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Abstract 
 

The purpose of this report is to describe some interesting results using complex variables to 

obtain high-order relations for: (1) numerical derivatives of a function, (2) matrix-vector 

products, (3) Richardson extrapolation, and (4) the calculation of natural logarithms using 

differentiation.  Derivations are presented for each of these topics along with supporting 

numerical results.  It is intended that this material will serve as a useful reference and teaching 

aid. 
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1.0  Introduction 

Ever since running across the article by Squire and Trapp [1] in SIAM Review the authors 
have been intrigued by the possibilities brought about by the use of complex variables to obtain 
numerical derivatives to, first of all, real functions, but it seems it might also be extended to 
obtain derivatives of complex functions.  Squire and Trapp [1] visited the work of Lyness and 
Moler [2] and Lyness [3] of some thirty years before (forty years ago now).  Squire and Trapp 
presented in rather simple form the preceding work of Lyness and Moler.  This work was put to 
use immediately in Ref. [4] in obtaining the Jacobian matrix for the implicit numerical solution 
of nonlinear systems of equations.  The history of this process was as follows.  This writer took 
the basic concept to Dr. Kidambi Sreenivas (a PhD student of the writer at the time) and asked 
him to use this approach to compute the Jacobian matrix in an implicit three-dimensional 
unsteady unstructured Navier-Stokes code.  Within two hours Dr. Sreenivas had this working [5].  
Then, this writer took the basic concept to Dr. Ramesh Pankajakshan (an MS student of the 
writer and a PhD student of Dr. Roger Briley at the time) and Dr. Pankajakshan had this running 
in a three-dimensional unsteady structured multi-block code in about the same amount of time 
[6]. 

Following this experience the author took the idea to Dr. Jim Newman III, closed the door, 
and told him that this might be of interest for use in the design optimization area (Dr. Newman’s 
specialty) but if not this writer would personally scold him if he ever mentioned this crazy idea 
to anyone.  After patiently listening to the concept Dr. Newman said, “ADIFOR has just been 
made obsolete.”  That next summer Dr. Newman went to NASA Langley and worked with Dr. 
Kyle Anderson (another PhD student of the writer). Results of the summer’s work were very 
successful [7]. 

The flow of this report is as follows.  The basic derivation for obtaining the second-order 
accurate first derivative of a real function using complex variables is presented in Section 2.0 
along with numerical results.  Developments for obtaining a matrix-vector product and fourth-
order first and second derivatives are also presented in Section 2.0 along with numerical results.  
The development of Richardson extrapolation using complex variables is presented in Section 
3.0 along with numerical results. Section 4.0 is devoted to the calculation of natural logarithms 
using differentiation. A summary of this effort is given in Section 5.0. 

2.0  Numerical Derivatives Using Complex Variables 

Section 2.1 contains the development of the second-order accurate first derivative and 
Section 2.2 is an extension of this to the matrix-vector product. Section 2.3 involves the 
development of fourth-order accurate first and second derivatives. 

2.1  Second-Order Accurate First Derivative 

The second-order accurate first derivative using complex variables is developed in Section 
2.1.1. However, in computational engineering one is usually concerned with systems of 
equations, both linear and nonlinear systems. In this case it is frequently necessary to obtain the 
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Jacobian matrix, for example, which involves the derivative of a vector function which in turn is 
a function of a vector. This development is presented in Section 2.1.2.  

2.1.1  Function of a Single Variable 

Squire and Trapp [1] presented an interesting way of determining the derivative of real 
functions using complex variables. They attribute the idea of using complex variables to develop 
differentiation formulas to Lyness and Moler [2,3]. The approach presented by Squire and Trapp 
is the following. Let ( )f z  be an analytic function of the complex variable z, and assume that f is 
real on the real axis. Expand f in a Taylor series about the real point x to obtain 

 ( ) ( ) ( ) ( ) ( )
2 3

2! 3!
h ihf x ih f x ihf x f x f x′ ′′ ′′′+ = + − − "  (2.1) 

where 1i = − . Taking the imaginary part of both sides of Eq. (2.1) and dividing by h gives 

 ( )
( )Im f x ih

f x
h

⎡ ⎤+⎣ ⎦′ =  (2.2) 

Note that the truncation error of ( )f x′ in Eq. (2.2) is ( )2O h . This is in contrast to the ( )O h  
error in the expression 

 ( ) ( ) ( )f x h f x
f x

h
+ −

′ =  (2.3) 

which is currently used to obtain the numerical Jacobian in some versions of the TENASI and 
UNCLE codes. In fact, Eq. (2.2) gives the same order of accuracy as 

 ( ) ( ) ( )
2

f x h f x h
f x

h
+ − −

′ =  (2.4) 

which would take two extra flux evaluations per matrix element as opposed to the one extra 
required by Eq. (2.3). 

It is also interesting to note that whereas the derivative is obtained from Eq. (2.2), the 
function itself can be determined by taking the real part of Eq. (2.1) to obtain, to second order 

 ( ) ( )Realf x f x ih⎡ ⎤= +⎣ ⎦  (2.5) 

Whether or not the calculation of a flux, for example, from Eq. (2.5) is beneficial in conservation 
law equation solvers remains to be seen because the flux is required more often, in general, than 
the derivative of the flux, and consequently the determination of the flux function from Eq. (2.5) 
may not be economical. 
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There are certain advantages of determining the elements of the Jacobian matrix using Eq. 
(2.2) as opposed to using either Eq. (2.3) or (2.4). These advantages are: 

1. The truncation error is ( )2O h  as opposed to ( )O h , which is the accuracy of the current 
method used given by Eq. (2.3). 

2. Only one flux function evaluation per Jacobian element is required to gain second-order 
truncation error, as opposed to the two that would be required by using Eq. (2.4) to get 
second order. 

3. It is not subject to subtractive cancellation error. 

4. The results are insensitive to the value of h. 

5. Since Eq. (2.2) permits accurate Jacobians without having to use extremely small values of h, 
it is quite likely that many computations that have been carried out in 64 bit arithmetic can 
now be carried out in 32 bit arithmetic. This will reduce the memory requirements 
tremendously (like a factor of two in most cases), and on many computers, the CPU time will 
be reduced by a factor of two. 

