Chapter 1
Introduction to Information Security

Do not figure on opponents not attacking; worry about your own lack of preparation.
BOOK OF THE FIVE RINGS
Introduction

• Information security: a “well-informed sense of assurance that the information risks and controls are in balance.” — Jim Anderson, Inovant (2002)

• Security professionals must review the origins of this field to understand its impact on our understanding of information security today
The History of Information Security

- Began immediately following development of first mainframes
 - Developed for code-breaking computations
 - During World War II
 - Multiple levels of security were implemented
- Physical controls
- Rudimentary
 - Defending against physical theft, espionage, and sabotage
The 1960s

• Original communication by mailing tapes
• Advanced Research Project Agency (ARPA)
 • Examined feasibility of redundant networked communications
• Larry Roberts developed ARPANET from its inception
• Plan
 • Link computers
 • Resource sharing
 • Link 17 Computer Research Centers
 • Cost 3.4M
• ARPANET is predecessor to the Internet
The 1970s and 80s

- ARPANET grew in popularity
- Potential for misuse grew
- Fundamental problems with ARPANET security
 - Individual remote sites were not secure from unauthorized users
 - Vulnerability of password structure and formats
 - No safety procedures for dial-up connections to ARPANET
 - Non-existent user identification and authorization to system
The 1970s and 80s (cont’d.)

• Rand Report R-609
 • Paper that started the study of computer security
 • Information Security as we know it began

• Scope of computer security grew from physical security to include:
 • Safety of data
 • Limiting unauthorized access to data
 • Involvement of personnel from multiple levels of an organization
MULTICS

• Early focus of computer security research
 • System called Multiplexed Information and Computing Service (MULTICS)
• First operating system created with security as its primary goal
• Mainframe, time-sharing OS developed in mid-1960s
 • GE, Bell Labs, and MIX
• Several MULTICS key players created UNIX
• Late 1970s
 • Microprocessor expanded computing capabilities
 • Mainframe presence reduced
 • Expanded security threats
The 1990s

- Networks of computers became more common
- Need to interconnect networks grew
- Internet became first manifestation of a global network of networks
- Initially based on de facto standards
- In early Internet deployments, security was treated as a low priority
2000 to Present

- Millions of computer networks communicate
- Many of the communication unsecured
- Ability to secure a computer’s data influenced by the security of every computer to which it is connected
- Growing threat of cyber attacks has increased the need for improved security
Vulnerabilities

Figure D.1
Total Vulnerabilities Identified, 2006-2011

Source: Symantec.cloud
What is Security?

• “The quality or state of being secure—to be free from danger”
• A successful organization should have multiple layers of security in place:
 • Physical security
 • Personal security
 • Operations security
 • Communications security
 • Network security
 • Information security
What is Security? (cont’d.)

- The protection of information and its critical elements, including systems and hardware that use, store, and transmit that information
- Necessary tools: policy, awareness, training, education, technology
- C.I.A. triangle
 - Was standard based on confidentiality, integrity, and availability
 - Now expanded into list of critical characteristics of information
Figure 1-3 Components of Information Security
Key Information Security Concepts

- Access
- Asset
- Attack
- Control, Safeguard, or Countermeasure
- Exploit
- Exposure
- Loss
- Protection Profile or Security Posture
- Risk
- Subjects and Objects
- Threat
- Threat Agent
- Vulnerability
Key Information Security Concepts (cont’d.)

• Computer can be subject of an attack
• Computer can be the object of an attack
 • When the subject of an attack
 • Computer is used as an active tool to conduct attack
 • When the object of an attack
 • Computer is the entity being attacked
Figure 1-5 Computer as the Subject and Object of an Attack
Critical Characteristics of Information

• The value of information comes from the characteristics it possesses:
 • Availability
 • Accuracy
 • Authenticity
 • Confidentiality
 • Integrity
 • Utility
 • Possession
CNSS Security Model

Figure 1-6 The McCumber Cube
Components of an Information System

- Information system (IS) is entire set of components necessary to use information as a resource in the organization
 - Software
 - Hardware
 - Data
 - People
 - Procedures
 - Networks
Balancing Information Security and Access

• Impossible to obtain perfect security
• Process, not an absolute
• Security should be considered balance between protection and availability
• Must allow reasonable access, yet protect against threats
Figure 1-8 Balancing Information Security and Access

CISO: Encryption is needed to protect secrets of the organization.

User 1: Encrypting e-mail is a hassle.

User 2: Encrypting e-mail slows me down.

