
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Object-Oriented Design &
Patterns
2nd edition

Cay S. Horstmann

Chapter 3: Guidelines for Class
Design
CPSC 2100

Software Design and Development

1

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Chapter Topics

• An overview of the Date classes in the Java library.
• Designing a Day class.
• Three implementations of the Day class.
• The importance of encapsulation.
• Analyzing the quality of an interface.
• Programming by contract.
• Unit testing.

2

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Chapter Objective
• How to find classes for solving a practical programming

problem.
• Take very different “bottom up” point of view, and

explore how to write a single class well.

3

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Date Classes in Standard Library
• Many programs manipulate dates such as

"Saturday, February 3, 2001"
• Date class (java.util):

Date now = new Date();
// constructs current date/time

System.out.println(now.toString());
// prints date such as
// Sat Feb 03 16:34:10 PST 2001

4

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Methods of the Date class
Method Description
boolean after(Date other) Tests if this date is after the specified date

boolean before(Date other) Tests if this date is before the specified
date

int compareTo(Date other) Tells which date came before the other

long getTime() Returns milliseconds since the epoch
(1970-01-01 00:00:00 GMT)

void setTime(long n) Sets the date to the given number of
milliseconds since the epoch

5

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Methods of the Date class
• Date class encapsulates point in time.
• Date class methods supply total ordering on Date

objects.
• Convert to scalar time measure.

Points in time:

6

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

The GregorianCalender Class
• The Date class doesn't measure months, weekdays, etc.
• That's the job of a calendar.
• A calendar assigns a name to a point in time.
• Many calendars in use:

o Gregorian.
o Contemporary: Hebrew, Arabic, Chinese.
o Historical: French Revolutionary, Mayan.

7

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Date Handling in the Java Library

8

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Methods of the Calendar class

9

Method Description
int get(int field) Gets a field value; field is a Calendar class

constant such as YEAR, MONTH, DATE,
HOUR, MINUTE, SECOND

void set(int field, int value) Sets a field value
void add(int field, int increment) Adds to a field value
Date getTime() Get the Date value
void setTime(Date d) Converts from a Date value

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Designing a Day Class
• Custom class, for teaching/learning purpose.
• Use the standard library classes, not this class, in

your own programs.
• Day encapsulates a day in a fixed location.
• No time, no time zone.
• Use Gregorian calendar.

10

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Designing a Day Class
• Answer questions such as:

o How many days are there between now and the end of
the year?

o What day is 100 days from now?

11

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Designing a Day Class

12

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Designing a Day Class
• daysFrom computes number of days between two days:

int n = today.daysFrom(birthday);

• addDays computes a day that is some days away from a
given day:

Day later = today.addDays(999);

13

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Designing a Day Class
• Constructor Date(int year, int month, int date)

• getYear, getMonth, getDate acccesors
• Our Day class has the following public interface.

DayTester.java

14

code%5CpublicDay%5CDay.java.html

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Implementing a Day Class
• Straightforward implementation:

private int year;
private int month;
private int date;

public Day(int aYear, int aMonth, int aDate)
{

year = aYear;

month = aMonth;

date = aDate;

}

public int getYear()
{

return year;

}

.....

15

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Implementing a Day Class
• addDays/daysBetween tedious to implement:

Ø April, June, September, November have 30 days.

Ø February has 28 days, except in leap years it has 29 days.

Ø All other months have 31 days.

Ø Leap years are divisible by 4, except after 1582, years divisible
by 100 but not 400 are not leap years.

Ø There is no year 0; year 1 is preceded by year -1.

Ø In the switchover to the Gregorian calendar, ten days were
dropped: October 15, 1582 is preceded by October 4.

16

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Implementing a Day Class
First implementation:

Day.java

• Note private helper methods.
• Computations are inefficient:

increment/decrement one day at a time.

17

file://localhost/Volumes/KINGSTON/Fall%202013/2-%20Lecture%20Notes/Chapter%2003/code/day1/Day.java.html

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013 18

Private Helper Methods

Helper	methods:
1. Clutter	up	the	public	interface.
2. Require	special	protocol	or	calling	order.
3. Depend	on	a	particular	implementation.