Two disadvantages of determining the Jacobian elements using Eq. (2.2) are that it may take 
more CPU time and memory due to the complex arithmetic required. However, the amount of 
complex arithmetic is small, and consequently, the increase in CPU time and additional memory 
requirements experienced thus far have been negligible. Therefore, the two disadvantages, CPU 
time and memory, are negated by the speed and memory gained by the possibility of carrying out 
the computations in 32 bit arithmetic rather than 64 bit arithmetic. 

The use of Eq. (2.2) for determining Jacobians has been used in the numerical solution of 
two-dimensional inviscid incompressible Euler equations, three-dimensional incompressible 
Navier-Stokes equations on structured multiblock grids by Pankajakshan [6], and three-
dimensional compressible Navier-Stokes equations on unstructured grids by Sreenivas [5]. The 
experience gained thus far has demonstrated this method is indeed insensitive to the value of h 
used.  

2.1.2.  Vector Function of Multiple Variables 

In this subsection, and in the following Section 2.2, the representation ( )F x has the 

following meaning. Let x be a vector defined as ( )1 2, , , T
nx x x x= … . 

 ( ) ( )i
ij

j

F x
F x a

x
∂

′ = =
∂

 (2.6) 

where the use of a subscript i has no relation to the square root of minus one. 
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Fulks [8], for example, presents the Taylor series for a function of several variables. 
Utilizing this Taylor series for any component of ( )F x , say ( )iF x , one has 

 
( ) ( ) [ ] ( ) [ ] ( )

[ ] ( )

2

3

1
2!

1
3!

i i i i

i

F x v F x v F x v F x

v F x R

+ = + ⋅∇ + ⋅∇

+ ⋅∇ +
 (2.7) 

where v is a vector ( )1 2, , , andT
nv v v v= ∇…  is the gradient operator defined as (see, for 

example, [9]) 

 
1 2

, , ,
T

nx x x
⎛ ⎞∂ ∂ ∂

∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠
…  (2.8) 

Consider the vector v to be a vector defined as v=hw where h is a constant and 
( )1 2, , , T

nw w w w= … . Then Eq. (2.7) becomes 

 
( ) ( ) [ ] ( ) [ ] ( )

[ ] ( )

2
2

3
3

2!

3!

i i i i

i

hF x hw F x h w F x w F x

h w F x R

+ = + ⋅∇ + ⋅∇

+ ⋅∇ +
 (2.9) 

Consider the second term on the right side of Eq. (2.9). Expanding this term one has 

 [ ] ( ) ( ) ( ) ( )
1 2

1 2

i i i
i n

n

F x F x F x
h w F x h w w w

x x x
⎡ ⎤∂ ∂ ∂

⋅∇ = + + +⎢ ⎥∂ ∂ ∂⎣ ⎦
…  (2.10) 

If w is taken as the jth unit vector ej, then Eq. (2.10) becomes 

 ( ) ( )i
j i

j

F x
h e F x h

x
∂

⎡ ⎤⋅∇ =⎣ ⎦ ∂
 (2.11) 

Therefore, using ej for w in Eq. (2.9) the Jacobian matrix is 

 ( ) ( ) ( ) ( )
( )0i j ii

ij
j

F x he F xF x
F x a h

x h
+ −∂

′ = = = +
∂

 (2.12) 

If the vector v is taken as v = ihw (where 1i = − ) in Eq. (2.7) instead of v = hw, then the 
equation analogous to Eq. (2.9) is 
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( ) ( ) [ ] ( ) [ ] ( )

[ ] ( )

2
2

3
3

2!

3!

i i i i

i

hF x ihw F x ih w F x w F x

ih w F x R

+ = + ⋅∇ − ⋅∇

− ⋅∇ +
 (2.13) 

By again taking w to be the jth unit vector ej, and following the same argument as above, the 
Jacobian matrix can be obtained by taking the imaginary part of both sides of Eq. (2.13) (just as 
was done to obtain Eq. (2.2) from Eq. (2.1)) to yield 

 ( ) ( ) ( ) ( )2
Im

0
i ji

ij
j

F x heF x
F x a h

x h

⎡ ⎤+∂ ⎣ ⎦′ = = = +
∂

 (2.14) 

Note that Eq. (2.14) is second-order accurate as opposed to first-order accurate like Eq. (2.12). 
The reason being, of course, that the ( )20 h  term in Eq. (2.13) is real and thus eliminated by 
taking the imaginary part of Eq. (2.13). Perhaps most important is that, like Eq. (2.2), Eq. (2.14) 
has no subtractive cancellation error. 

2.2  Matrix-Vector Product 

There is frequently the need in numerical computations to evaluate a matrix-vector product 
such as ( )F x w′ . This need occurs, for example, in GMRES and various Newton-iterative 
solvers [10, 11]. An expression for ( )F x w′  can be determined by returning to Eq. (2.9) and 
(2.10). Note Eq. (2.10) is simply the scalar h times the product of the ith row of ( )F x′  and w. 
Using Eq. (2.10) in Eq. (2.9) one has 

 ( ) ( ) ( ) ( )20th
i iF x hw F x h i rowof F x w h′⎡ ⎤+ = + +⎣ ⎦  (2.15) 

Since the ( )iF x are components of ( )F x , then 

 ( ) ( ) ( ) ( )0
F x hw F x

F x w h
h

+ −
′ = +  (2.16) 

A more accurate expression for ( )F x w′  can be obtained by returning to Eq. (2.13) where 
the vector v was taken as ihw (where 1i = − ) instead of  v=hw as in Eq. (2.9). Using the same 
argument leading to Eq. (2.15) one has, analogous to Eq. (2.15) 
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( ) ( ) ( )

[ ] ( ) [ ] ( )
2 3

2 3

2! 3!

th
i i

i i

F x ihw F x ih i rowof F x w

h ihw F x w F x R

′⎡ ⎤+ = + ⎣ ⎦

− ⋅∇ − ⋅∇ +
 (2.17) 

By noting once again that ( )iF x  are simply components of ( )F x  one has, by taking the 
imaginary part of Eq. (2.17) 

 ( )
( ) ( )2Im

0
F x ihw

F x w h
h

⎡ ⎤+⎣ ⎦′ = +  (2.18) 

Equation (2.18) is obviously a second-order accurate expression for ( )F x w′  as opposed to the 
first-order accurate expression given by Eq. (2.16). Moreover, there is no subtraction 
cancellation error as there is in Eq. (2.16). 