Security

Access
Approaches to Information Security Implementation: Bottom-Up Approach

- Grassroots effort - systems administrators drive
- Key advantage: technical expertise of individual administrators
- Seldom works
- Lacks number of critical features:
 - Participant support
 - Organizational staying power
Approaches to Information Security Implementation: Top-Down Approach

• Initiated by upper management
 • Issue policy, procedures, and processes
 • Dictate goals and expected outcomes of project
 • Determine accountability for each required action
• Most successful
• Involves formal development strategy
• Systems development life cycle
Figure 1-9 Approaches to Information Security Implementation
The Systems Development Life Cycle

- Systems Development Life Cycle (SDLC):
 - Methodology for design and implementation of information system
- Methodology:
 - Formal approach to problem solving
 - Based on structured sequence of procedures
- Using a methodology:
 - Ensures a rigorous process
 - Increases probability of success
- Traditional SDLC consists of six general phases
Figure 1-10 SDLC Waterfall Methodology
Investigation

• What problem is the system being developed to solve?
• Objectives, constraints, and scope of project specified
• Preliminary cost-benefit analysis developed
• At end
 • Feasibility analysis performed
 • Assess economic, technical, and behavioural feasibilities
Analysis

- Consists of assessments of:
 - The organization
 - Current systems
 - Capability to support proposed systems
- Determine what new system is expected to do
- Determine how it will interact with existing systems
- Ends with documentation
Logical Design

- Main factor is business need
 - Applications capable of providing needed services are selected
- Necessary data support and structures identified
- Technologies to implement physical solution determined
- Feasibility analysis performed at the end
Physical Design

- Technologies to support the alternatives identified and evaluated in the logical design are selected
- Components evaluated on make-or-buy decision
- Feasibility analysis performed
 - Entire solution presented to end-user representatives for approval
Implementation

• Needed software created
• Components ordered, received, and tested
• Users trained and documentation created
• Feasibility analysis prepared
 • Users presented with system for performance review and acceptance test
Maintenance and Change

• Longest and most expensive phase
• Tasks necessary to support and modify system
 • Last for product’s useful life
• Life cycle continues
 • Process begins again from the investigation phase
• When current system can no longer support the organization’s mission, a new project is implemented
The Security Systems Development Life Cycle

• The same phases used in traditional SDLC
• Need to adapted to support implementation of an IS project
• Identify specific threats and creating controls to counter them
• SecSDLC is a coherent program not series of random, seemingly unconnected actions
Investigation

- Identifies process, outcomes, goals, and constraints of the project
- Begins with Enterprise Information Security Policy (EISP)
- Organizational feasibility analysis is performed
Analysis

• Documents from investigation phase are studied
• Analysis of existing security policies or programs
• Analysis of documented current threats and associated controls
• Analysis of relevant legal issues that could impact design of the security solution
• Risk management task begins
Logical Design

- Creates and develops blueprints for information security
- Incident response actions planned:
 - Continuity planning
 - Incident response
 - Disaster recovery
- Feasibility analysis to determine whether project should be continued or outsourced
Physical Design

• Needed security technology is evaluated
• Alternatives are generated
• Final design is selected
• At end of phase, feasibility study determines readiness of organization for project
Implementation

• Security solutions are acquired, tested, implemented, and tested again
• Personnel issues evaluated; specific training and education programs conducted
• Entire tested package is presented to management for final approval
Maintenance and Change

• Perhaps the most important phase, given the ever-changing threat environment
• Often, repairing damage and restoring information is a constant duel with an unseen adversary
• Information security profile of an organization requires constant adaptation as new threats emerge and old threats evolve
Security Professionals and the Organization

- Wide range of professionals required to support a diverse information security program
- Senior management is key component
- Additional administrative support and technical expertise are required to implement details of IS program
Senior Management

• Chief Information Officer (CIO)
 • Senior technology officer
 • Primarily responsible for advising senior executives on strategic planning
• Chief Information Security Officer (CISO)
 • Primarily responsible for assessment, management, and implementation of IS in the organization
 • Usually reports directly to the CIO
Information Security Project Team

• A number of individuals who are experienced in one or more facets of required technical and nontechnical areas:
 • Champion
 • Team leader
 • Security policy developers
 • Risk assessment specialists
 • Security professionals
 • Systems administrators
 • End users
Data Responsibilities

- Data owner: responsible for the security and use of a particular set of information
- Data custodian: responsible for storage, maintenance, and protection of information
- Data users: end users who work with information to perform their daily jobs supporting the mission of the organization
Communities of Interest

- Group of individuals united by similar interests/values within an organization
 - Information security management and professionals
 - Information technology management and professionals
 - Organizational management and professionals
Information Security: Is it an Art or a Science?

- Implementation of information security often described as combination of art and science
- “Security artisan” idea: based on the way individuals perceive systems technologists since computers became commonplace
Security as Art

• No hard and fast rules nor many universally accepted complete solutions
• No manual for implementing security through entire system
Security as Science

- Dealing with technology designed to operate at high levels of performance
- Specific conditions cause virtually all actions that occur in computer systems
- Nearly every fault, security hole, and systems malfunction are a result of interaction of specific hardware and software
- If developers had sufficient time, they could resolve and eliminate faults
Security as a Social Science

- Social science examines the behaviour of individuals interacting with systems
- Security begins and ends with the people that interact with the system
- Security administrators can greatly reduce levels of risk caused by end users, and create more acceptable and supportable security profiles