
RSA Attacks

By Abdulaziz Alrasheed and Fatima

1 Introduction

Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first

revealed in the August 1977 issue of Scientific American. The RSA is most commonly used for

providing privacy and ensuring authenticity of digital data. RSA is used by many commercial

systems. It is used to secure web traffic, to ensure privacy and authenticity of Email, to secure

remote login sessions, and it is at the heart of electronic credit-card payment systems.

Since its initial release, the RSA has been analyzed for vulnerabilities. Twenty years of research

have led to a number of intriguing attacks, none of them is devastating. They mostly show the

danger of wrong use of RSA. Our objective is to explorer some of these attacks.

RSA encryption in its simple form is explained as follow. Let N = pq be the product of two large

primes of the same size (n/2 bits each). As [1] explains, a typical size for N is n=1024 bits, i.e.

309 decimal digits. Let e, d be two integers satisfying ed = 1 mod φ(N) where φ(N) = (p-1) (q-1).

N is called the RSA modulus, e is called the encryption exponent, and d is called the decryption

exponent. The pair (N, e) is the public key. The pair (N, d) is called the secret key and only the

recipient of an encrypted message knows it.

A message M is encrypted by computing C = M
e
 mod N. To decrypt the ciphertext C, the

authentic receiver computes C
d
 mod N.

C
d
= M

ed
= M (mod N)

The last equality is based on Euler’s theorem.

1.1 Factoring Large Integers

This is known as the first attack on RSA public key (N, e). After getting the factorization of N,

an attacker can easily construct φ(N), from which the decryption exponent d = e
-1

 mod φ(N) can

be found. Factoring the modulus is referred to as brute-force attack. Although factorizing the

modulus has been improving, the current state of the art of this attack is unable to post a threat to

the security of RSA when RSA is used properly. The current fastest factoring algorithm is the

General Number Field Sieve with running time of (((⁄ ⁄)

2 Elementary attacks

Let’s begin by describing some old elementary attacks. These attacks depend primarily on the

misuse of RSA. We will only talk about two examples of many elementary attacks.

2.1 Common modulus

The assumption that generating the same modulus N = pq for all users of a system, and user i is

provided with a unique pair ei, di from which user i forms a public key (N, ei) and a secret key

(N, di) may seem to work providing that a trusted central authority provides the unique pairs. But

as per [1] the resulting system is insecure since Bob who is unable to decipher Alice’s cipher due

to not having Alice private key dAlice he however, can factor N using his own exponents. This

observation, due to Simmons, shows that an RSA modulus should only be used by one entity.

2.2 Blinding

Blinding enables Eve to obtain a valid signature on a message of his choice by asking Bob to

sign a random "blinded message" [1]. In that case, Bob does not know what message he is

actually signing and most signature schemes apply a "one-way hash" to the message prior to

signing, thus the attack is not a serious concern.

Let (N, d) be Bob's private key and (N, e) be his public key. Assume that an adversary Eve wants

Bob's signature on a message M ϵ Z
*
N. Being a smart move, Bob should refuse to sign M.

Otherwise Eve can compute S = S' / ϒ mod N and obtains Bob's signature S on the original M.

Thus, S
e
 = (S')

e
 / ϒ

e
 = (M')

ed
/ ϒ

e
≡ M' / ϒ

e
 = M (mod N)

3 Low private Exponent

Since modular exponentiation takes time linear in log2 d, a small d can improve performance by

at least a factor of 10, one of the misuses of RSA is to use a small value of d to reduce decryption

time. Unfortunately, a clever attack due to M. Wiener [2] shows that a small d can result in a

total break of the RSA cryptosystem.

Theorem (M. Wiener) Let N = pq with q < p < 2q. Let d < 1/3 N
1/4

. Given (N, e) with ed = 1

mod φ(N), an attacker can efficiently recover d.

Proof The proof is based on approximations using continued fractions. Since ed = 1 mod φ(N),

there exists a k where ed -k φ(N) = 1. Therefore,

|

 (

|

 (

Since φ(N) = N-p-q+1 and p+q-1 < 3√ an attacker can use N to approximate φ(N).

In order to avoid this attack, and since N is 1024 bits, d must be at least 256 bits long. This is

unfortunate for smart cards or low powered devices.

4 Low public exponent

In order to reduce encryption or signature-verification time, a small public exponent e is

customary used. The smallest possible value according to [source] is 3, but to defeat certain

attacks the value e = 2
16

 + 1 is recommended. When the value 2
16

 + 1 is used only 17

multiplications are required for signature verification as opposed to roughly 1000 when a random

e < φ(N) is used. Unlike the attack of low private exponent, attacks that apply when a small e is

used are far from a total break.

4.1 Coppersmith theorem

The most powerful attacks on low public exponent RSA are based on a Copper-smith theorem.

Theorem Let N be an integer and f ϵ Z[x] be a monic polynomial of degree d. Set X = N
1/d-ϵ

 for

some ϵ ≥ 0. Then, given (N, f) an attacker can efficiently find all integers |x0| < X satisfying f(x0)

= 0 mod N. The running time is dominated by the time it takes to run the LLL algorithm on a

lattice of dimension O(w) with w = min(1/ϵ, log2N) [1].