2.3  Fourth-Order Accurate First and Second Derivatives 

To obtain the fourth-order accurate first derivative consider the Taylor series expansions 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 3

4 5 6
7

1! 2! 3!

0
4! 5! 6!

IV V VI

h h h
f x h f x f x f x f x

h h h
f x f x f x h

± ± ±
′ ′′ ′′′± = + + +

± ± ±
+ + + +

 (2.19) 

and 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 3

4 5 6
7

1! 2! 3!

0
4! 5! 6!

IV V VI

ih ih ih
f x ih f x f x f x f x

ih ih ih
f x f x f x h

± ± ±
′ ′′ ′′′± = + + +

± ± ±
+ + + +

 (2.20) 

where 1i = − .  Note that by taking the difference of ( )f x h+ and ( )f x h− using Eq. (2.19) 
and dividing by 2h one obtains 

 ( ) ( ) ( ) ( ) ( ) ( )
2 4

60
2 3! 5!

Vf x h f x h h hf x f x f x h
h

+ − −
′ ′′′= + + +  (2.21) 
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Defining the ( )f x′ in Eq. (2.21) to be ( )Rf x′  one has 

 ( ) ( ) ( ) ( ) ( ) ( )
2 4

60
2 3! 5!

V
R

f x h f x h h hf x f x f x h
h

+ − −
′ ′′′= − − +  (2.22) 

Also note that by taking the difference of ( )f x ih+ and ( )f x ih− using Eq. (2.20) and dividing 
by i2h one obtains 

 ( ) ( ) ( ) ( ) ( ) ( )
2 4

60
2 3! 5!

Vf x ih f x ih h hf x f x f x h
i h

+ − −
′ ′′′= − + +  (2.23) 

Defining the ( )f x′  in Eq. (2.23) to be ( )Cf x′  one has 

 ( ) ( ) ( ) ( ) ( ) ( )
2 4

60
2 3! 5!

V
C

f x ih f x ih h hf x f x f x h
i h

+ − −
′ ′′′= + − +  (2.24) 

The summation of Eqs. (2.22) and (2.24), or the average of ( )Rf x′  and ( )Cf x′ , eliminates the 
0(h2) term, hence 

 ( ) ( ) ( ) ( )40
2

R Cf x f x
f x h

′ ′+
′ = +  (2.25) 

or 

 ( )
( ) ( ) ( ) ( ) ( )40

2
f x h f x h i f x ih f x ih

f x h
h

⎡ ⎤ ⎡ ⎤+ − − − + − −⎣ ⎦ ⎣ ⎦′ = +  (2.26) 

Equation (2.25) or (2.26) has potential subtraction cancellation errors, although ( )f x′ as given 
by these equations is fourth-order accurate. 

To obtain the fourth-order accurate second derivative consider again the Taylor series 
expansions given by Eqs. (2.19) and (2.20). Note that by averaging ( )f x h+ and ( )f x h−  from 
Eq. (2.19) one obtains 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 4

6
8

2 2! 4!

0
6!

avg

IV
R

VI

f x h f x h h hf x f x f x f x

h f x h

+ + −
′′= = + +

+ +

 (2.27) 
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Taking the average of ( )f x ih+ and ( )f x ih− from Eq. (2.20) results in 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 4

6
8

2 2! 4!

0
6!

avg

IV
C

VI

f x ih f x ih h hf x f x f x f x

h f x h

+ + −
′′= = − +

− +

 (2.28) 

Subtracting Eq. (2.28) from Eq. (2.27) gives 

 ( )
( ) ( ) ( )4

2 0avg avgR Cf x f x
f x h

h

−
′′ = +  (2.29) 

or 

 ( )
( ) ( ) ( ) ( ) ( )4

2 0
2

f x h f x h f x ih f x ih
f x h

h
⎡ ⎤ ⎡ ⎤+ + − − + + −⎣ ⎦ ⎣ ⎦′′ = +  (2.30) 

Similar to the first derivative, Eq. (2.29) or (2.30) has potential subtraction cancellation errors, 
although ( )f x′′  as given by these equations is fourth-order accurate.  

2.4 Numerical Results 

The accuracy afforded by using the complex 
variable approach for obtaining the first 
derivative of a scalar function (Eq. (2.2)) versus 
commonly used finite differences is shown in 
Fig. 1. The example function is one used in [12] 
given by 

 ( ) ( )cos 2xf x xe x−=  (2.31) 

The numerical derivative of Eq. (2.31) at 1x = is 
determined using Eqs. (2.2), (2.3), and (2.4). 
The most accurate and most dependable 
derivative is that given by Eq. (2.2) which is 
based on the use of complex variables and is 
second-order accurate as illustrated both 
theoretically and numerically in Fig. 1. The 

first-order accurate one-sided finite difference numerical derivative given by Eq. (2.3) is shown 
numerically in Fig. 1 to be just that; i.e. first-order accurate. The second-order central finite 
difference (Eq. (2.4)) follows the second-order accuracy of Eq. (2.2) to about 510h −= . However, 
Eq. (2.4) and (2.3) both eventually incur subtraction cancellation errors and cannot be depended 
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upon for small step sizes. On the other hand Eq. (2.2) does not encounter this error and produces 
high quality results to extremely small step sizes. The same trend as illustrated in Fig. 1 has been 
observed in practice to be true for each element of the Jacobian matrix as derived in Section 
2.1.2. 

The accuracy afforded by using the complex variable approach of determining the product 
of a matrix times a vector versus the commonly used approach is illustrated in Fig. 2. The 
example vector used is one taken from page 84 of [9]. It was used in [9] as an example for 
computing the elements of a Jacobian matrix using classical finite differences but it is used here 
as an example for the computation of  ( )F x w′  where ( )1 2, Tx x x= and ( )1 2, Tw w w= . The 
example vector is 

 ( ) ( )
( )

2
1 2

1
3
22

1

3 2
1

x xF x
F x

xF x
x

⎡ ⎤−
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

 (2.32) 

The Jacobian matrix for Eq. (2.32) is 

 ( ) ( ) 1

2
22

1

6 2
1 3

i

j

x
F x

F x
xx

x

−⎡ ⎤
∂ ⎢ ⎥′ = = ⎢ ⎥∂

⎢ ⎥⎣ ⎦

 (2.33) 

