm developments.  These interests have included 
multiphase and chemically reacting flows, the shallow-water and Maxwell’s equations, 
preconditioning, treatment of source terms and discontinuities other than shocks, and complex-
variable differentiation.  

Historical Examples of Runtime and Problem Size 
We conclude by giving in Table I some historical examples of flow cases our group has run on 
different computers over the years.  The first six cases (A-F) illustrate the evolution over time in 
problem size and runtime.  The last case (G) is a hypothetical case having 106 grid points and 103 
time steps.  Runtime and cost are estimated for case G by assuming it would run on each 
computer at the same rate of runtime per point per step as in the corresponding cases A-F. 

It is remarkable that the hardware cost for running the standardized case G has decreased from an 
estimated $328,000 for the 1968 CDC-6600 to just $0.23 on the current University of Tennessee 
at Chattanooga SimCenter Linux cluster of in-house design.  Although the runtime varies with 
the number of processors used (constrained by available memory), the cost is more or less 
independent of the number of processors used, within the range of linear scalability for a given 
problem size.  Our current benchmarks show a near-linear scalability up to 1200 processors on a 
problem size of 96 M points.  

Although not evident from Table I, the Navier-Stokes algorithms have also improved greatly in 
regard to geometric and problem complexity, solution accuracy, and general robustness.  
Although these algorithms continue to evolve, CFD as a specialty is now having a tremendous 
impact on practical engineering analysis and design problems, and it appears that this impact will 
continue and accelerate for the foreseeable future. 
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Table I – Historical examples of actual Navier-Stokes flow cases 

                 Historical Cases      Case G (Hypothetical) 
              Actual  
     Time   Runtime Runtime Cost 

! 
Year Computer Case@ Grid Size Steps   Hrs (Proc) Hrs (Proc) (in 2007 $) 
        
1968 CDC-6600 A 26x101 100   0.38 (1) 1447 (1)* $328,000 
        
1973 Univac 1108 B 11x11x11 60   0.22 (1) 2713 (1)* $124,000 
        
1985 Cray X-MP C 29x29x29 60   0.13 (1) 89 (1)*  $5,000 
        
1998 Cray T-3E D 4.5 M  14000   320 (50) 5 (50)  $68 
        
2004 SimCenter E 18 M  5400   44 (100) 0.45 (100) $0.80 

Cluster 1 
2007 SimCenter F 21.5 M  2000   8.2 (160) 0.19 (160) $0.23 

Cluster 2 
 
* Hypothetical: if memory were available to run Case G 
! Typical published hardware-only cost without discount, operating continuously without down time, 
depreciated over three years, in 2007 dollars 
@ Explanation of Cases: 

A. University of Texas Austin 1968 - Time-accurate, incompressible, axisymmetric rotating flow: 
ADI scheme, vorticity/stream-function method (2D) 

B. United Technologies Research Center 1973 - Steady flow in a straight square duct: Noniterative 
Time-linearized ADI/AF scheme (3D) 

C. Scientific Research Associates, Inc. 1985 - Steady horseshoe vortex flow: Noniterative time-
linearized ADI/AF scheme (3D) 

D. NSF ERC Mississippi State University 1998 - Time-accurate 6-DOF maneuver of submarine 
with rotating propulsor and moving control surfaces, 2 hull lengths, 40 propeller revolutions: 
Parallel, structured Newton-iterative LU/BJ-SGS scheme (3D) 

E. University of Tennessee SimCenter 2004 - Time-accurate release of contaminant in urban 
environment: Parallel unstructured Newton-iterative LU/BJ-SGS scheme (3D) 

F. University of Tennessee SimCenter 2007 - Steady 360-deg compressor rotor with 36 blades: 
Parallel unstructured Newton-iterative LU/BJ-SGS scheme (3D) 

G. A hypothetical standardized case having 106 grid points and 103 time steps 
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