The theorem provides an algorithm for efficiently finding all roots of f modulo N that are less

than X = N
1/d

. The algorithm's running time decreases as X gets smaller. The strength of this

theorem is its ability to find small roots of polynomials modulo a composite N.

Application of Coppersmith's Theorem [3]:

 Attack stereotyped messages in RSA (sending messages whose difference is less than

N
1/e

 can compromise RSA)

 Security proof of RSA-OAEP (constructive security proof).

 Affine Padding

 Polynomially related RSA messages (sending the same message to multiple recipients)

 Factoring N = pq if the high bits of p are known.

 An algorithm that can get the private key for RSA in deterministic polynomial time can

be used to factor N in deterministic polynomial time.

 Finding integers with a large smooth factor in a proscribed interval.

 Finding roots of modular multivariate polynomials.

4.2 Hastad’s broadcast attack

The first application of Coppersmith's theorem and the improvement to an old attack is Hastad's

Broadcost Attack. Suppose Bob wishes to send an encrypted message M to a number of parties

P1, P2,......Pk. Each party has its own RSA key (Ni, ei). We assume M is less than all the Ni's.

Idealistically, to send M, Bob encrypts it using each of the public keys and sends out of the i
th

ciphertext to pi. An attacker Eve can eavesdrop on the connection out of Bob's sight and collect

the k transmitted ciphetexts.

For simplicity, suppose all public exponents ei, are equal to 3. A simple arguments shows that

Eve can recover M if k ≥ 3. Indeed, Bob obtains C1, C2, C3, where

C1 = M
3
 mod N1, C2 = M

3
 mod N2, C3 = M

3
 mod N3.

Assume that gcd(Ni, Nj) = 1 for all i ≠ j since otherwise Eve can factor some of the Ni's. Hence,

applying the Chinese Remainder Theorem (CRT) to C1, C2, C3 gives a C' ϵ ZN1N2N3 satisfying C'

= M
3
 mod N1 N2 N3. Since M is less than all the Ni's, we have M

3
< N1 N2 N3. Then C' = M

3
 holds

over the integers. Thus, Eve may recover M by computing the real cube root of C'. More

generally, if all public exponents are equal to e, Eve can recover M as soon as k > e. The attack is

feasible only when a small e is used.

To stimulate Hastad's result, if M is m bits long, Bob could send Mi = i2
m

 + M to party Pi. Since

Eve obtains encryptions of different messages, he can't mount the attack. Unfortunately, Hastad

showed that this linear padding is insecure. In fact, he proved that applying any fixed polynomial

to the message prior to encryption does not prevent the attack [1].

Suppose that for each of the participants P1,........, Pk, Bob has a fixed public polynomial fi ϵ

ZNi[x]. To broadcast a message M, Bob sends the encryption of fi (M) to party Pi. By

eavesdropping, Eve learns Ci = fi(M)
ei
 mod Ni for i=1,....., k. Hastad showed that if enough

parties are involved, Eve can recover the plaintext M from all the ciphertexts. In more generality,

Hastad proved that a system of univariate equations modulo relatively prime composites, such as

applying any fixed polynomial g1(M) = 0 mod Ni, could be solved if sufficiently many equations

are provided. This attack suggests that randomized padding should be used in RSA encryption.

Theorem Let N1,..........., Nk be pairwise relatively prime integers and set Nmin = mini (Ni). Let gi

ϵ ZNi[x] be k polynomials of maximum degree d. Suppose there exists a unique M < Nmin

satisfying

 gi(M) = 0 mod Ni for all i = 1,........,k.

Under the assumption that k > d, one can efficiently find M given (Ni, gi)
k

i = 1.

4.3 Franklin-Reiter Related Message Attack

Franklin and Reiter [4] found a smart attack when Bob sends Alice related encrypted messages

using the same modulus. Let (N, e) be Alice’s public key. Suppose M1, M2 are two distinct

messages such as M1 = f(M2) mod N. If Bob encrypt the messages and transmit the resulting

ciphers C1 and C2 we will show how an attacker can easily recover M1 and M2.

Lemma Set e = 3 and let (N,e) be an RSA public key. Let M1 != M2 satisfy M1 = f(M2) mod N

for some linear polynomial f = ax + b with b != 0. Then, given (N, e, C1, C2, f) an attacker can

recover M1 and M2 in time quadratic in log N.

Proof Since C1 =
 mod N, we know that M2 is a root of the polynomial g1 (x) = f(x)

e
 - C1 and

similarly M2 is a root of g2 (x) = f(x)
e
 – C2. The linear factor x - M2 divides both polynomials.

Therefore, an attacker may use the Euclidean algorithm to compute the gcd of g1 and g2. If the

gcd turns out to be linear, M2 is found.

4.4 Coppersmith’s short pad attack

Generally, The Franklin-Reiter attack is considered to be an artificial attack because why should

Bob send Alice the encryption of related messages? Coppersmith strengthened the attack and

proved an important result on padding. Coppersmith showed that if randomized padding

suggested by Hastad is used improperly then RSA encryption is not secure [7].