The analytical value for ( )F x w′  is therefore 

 ( )
1 1 2

2
1 2 22

1

6 2
1 3

x w w
F x w

w x w
x

−⎡ ⎤
⎢ ⎥′ = ⎢ ⎥+
⎢ ⎥⎣ ⎦

 (2.34) 

The norm used here to measure accuracy is the L2 norm given by the square root of the inner 
product, or 

 u u u= i  (2.35) 

where the vector ( )1 2, Tu u u=  is defined as 

 ( ) ( )
num exact

u F x w F x w′ ′⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦  (2.36) 
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where ( )
num

F x w′⎡ ⎤⎣ ⎦  is either Eq. (2.16) or Eq. 
(2.18) and ( )

exact
F x w′⎡ ⎤⎣ ⎦  is Eq. (2.34). The L2 

norms for u defined by Eq. (2.36) are given in 
Fig. 2 with x and w taken as unit vectors. 
Equation (2.16) illustrates the expected first-
order accuracy and Eq. (2.18) illustrates the 
expected second-order accuracy. Equation 
(2.16) also experiences the problem of 
subtraction cancellation error, whereas Eq. 
(2.18) does not. 

It should be mentioned that when the 
vectors x and w vary greatly in scaling, the use 
of Eq. (2.18) in place of Eq. (2.16) could be 

imperative. In the simple example just presented x and w were taken as unit vectors. However, 
some problems in engineering and physics might have components of x and w that vary several 
orders of magnitude. In such cases Eq. (2.16) might be considerably more in error than Eq. 
(2.18). 

The final numerical results for this section are results for fourth-order first and second 
derivatives of a function as derived in Section 2.3. The example function used is again that given 
by Eq. (2.31). 

Numerical results for the second and fourth-order accurate first derivatives are given in Fig. 
3. The result using Eq. (2.2) is the same as that in Fig. 1 and is included here for reference. The 
fourth-order accurate first derivative from Eq. (2.25) shows rapid (fourth-order) convergence as 
expected. Also expected is the eventual subtraction cancellation error that begins at about 

310h −= , although convergence is already about 1310− . It is interesting to note the results for the 
second-order first derivative. Plotted in Fig. 3 is the result from Eq. (2.22), which is the same as 
the result for Eq. (2.4) plotted in Fig. 1. A second-order result based on complex variables can be 
derived using Eq. (2.24) to obtain 

 ( ) ( ) ( ) ( )2Real 0
2c

f x ih f x ih
f x h

i h
⎡ ⎤+ − −

′ = +⎢ ⎥
⎣ ⎦

 (2.37) 
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Although Eq. (2.37) is second-order accurate and should be susceptible to subtraction cancellation 
error, it shows no sign of such error in Fig. 3 and produces the same result as Eq. (2.2). Several 
evaluation points other than 1x =  were investigated and in all cases the results produced by Eqs. 
(2.2) and (2.37) matched. This is indeed a curious result, which is under investigation. 

Three equations are investigated numerically for second and fourth-order accurate second 
derivatives. The first is the second-order accurate classical finite difference expression which can 
be derived from Eq. (2.27) 

 ( ) ( ) ( ) ( ) ( )2
2

2
0

f x h f x f x h
f x h

h
+ − + −

′′ = +  (2.38) 

Another interesting second-order accurate expression can be derived from Eq. (2.28) which is 

 ( ) ( ) ( ) ( ) ( )2
2

2
Real 0

f x ih f x f x ih
f x h

h
⎡ ⎤+ − + −

′′ = − +⎢ ⎥
⎣ ⎦

 (2.39) 

The third equation is Eq. (2.30) which is fourth-order accurate. All three of these equations are 
evaluated numerically for the example function given by Eq. (2.31) at 1x =  and the results are 
plotted in Fig. 4. All three of these expressions exhibit the expected order of accuracy and 
subtraction cancellation error. The subtraction cancellation error for the fourth-order accurate 
second derivative (Eq. (2.30)) occurs at a rather large value of 210h −= . The convergence, 
however, is already greater than eight orders of magnitude. 
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3.0  Richardson Extrapolation Using Complex Variables 

Richardson extrapolation, or deferred approach to the limit [13], is a powerful tool used in 
many areas of numerical analysis. This extrapolation method is mentioned and used in nearly all 
books on numerical analysis but few seem to give details on the method, such as the error term. 
Perhaps one of the best books on the subject is Henrici [14]. Richardson extrapolation as developed 
below is based on the use of complex variables and hence differs form any other previous work so 
far as known. The development here, therefore, cannot follow Henrici [14] exactly, but an attempt 
will be made to follow Henrici [14] as much as practical. The method is developed in Section 3.1 
followed by numerical results in Section 3.2. 

3.1  Development of the Method 

Consider the following expansion 

 ( ) ( ) ( ) ( )2

0 1 2

km m m m
kA i h a a i h a i h a i hδ δ δ δ= + + + + +" …  (3.1) 

where 0 1δ< < , 1i = − , and 0,1,2,m = … .  The quantity of interest is 0a  which results in the 

limit of ( )mA i hδ , i.e.  

 ( ) 00
lim m

h
A i h aδ

→
=  (3.2) 

Classical Richardson extrapolation begins by eliminating the ( )O h  term from an expression 
similar to Eq. (3.1) but without i and with m=0. However, in what follows the ( )O h  term will be 
eliminated by taking the real part of a complex expression so the focus here will be on 
eliminating the ( )2O h  term, which can be accomplished as follows 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2 2 1
0 0 1

2 2 3 32 2 1 3 2 1
2 3

4 44 2 1 2 1
4

m m m m

m m m m

k km m k m m
k

A i h A i h a a a i h h

a i h h a i h h

a i h h a i h h

δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ

− −

− −

− −

⎡ ⎤− = − + −⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

… …

 (3.3) 
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Note that the ( )2O h  term is eliminated from Eq. (3.3). Dividing Eq. (3.3) by ( )21 δ− yields 

 

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )

( )
( ) ( )

2 1

0 12 2

1 2
3 43 4

3 42 2

2

2

1
1 1

1 1

1 1

1

1

m m
m

m m

k
kk m

k

A i h A i h
a a i h

a i h a i h

a i h

δ δ δ δ
δ

δ δ

δ δ
δ δ

δ δ

δ
δ

δ

−

− −

−

− −
= +

− −

− −
+ +

− −

−
+ + +

−
… …

 (3.4) 

By taking the real part of Eq. (3.4) the quantity 0a  can be obtained to ( )4O h . However, 
before doing that it is convenient to compress the notation. Define 

 

 ( ),0
m

mA A i hδ=  (3.5) 

where 0,1,2, ,m = … and 

 
( )

( )

2 1
, 1,

, 1 2 11

q
m q m q

m q q

A A
A

δ

δ

+
−

+ +

−
=

−
 (3.6) 

where 0,1,2, , 1 andq m m q= − >… . The exponent of δ  differs from Henrici [14] because only 
even powers of δ  will be eliminated in this development.  