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Implementation of Date Class
Second implementation:
• For greater efficiency, use Julian day number.
• Used in astronomy.
• Number of days since Jan. 1, 4713 BCE.

Example: May 23, 1968 = Julian Day 2,440,000.
• Greatly simplifies date arithmetic.

Day.java

19

code%5Cday2%5CDay.java.html

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013 20

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Implementation of Date Class
Third implementation:
• Second implementation: constructor, accessors are

inefficient.
• Best of both worlds: Cache known Julian, y/m/d values.
- Complex and require more storage.

Day.java

• Which implementation is best?

21

code%5Cday3%5CDay.java.html

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

The Importance of Encapsulation
• Even a simple class can benefit from different

implementations.
• Users are unaware of implementation.

public class Day

{

...

public int year;

public int month;
public int date;

...

}

• Public instance variables would have blocked
improvement.

22

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Assessors and Mutators
• Mutator: Changes object state.
• Accessor: Reads object state without changing it.

• Day class has no mutators!
• Class without mutators is immutable.
• String is immutable.
• Date and GregorianCalendar are mutable.

23

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Don’t Supply a Mutator for every Accessor
• Day has getYear, getMonth, getDate accessors.
• Day does not have setYear, setMonth, setDate mutators.
• These mutators would not work well

Day deadline = new Day(2001, 1, 31);

deadline.setMonth(2);

Day deadline = new Day(2001, 2, 28);

deadline.setDate(31);

• Immutability is useful.

24

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Sharing Mutable References
• References to immutable objects can be freely shared.
• Don't share mutable references.

class Employee
{

. . .
public String getName() { return name; }
public double getSalary() { return salary; }
public Date getHireDate() { return hireDate; }

private String name;
private double salary;
private Date hireDate;

}

25

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Sharing Mutable References

• Pitfall:
Employee harry = . . .;
Date d = harry.getHireDate();
d.setTime(t); // changes Harry's state!!!

26

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Sharing Mutable References
• Remedy: Use clone

public Date getHireDate()
{

return (Date)hireDate.clone();
}

27

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Final Instance Fields
• Good idea to mark immutable instance fields as final.

private final int day;

• final object reference can still refer to mutating
object.

private final ArrayList elements;

• elements can't refer to another array list.
• The contents of the array list can change.

28

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Separating Accessors and Mutators
• If we call a method to access an object, we don't

expect the object to mutate.

• Rule of thumb:
Mutators should return void

• Example: BankAccount (getBalance).

• Example of violation:
Scanner in = . . .;
String s = in.next();

• Yields current token and advances iteration.
• What if I want to read the current token again?

29

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Separating Accessors and Mutators
• Better interface:

String getCurrent();
void next();

• Refine rule of thumb:
o Mutators can return a convenience value, provided there is

also an accessor to get the same value.

30

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Side Effects
• Side effect of a method: any observable state change.

• Mutator: changes implicit parameter.

• Other side effects: change to
o explicit parameter.
o static fields.

• Avoid these side effects--they confuse users.

• Good example, no side effect beyond implicit parameter.
a.addAll(b);
mutates a but not b

31

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Side Effects
• Date formatting (basic):

SimpleDateFormat formatter = . . .;
String dateString = "January 11, 2012";
Date d = formatter.parse(dateString);

• Advanced:
FieldPosition position = . . .;
Date d = formatter.parse(dateString, position);

• Side effect: updates position parameter.

• Design could be better: add position to formatter state.
• Rule of thumb: Minimize side effects beyond implicit

parameter.

32

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Law of Demeter
• Example: Mail system in chapter 2

Mailbox currentMailbox = mailSystem.findMailbox(...);

return Mailbox object.
Connection add remove message from Mailbox.

• Breaks encapsulation.

• Suppose future version of MailSystem uses a database.

33

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Law of Demeter
• The law: A method should only use:

o instance fields of its class.
o Parameters.
o objects that it constructs with new.

• Shouldn't use an object that is returned from a method call.
• Remedy in mail system: Delegate mailbox methods to mail

system.
mailSystem.getCurrentMessage(int mailboxNumber);
mailSystem.addMessage(int mailboxNumber, Message msg);
. . .