A naive random padding algorithm might pad a plaintext M by appending a few random bits to

one of the ends. The following attack points out the danger of such simplistic padding. Suppose

Bob sends a properly-padded encryption of M to Alice. An attacker, Eve, intercepts the

ciphertext and prevents it from reading its destination. Bob notice that Alice did not respond to

his message and decides to resend M to Alice. He randomly pads M and transmits the resulting

ciphertext. Eve now has two ciphertexts corresponding to two encryptions of the same message

using two different random pads.

The following theorem shows that although he does not know the pads used, Eve is able to

recover the plaintext.

Theorem Let (N, e) be a public RSA key where N is n-bits long. Set m = | n/e
2
|. Let M ϵ Z*N be

a message of length at most n - m bits. Define M1 = 2
m

 M + r1 and M2 = 2
m

 M + r2, where r1 and

r2 are distinct integers with 0 ≤ r1, r2 < 2
m

. If Eve is given (N, e) and the encryptions C1, C2 of

M1, M2 (but is not given r1 or r2), he can efficiently recover M.

4.5 Partial key exposure attack

This attack is possible when the public key is small. If an attacker exposed a fraction of the bits

of d, s/he can, on the assumption that the modulus is small, reconstruct the rest of d. Boneh,

Durfe, and Frankel [5] have made recent proof that d can be reconstructed as long as e < √ .

Theorem Let (N,d) be a private key with N is n bits long. Given the ⌈

⌉ least significant bits of

d, an attacker can reconstruct all of d in time linear in e log2 e.

Theorem (Coppersmith) Let N = pq. Given the n/4 least or most significant bits of p, one can

factor N efficiently. k integer exist such that: ed – k (N – p – q + 1) = 1. [1]

Since d < φ(N), then 0 < k <= e. Reducing N to ⁄ and setting q = N/p, we get:

(ed)p – kp(N – p + 1) + kN = p (mod ⁄) [1]

5 Implementation Attacks

The following attacks follow different class of attacks. Instead of attacking the underlying

structure of RSA function, these attacks target the implementation of RSA.

5.1 Timing attacks

Let us consider a smartcard that stores a private RSA key. An attacker may not be able to see its

content and expose the key. However, a clever attack found by Kocher [5] explains that the

precise time of decryption the card takes can help an attacker find or discover the private

decryption exponent d. Repeated squaring algorithm can be used for this attack which is

explained as follow [1]:

• Let d = dn dn-1 … d0 (binary of d)

• Set z = M and C = 1. For i=0 … n do:

• (1) if di = 1 set C = C . z mod N

• (2) z = z * z mod N

• C at the end has the value M
d
 mod N

5.2 Random Faults

To speed up the computation of M
d
 mod N, Implementations of RSA decryption and signatures

frequently use the Chinese Remainder Theorem. Instead of working modulo N, the signer Bob

first computes the signatures modulo p and q and then combines the result using the Chinese

Remainder Theorem. More accurately, Bob first computes

 Cp = M
dp

 mod p and Cq = M
dq

 mod q

Where dp = d mod (p -1) and dq = d mod (q -1).

then C = T1Cp + T2Cq (mod N)

where

 T1 = { 1 mod p and T2 = { 0 mod p

 0 mod q } 1 mod q}

The running time of the last CRT step is negligible compared to the two exponentiations. Note

that p and q are half the length of N. Since simple implementations of multiplication take

quadratic time, multiplication modulo p is four times faster than modulo N. Furthermore, dp is

half the length of d and consequently computing M
dp

 mod p is eight times faster than computing

M
dp

 mod N. Overall signature time is thus reduced by a factor of four. Many RSA

implementations use this method to improve performance.

6 Conclusion

Twenty years of research aimed to break the RSA produced some insightful attacks, but no

serious attack has been found yet. Currently, it appears that proper RSA implementation can

provide the required security in the digital world. Four main classes of RSA attacks were found:

(1) elementary attacks that show the misuse of the system, (2) low private exponent to show how

serious it gets when a low private is used, (3) low public exponent attacks, and (4) attacks on the

RSA implementation.

Proper use of RSA and properly padding a message before encryption can defeat the explained

attacks.

7 References

[1] D. Boneh, Twenty Years of Attacks on the RSA Cryptosystm

[2] M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Transactions on Information Theory,

36:553-558, 1990

[3] http://www.untruth.org/~josh/school/phd/seminar/fall-2010-coppersmiths-theorem/coppersmiths-

theorem-combined.pdf

[4] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low-exponent RSA with related messages. In

EUROCRYPT '96, volume1070 of Lecture Notes in Computer Science, pages 1-9. Springer-Verlag,

1996.

[5] P. Kocher. Timing attacks on implementations of Die-Hellman, RSA, DSS, and other systems. In

CRYPTO '96, volume 1109 of Lecture Notes in Computer Science, pages 104-113.Springer-Verlag,

1996.

[6] http://www.cc.gatech.edu/~cpeikert/lic13/lec04.pdf

[7] http://en.wikipedia.org/wiki/Coppersmith's_Attack