Equation (3.4) is therefore ,1mA , i.e. q = 0. To eliminate the ( )4O h  term in Eq. (3.4) 
consider the following which corresponds to 1q =  

 ( )4 4
,2 ,1 1,11 m m mA A Aδ δ −− = −  (3.7) 
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Using Eq. (3.4) 

 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

4 4 4 1
,2 0 0 1 2

1 2
3 3 4 43 4 1 4 4 1

3 42 2

3 4
5 5 6 65 4 1 6 4 1

5 62 2

2
4

2

1
1

1

1 1

1 1

1 1

1 1

1

1

m m
m

m m m m

m m m m

k
kk m m

k

A a a a i h h

a i h h a i h h

a i h h a i h h

a i h

δ
δ δ δ δ δ

δ

δ δ
δ δ δ δ δ δ

δ δ

δ δ
δ δ δ δ δ δ

δ δ

δ
δ δ δ

δ

−

− −
− −

− −
− −

−

− ⎡ ⎤− = − + −⎣ ⎦−

− −⎡ ⎤ ⎡ ⎤+ − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− −

− −⎡ ⎤ ⎡ ⎤+ − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− −

−
+ + −

−
… ( )1 k

h−⎡ ⎤ +⎢ ⎥⎣ ⎦
"

 (3.8) 

Note that the ( )4O h  term in Eq. (3.8) is eliminated giving 

 

( )( )
( )( ) ( ) ( )( )

( )( ) ( )

( )( )
( )( ) ( ) ( )( )

( )( ) ( )

( )( )
( )( ) ( )

3 1
33

,2 0 1 32 4 2 4

3 1 4 2
5 65 6

5 62 4 2 4

2 4

2 4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

m m
m

m m

k k
kk m

k

A a a i h a i h

a i h a i h

a i h

δ δ δ δ
δ δ

δ δ δ δ

δ δ δ δ
δ δ

δ δ δ δ

δ δ
δ

δ δ

−

− − − −

− −

− − − −
= + +

− − − −

− − − −
+ +

− − − −

− −
+ + +

− −
… "

 (3.9) 

Equation (3.9) can be written 

 
( )( )
( )( ) ( ) ( )

2 4
1

,2 0 2 41

1 1

1 1

p pk
pp m k

m p
p

A a a i h O h
δ δ

δ
δ δ

− −
+

=

− −
= + +

− −
∑  (3.10) 

The general expression for , 1m qA +  is 

 
( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )
2 12 4 2

1
, 1 0 2 12 4 21

1 1 1 1

1 1 1 1

q pp p q pk
pp m k

m q p qqp
A a a i h O h

δ δ δ δ
δ

δ δ δ δ

+ −− − −

+
+ +=

− − − −
= + +

− − − −
∑

…

…
 (3.11) 

Consider the term in Eq. (3.11) corresponding to ( )2 1p q= +  in the summation. This term 
is zero due to 

 ( )2 11 0q pδ + −− =  (3.12) 
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when ( )2 1p q= + . This occurs when the ( )( )2 1qO h +  term is eliminated. For example, when the 

( )4O h  term was eliminated from Eq. (3.8) this occurred for ( )2 1p q= +  when 1q = . The error 
term, therefore, is the term in the summation in Eq. (3.11) that corresponds to ( )2 1 1p q= + + . 
However, this means p is an odd integer and due to the coefficient pi  this means the term is 
imaginary. Consequently, this imaginary term, as all imaginary terms in Eq. (3.11) can be 
eliminated by taking the real part of Eq. (3.11). This means that the error term corresponds to the 
first even integer value of p greater than ( )2 1q + , which is ( )2 2p q= + . The error term in Eq. 
(3.11) is, therefore, with ( )2 2p q= +  

 ( ) ( )
( )

( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )

2 1 2 4 2
2 22 2

,2 2 2 2 2 12 4 2

1 1 1 1

1 1 1 1

q q
qq m

m q q qq
E a i h

δ δ δ δ
δ

δ δ δ δ

− + − − −
++

+ + +

− − − −
=

− − − −

"

"
 (3.13) 

or 

( ) ( )
( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )
2 1 2 4 2 2 12 4 2

2 22 2
,2 2 2 2 2 12 4 2

1 1 1 1

1 1 1 1

q q qq
qq m

m q q qq
E a i h

δ δ δ δ δ
δ

δ δ δ δ

+ − − − − − +
++

+ + +

− − − −
=

− − − −

""

"
 (3.14) 

or 

 ( ) ( )
( ) ( ) ( )( ) ( ) ( )2 21 2 1 2 12 2

,2 2 2 2 1
qq q qq m

m q qE a i hδ δ
++ − + + + + ++

+ += − "  (3.15) 

Using what Henrici [14] calls a “well known formula”  

 ( )1
1 2

2
+

+ + + =
A A

" A  (3.16) 

Eq. (3.15) can be written 

 ( ) ( )
( ) ( ) ( )( ) ( ) ( )2 212 2 1 2

,2 2 2 2 1
qqq q q m

m q qE a i hδ δ
+++ − + +

+ += −  (3.17) 

Because 1i = −  one has 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )11 2 2 1 2 1 12 2 21 1 1q q q qqi + + + + + ++ − = − = −  (3.18) 

The exponent of (-1), i.e. ( )2 1 1q + + , is always an odd integer, therefore, the expression above 
is always (-1). Equation (3.17) then becomes 

 ( ) ( )
( )( ) ( ) ( )2 21 2

,2 2 2 2

qq q m
m q qE a hδ δ

+− + +
+ += −  (3.19) 

Using Eqs. (3.19) and (3.13), Eq. (3.11) becomes 

 ( )
( )( ) ( ) ( )2 21 2

, 1 0 2 2

qq q m
m q qA a a hδ δ

+− + +
+ += −  (3.20) 
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The quantity 0a  from Eq. (3.20) is, therefore 

 ( ) ( )
( )( ) ( ) ( )2 21 2

0 , 1 2 2Real
qq q m

m q qa A a hδ δ
+− + +

+ += +  (3.21) 

where , 1m qA +  is determined recursively from Eqs. (3.5) and (3.6) with 0,1,2, ,m = …  and 
0,1,2, , 1q m= −… . The index m can be zero in Eq. (3.5) and m q>  in Eq. (3.6). The error of 0a  

is then of ( )( ) ( ) ( )2 21 2 qq q mO hδ δ
+− + +⎡ ⎤

⎢ ⎥⎣ ⎦
.  