34

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Quality of Class Interface
• Programmers using the class.
• Criteria:

o Cohesion
o Completeness
o Convenience
o Clarity
o Consistency

35

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Cohesion
• Class describes a single abstraction.
• Methods should be related to the single abstraction.
• Bad example:

public class Mailbox
{

public addMessage(Message aMessage) { ... }
public Message getCurrentMessage() { ... }
public Message removeCurrentMessage() { ... }
public void processCommand(String command) { ... }
...

}

36

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Completeness
• Support operations that are well-defined on abstraction.
• Potentially bad example: Date

Date start = new Date();
// do some work
Date end = new Date();

Ø How many milliseconds have elapsed?
No such operation in Date class.
Does it fall outside the responsibility?

Ø After all, we have before, after, getTime.

37

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Convenience
• A good interface makes all tasks possible . . . and

common tasks simple.
• Bad example: Reading from System.in before Java 5.0

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

• Why doesn't System.in have a readLine method?
• After all, System.out has println.
• Scanner class fixes inconvenience.

38

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Clarity
• Confused programmers write buggy code.
• Bad example: Removing elements from LinkedList.
• Reminder: Standard linked list class.

LinkedList<String> countries = new LinkedList<String>();
countries.add("A");
countries.add("B");
countries.add("C");

• Iterate through list:
ListIterator<String> iterator = countries.listIterator();
while (iterator.hasNext())

System.out.println(iterator.next());

39

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Clarity
• Iterator between elements.
• Like blinking caret in word processor.
• add adds to the left of iterator (like word processor):
• Add X before B:

ListIterator<String> iterator = countries.listIterator(); //|ABC
iterator.next(); // A|BC
iterator.add(”X”); // AX|BC

40

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Clarity
• To remove first two elements, you can't just "backspace“

• remove does not remove element to the left of iterator.

• From API documentation:
Removes from the list the last element that was returned
by next or previous. This call can only be made once per
call to next or previous. It can be made only if add has
not been called after the last call to next or
previous.

41

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Consistency
• Related features of a class should have matching

o names
o parameters
o return values
o behavior

• Bad example:
new GregorianCalendar(year, month - 1, day)

- month between 0 and 11
- day between 1 and 31

42

not	consistent

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Consistency
• Bad example: String class

s.equals(t) / s.equalsIgnoreCase(t)

• But
boolean regionMatches(int toffset,

String other, int ooffset, int len)

boolean regionMatches(boolean ignoreCase, int
toffset, String other, int ooffset, int len)

• Why not regionMatchesIgnoreCase?
• Very common problem in student code.

43

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Programming by Contract
• Spell out responsibilities

o of caller.
o of implementor.

• Increase reliability.

• Increase efficiency.

44

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Preconditions
• Caller attempts to remove message from empty

MessageQueue.

• What should happen?

o MessageQueue can declare this as an error.

o MessageQueue can tolerate call and return dummy value.

• What is better?

45

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Preconditions
• Excessive error checking is costly.

• Returning dummy values can complicate testing.

• Contract metaphor
o Service provider must specify preconditions.
o If precondition is fulfilled, service provider must work

correctly.
o Otherwise, service provider can do anything.

• When precondition fails, service provider may
o throw exception
o return false answer
o corrupt data

46

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Preconditions
/**
Remove message at head
@return the message at the head
@precondition size() > 0
*/
Message remove()
{

return elements.remove(0);
}

• What happens if precondition not fulfilled?
• IndexOutOfBoundsException
• Other implementation may have different behavior

47

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Preconditions
• In circular array implementation, failure of remove

precondition corrupts queue!

• Bounded queue needs precondition for add

• Naive approach:
@precondition size() < elements.length

• Precondition should be checkable by caller
• Better:

@precondition size() < getCapacity()

48

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Assertions
• Mechanism for warning programmers.
• Can be turned off after testing.
• Useful for warning programmers about precondition

failure.
• Syntax:

assert condition;
assert condition : explanation;

• Throws AssertionError if condition false and checking
enabled.

49

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Assertions
public Message remove()
{

assert count > 0 : "violated precondition size() > 0";
Message r = elements[head];
. . .