3.2  Numerical Results 

Numerical results for classical Richardson extrapolation will be presented first in order to 
demonstrate the improvement in accuracy that is obtained by using Richardson extrapolation based 
on complex variables. Quarteroni, Sacco, and Saleri [12] present the error in classical Richardson 
extrapolation as 

 ( )( )1

, 0 0
nm

m nA a hδ
+

= +  (3.22) 

with 0,1, ,m n= … . However, Henrici [14] presents ,m nA  as 

 ( )
( )

( ) ( )
1

1
2

, 0 11 1 0
n n

nn m m
m n nA a a h hδ δ δ

+
− +

+
⎡ ⎤= + − +⎣ ⎦  (3.23) 

Note the similarity between Eq. (3.23) and Eq. (3.20).The example selected in [12] to 
demonstrate the accuracy of classical Richardson extrapolation is the approximation of the 
derivative of the function given by Eq. (2.31) at x = 0. In this case 

 ( ) ( ) ( )m
m

m

f x h f x
A h

h

δ
δ

δ

+ −
=  (3.24) 

and 0.5δ =  and 0.1h =  as used in [12]. A table is presented in [12] (Table 9.9) of absolute 
errors , 0m nA a−  for 0,1, ,5m = …  and 0,1, ,5n = … . Classical Richardson extrapolation is 
computed here also using Eqs. (2.31) and (3.24) with 0.5δ =  and 0.1h =  and the results are 
given in Table 1. Table 1 is essentially the same as Table 9.9 in [12] except the error in Table 1 
is defined as 

 , 10 , 0
ˆ logm n m nE A a= −  (3.25) 

Numerical results using Richardson extrapolation based on complex variables as given by 
Eq. (3.21) are presented in Table 2 for the same example and conditions as used in Table 1 with 
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 ( ) ( ) ( )m
m

m

f x i h f x
A i h

i h

δ
δ

δ

+ −
=  (3.26) 

The error in Table 2 is defined as 

 ( ), 10 , 0
ˆ log Realm n m nE A a= −  (3.27) 

From Eq. (3.21) with n = q + 1 

 ( ) ( )
( ) ( ) ( )2 11

0 , 2 1Real
nn n m

m n na A a hδ δ
+− +

+= +  (3.28) 

In this case the error improves two orders of magnitude with each unit increase in n in Eq. (3.28), 
whereas it only improves one order of magnitude with each unit increase in n in Eq. (3.23). 
Machine accuracy (64 bit arithmetic) is reached rather quickly in Table 2 whereas machine 
accuracy is never achieved in Table 1 for the same number of recursions. 

Derivative of ( ) ( )cos 2xf x xe x−=  at x=0  
, 10 , 0

ˆ logm n m nE A a= −  

m ,0
ˆ

mE  ,1
ˆ

mE  ,2
ˆ

mE  ,3
ˆ

mE  ,4
ˆ

mE  ,5
ˆ

mE  

0 -9.46E-01      
1 -1.27E+00 -2.21E+00     
2 -1.59E+00 -2.77E+00 -3.65E+00    
3 -1.90E+00 -3.35E+00 -4.55E+00 -6.26E+00   
4 -2.20E+00 -3.94E+00 -5.45E+00 -7.50E+00 -8.52E+00  
5 -2.50E+00 -4.54E+00 -6.35E+00 -8.73E+00 -1.00E+01 -1.13E+01

Table 1. Classical Richardson Extrapolation 

Derivative of ( ) ( )cos 2xf x xe x−= at x=0  
( ), 10 , 0

ˆ log Realm n m nE A a= −  

m ,0
ˆ

mE  ,1
ˆ

mE  ,2
ˆ

mE  ,3
ˆ

mE  ,4
ˆ

mE  ,5
ˆ

mE  

0 -1.82E+00      
1 -2.43E+00 -5.13E+00     
2 -3.03E+00 -6.34E+00 -8.59E+00    
3 -3.63E+00 -7.55E+00 -1.04E+01 -1.35E+01   
4 -4.23E+00 -8.75E+00 -1.22E+01 -1.57E+01 -1.57E+01  
5 -4.83E+00 -9.95E+00 -1.40E+01 -1.57E+01 -1.57E+01 -1.57E+01

Table 2. Richardson Extrapolation Based On Complex Variables 
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4.0  Calculation of Logarithms by Differentiation 

Another interesting application of Richardson extrapolation is described in Section 12.5 of 
Henrici [14] having to do with the calculation of logarithms by differentiation. Consider the 
function 

 ( ) ( )lnx axf x a e= =  (4.1) 

The derivative of ( )f x  leads to 

 ( ) ( ) ( )lnf x f x a′ =  (4.2) 

For x=0 one has 

 ( ) ( )ln 0a f ′=  (4.3) 

Henrici [14] uses the one-sided approximation for the derivative of ( )0f ′  to obtain 

 ( ) ( ) ( )0 1hf h f aS h
h h
− −

= =  (4.4) 

then, by definition one has 

 ( ) ( )
0

ln lim
h

a S h
→

=  (4.5) 

Henrici [14] uses 2 nh −=  where n=0,1,2,... and goes on to point out that the method is 
numerically unstable.  To overcome this instability Henrici [14] ingeniously develops a sequence 
that is stable. He points out that although the sequence is stable, it converges intolerably slowly.  
To overcome this difficulty he shows that the sequence satisfies the conditions for Richardson 
extrapolation and then uses Richardson extrapolation to accelerate convergence. 

Henrici [14] considered as an example the calculation of ln(6).  His method was coded and 
the results are given in Table 3.  Table 3 is analogous to Table 12.5 in [14] except in [14] the 
objective was to compute ln(6) to seven significant digits whereas in Table 3 the objective was to 
compute ln(6) to machine accuracy in 64 bit arithmetic. Seven significant digits are obtained in 
Table 3 (and Table 12.5 [14]) at A(5,5). The ,m nA  used in Table 3 is Henrici’s series as 
developed in [14]. 

Classical Richardson extrapolation was also investigated.  In this case ( ) ( )m mA h S hδ δ=  
where S(h) is defined by Eq. (4.4).  The results of this numerical experiment are given in Table 4.  
This series begins to converge faster than Henrici’s (see Table 3) but as Henrici [14] noted, there 
is a stability problem with this approach as indicated in Table 4 by the fact that after a period of 
time the error becomes worse. 
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, 10 , 0
ˆ logm n m nE A a= −  where ( )0 ln 6a =  

m ,0
ˆ

mE  ,1
ˆ

mE  ,2
ˆ

mE  ,3
ˆ

mE  ,4
ˆ

mE  ,5
ˆ

mE  

0 5.06E-01  
1 4.42E-02 -2.70E-03  
2 -3.29E-01 -7.69E-01 -9.81E-01  
3 -6.65E-01 -1.45E+00 -2.03E+00 -2.36E+00  
4 -9.82E-01 -2.09E+00 -3.01E+00 -3.70E+00 -4.12E+00 
5 -1.29E+00 -2.71E+00 -3.95E+00 -4.97E+00 -5.74E+00 -6.24E+00
6 -1.60E+00 -3.32E+00 -4.87E+00 -6.20E+00 -7.30E+00 -8.15E+00
7 -1.90E+00 -3.93E+00 -5.78E+00 -7.42E+00 -8.84E+00 -1.00E+01
8 2.20E+00 -4.53E+00 -6.68E+00 -8.63E+00 -1.04E+01 -1.18E+01
9 -2.50E+00 -5.13E+00 -7.59E+00 -9.84E+00 -1.19E+01 -1.36E+01
10 -2.80E+00 -5.74E+00 -8.49E+00 -1.10E+01 -1.34E+01 -1.54E+01
11 -3.11E+00 -6.34E+00 -9.40E+00 -1.23E+01 -1.47E+01 -1.51E+01
12 -3.41E+00 -6.94E+00 -1.03E+01 -1.35E+01 -1.52E+01 -1.52E+01
13 -3.71E+00 -7.54E+00 -1.12E+01 -1.45E+01 -1.52E+01 -1.52E+01
14 -4.01E+00 -8.15E+00 -1.21E+01 -1.52E+01 -1.51E+01 -1.51E+01
15 -4.31E+00 -8.75E+00 -1.30E+01 -1.57E+01 -1.57E+01 -1.57E+01
16 -4.61E+00 -9.35E+00 -1.39E+01 -1.50E+01 -1.50E+01 -1.50E+01
17 -4.91E+00 -9.95E+00 -1.47E+01 -1.52E+01 -1.52E+01 -1.52E+01
18 -5.21E+00 -1.06E+01 -1.49E+01 -1.50E+01 -1.50E+01 -1.50E+01
19 -5.51E+00 -1.12E+01 -1.49E+01 -1.49E+01 -1.48E+01 -1.48E+01
20 -5.82E+00 -1.18E+01 -1.52E+01 -1.52E+01 -1.54E+01 -1.54E+01

Table 3. Calculation of  ln(6) Using Henrici’s [14] Series 
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, 10 , 0
ˆ logm n m nE A a= −  where ( )0 ln 6a =  

m ,0
ˆ

mE  ,1
ˆ

mE  ,2
ˆ

mE  ,3
ˆ

mE  ,4
ˆ

mE  ,5
ˆ

mE  

0 -7.68E-01  
1 -1.08E+00 -2.29E+00  
2 -1.39E+00 -2.91E+00 -4.24E+00  
3 -1.69E+00 -3.52E+00 -5.16E+00 -6.59E+00  
4 -2.00E+00 -4.12E+00 -6.07E+00 -7.81E+00 -9.33E+00 
5 -2.30E+00 -4.73E+00 -6.98E+00 -9.02E+00 -1.08E+01 -1.25E+01
6 -2.60E+00 -5.33E+00 -7.88E+00 -1.02E+01 -1.28E+01 -1.25E+01
7 -2.90E+00 -5.93E+00 -8.78E+00 -1.14E+01 -1.28E+01 -1.28E+01
8 -3.20E+00 -6.53E+00 -9.69E+00 -1.24E+01 -1.22E+01 -1.22E+01
9 -3.50E+00 -7.14E+00 -1.06E+01 -1.20E+01 -1.20E+01 -1.20E+01
10 -3.80E+00 -7.74E+00 -1.14E+01 -1.26E+01 -1.27E+01 -1.27E+01
11 -4.11E+00 -8.34E+00 -1.23E+01 -1.30E+01 -1.31E+01 -1.31E+01
12 -4.41E+00 -8.94E+00 -1.15E+01 -1.14E+01 -1.14E+01 -1.14E+01
13 -4.71E+00 -9.56E+00 -1.09E+01 -1.09E+01 -1.09E+01 -1.09E+01
14 -5.01E+00 -1.02E+01 -1.16E+01 -1.19E+01 1.25E+01 -1.32E+01
15 -5.31E+00 -1.04E+01 -1.01E+01 -1.01E+01 -1.00E+01 -1.00E+01
16 -5.61E+00 -1.05E+01 -1.03E+01 -1.01E+01 -1.01E+01 -1.00E+01
17 -5.91E+00 -1.05E+01 -1.05E+01 -1.06E+01 -1.06E+01 -1.07E+01
18 -6.21E+00 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01
19 -6.51E+00 -8.95E+00 -8.82E+00 -8.76E+00 -8.73E+00 -8.72E+00
20 -6.82E+00 -9.21E+00 -8.92E+00 -8.80E+00 -8.74E+00 -8.72E+00

Table 4. Calculation of  ln(6) Using Classical Richardson Extrapolation 

Richardson extrapolation based on complex variables can also be applied to this problem 
and convergence is much faster.  Analogous to Eq. (4.4) ( )mA i hδ  is defined as 

 ( ) 1
mi h

m
m

aA i h
i h

δ

δ
δ

−
=  (4.6) 

Results using this approach to calculate ln(6) are given in Table 5.  Notice in Table 5 that 
convergence is much faster than in either Table 3 or 4 and no stability problem is indicated.  
Convergence to seven significant digits is achieved in Table 5 at A(2,1), and machine zero is 
reached at A(5,3). 
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, 10 , 0
ˆ logm n m nE A a= −  where ( )0 ln 6a =  

m ,0
ˆ

mE  ,1
ˆ

mE  ,2
ˆ

mE  ,3
ˆ

mE  ,4
ˆ

mE  ,5
ˆ

mE  

0 -2.02E+00  
1 -2.62E+00 -5.42E+00  
2 -3.22E+00 -6.62E+00 -9.74E+00  
3 -3.82E+00 -7.82E+00 -1.15E+01 -1.49E+01  
4 -4.43E+00 -9.03E+00 -1.34E+01 -1.54E+01 -1.54E+01 
5 -5.03E+00 -1.02E+01 -1.51E+01 -1.57E+01 -1.57E+01 -1.57E+01
6 -5.63E+00 -1.14E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
7 -6.23E+00 -1.26E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
8 -6.83E+00 -1.39E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
9 -7.44E+00 -1.52E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
10 -8.04E+00 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
11 -8.64E+00 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
12 -9.24E+00 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
13 -9.85E+00 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
14 -1.04E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
15 -1.10E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
16 -1.17E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
17 -1.23E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
18 -1.29E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
19 -1.35E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01
20 -1.41E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01 -1.57E+01

Table 5. Calculation of  ln(6) Using Richardson Extrapolation Based on Complex Variables 

The reason Henrici [14] was driven to the development of a stable sequence, and the source of 
the stability problems encountered by classical Richardson extrapolation as demonstrated in Table 
4, is the use of the one-sided approximation for the derivative of f (x) as defined by Eq. (4.4).  It 
does not appear that the use of the classical second-order central difference formula for the 
derivative of f (x) (see Eq. (2.21), for example) would have made any improvement.  However, if 
one uses the second-order approximation based on complex variables as given by Eq. (2.2) for the 
first derivative of f (x), then all of these problems go away.  Based on Eqs. (2.2) and (4.1)-(4.3) one 
has 

 ( ) ( ) ( )
0

Im
ln 0 lim

ih

h

a
a f

h→
′= =  (4.7) 
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Equation (4.7) means that ln(a) can be determined directly with one computation and without recourse 
to series, recursion formulas, or interpolations.  To illustrate the power of Eq. (4.7) consider Table 
6 where the natural logarithm of a=6 is computed using several different approximations for the 
derivative of f (x).  Table 6 shows that the choice of h is very important for all methods except Eq. 
(4.7). Probably the best thing to do in practice when using Eq. (4.7) is to select h to be 
approximately equal to the square root of machine zero. The exact value used for h does not seem 
to be critical.  Actually, experience in using Eq. (4.7) demonstrates that 810h −=  works well for 
either 32 bit or 64 bit arithmetic.  Moreover, additional errors do not seem to be introduced if an 

1610h −= is used for either 32 bit or 64 bit arithmetic. The calculation of ln(a) for numerous values 
of a (for example, 36 9910 10a− ≤ ≤ ) indicates that 1210h −=  is a reasonable value to use. 

, 10 0
ˆ log Eq. (No.)m nE a= −  where ( )0 ln 6a =  

m ( )10log h  Eq.(2.2) Eq.(2.3) Eq.(2.21) Eq.(2.25) 

0 0.0E+00 -8.83E-02 5.06E-01 5.11E-02 -8.11E-01 
1 -1.0E+00  -2.02E+00  -7.68E-01  -2.02E+00  -4.81E+00 
2 -2.0E+00  -4.02E+00  -1.79E+00  -4.02E+00  -8.81E+00 
3 -3.0E+00  -6.02E+00  -2.79E+00  -6.02E+00  -1.28E+01 
4 -4.0E+00  -8.02E+00  -3.79E+00 -8.02E+00  -1.26E+01 
5 -5.0E+00  -1.00E+01  -4.79E+00  -1.00E+01  -1.20E+01 
6    -6.0E+00  -1.20E+01  -5.79E+00  -1.10E+01  -1.13E+01 
7 -7.0E+00  -1.40E+01  -6.79E+00  -1.00E+01  -1.03E+01 
8 -8.0E+00  -1.57E+01  -7.57E+00  -8.31E+00  -8.61E+00 
9 -9.0E+00  -1.57E+01  -7.21E+00  -8.21E+00  -8.51E+00 
10 -1.0E+01  -1.57E+01  -6.22E+00  -7.31E+00  -7.61E+00 
11 -1.1E+01  -1.57E+01  -5.14E+00  -5.77E+00  -6.07E+00 
12 -1.2E+01  -1.57E+01  -4.09E+00  -4.58E+00  -4.89E+00 
13 -1.3E+01  -1.57E+01  -3.85E+00  -3.85E+00  -4.15E+00 
14 -1.4E+01  -1.57E+01  -2.17E+00  -2.90E+00  -3.20E+00 
15 -1.5E+01  -1.57E+01  -1.81E+00  -1.81E+00  -2.11E+00 
16 -1.6E+01  -1.57E+01  -3.68E-01  -3.68E-01  -6.69E-01 

Table 6. Calculation of  ln(6) Using Different Differential Formulas  

There has been some difficulty in determining exactly how modern calculators and computers 
calculate logarithms.  It could be that Eq. (4.7) might have merit in this regard. Equation (4.7) does 
require taking a number to a power and the operation count for this may negate its usefulness in 
calculators and computers. Equation (4.7), however, does not require shifting or partitioning in the 
process of computing a logarithm, and it is exceedingly accurate. 
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5.0  Summary 

Analytical and numerical results were presented on the use of complex variables to develop 
high-order relations for numerical derivatives, matrix-vector products, and Richardson 
extrapolation.  Many of these results are new, although they have been and are currently being used 
by personnel within the  SimCenter: National Center for Computational Engineering.  There seem 
to be numerous useful applications of these results.  For example, if calculators and computers do 
indeed use series, iterations, recursions, shifting, and/or partitioning to calculate logarithms, then 
the results presented in Section 4.0 dealing with the calculation of logarithms using differentiation 
could be of interest.  In any case, it is intended that this material will serve as a useful reference and 
teaching aid to those that might find additional applications. 
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