}

• During testing, run with
java -enableassertions MyProg

• Or shorter, java -ea

50

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Exceptions in the Contract
/**

. . .
@throws NoSuchElementException if queue is empty

*/
public Message remove()
{

if (count == 0)
throw new NoSuchElementException();
Message r = elements[head];
. . .

}

• Exception throw part of the contract.
• Caller can rely on behavior.
• Exception throw not result of precondition violation.
• This method has no precondition.

51

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Postconditions
• Conditions that the service provider guarantees.
• Every method promises description, @return
• Sometimes, can assert additional useful condition.
• Example: add method

@postcondition size() > 0

• Postcondition of one call can imply precondition of
another:

q.add(m1);
m2 = q.remove();

52

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Class Invariants
• Condition that is:

o true after every constructor.
o preserved by every method.

(if it's true before the call, it's again true
afterwards).

• Useful for checking validity of operations.

53

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Unit Testing
• Unit test = test of a single class.
• Design test cases during implementation.
• Run tests after every implementation change.
• When you find a bug, add a test case that catches it.

54

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

JUnit

55

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

JUnit
• Convention: Test class name = tested class name + Test
• Test methods start with test

import junit.framework.*;
public class DayTest extends TestCase
{

public void testAdd() { ... }
public void testDaysBetween() { ... }
. . .

}

56

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

JUnit
• Each test case ends with assertTrue method

(or another JUnit assertion method such as
assertEquals).

• Test framework catches assertion failures.

public void testAdd()
{

Day d1 = new Day(1970, 1, 1);
int n = 1000;
Day d2 = d1.addDays(n);
assertTrue(d2.daysFrom(d1) == n);

}

57

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013 58

Annotation Description

@Test	public	void	method() The	annotation	@Test	identifies	that	a	
method	is	a	test	method.

@Before	public	void	method() Will	execute	the	method	before	each	test.	
This	method	can	prepare	the	test	
environment	(e.g.	read	input	data,	
initialize	the	class).

@After	public	void	method() Will	execute	the	method	after	each	test.	
This	method	can	cleanup	the	test	
environment	(e.g.	delete	temporary	data,	
restore	defaults).

@BeforeClass public	void	method() Will	execute	the	method	once,	before	the	
start	of	all	tests.	This	can	be	used	to	
perform	time	intensive	activities,	for	
example	to	connect	to	a	database.

JUnit 4.x Annotations (1/2)

http://www.vogella.com/articles/JUnit/article.html

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

JUnit 4.x Annotations (2/2)

59

Annotation Description

@AfterClass public	void	method() Will	execute	the	method	once,	after	all	tests	
have	finished.	This	can	be	used	to	perform	
clean-up activities,	for	example	to	
disconnect	from	a	database.

@Ignore Will	ignore	the	test	method.	This	is	useful	
when	the	underlying	code	has	been	
changed	and	the	test	case	has	not	yet	been	
adapted.	Or	if	the	execution	time	of	this	
test	is	too	long	to	be	included.

@Test	(expected	=	Exception.class) Fails,	if	the	method	does	not	throw	the	
named	exception.

@Test(timeout=100) Fails,	if	the	method	takes	longer	than	100	
milliseconds.

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Assert Statements (1/2)
Statement Description

fail(String) Let the method fail. Might be used to
check that a certain part of the code is not
reached. Or to have failing test before the
test code is implemented.

assertTrue(true) / assertTrue(false) Will always be true / false. Can be used to
predefine a test result, if the test is not yet
implemented.

assertTrue([message], boolean condition) Checks that the boolean condition is true.

assertsEquals([String message],
expected, actual)

Tests that two values are the same. Note:
for arrays the reference is checked not the
content of the arrays.

assertsEquals([String message],
expected, actual, tolerance)

Test that float or double values match.
The tolerance is the number of decimals
which must be the same.

60

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013 61

Statement Description

assertNull([message],	object) Checks	that	the	object	is	null.

assertNotNull([message],	object) Checks	that	the	object	is	not	null.

assertSame([String],	expected,	actual) Checks	that	both	variables	refer	to	the	
same	object.

assertNotSame([String],	expected,	actual) Checks	that	both	variables	refer	to	
different	objects.

assertNull([message],	object) Checks	that	the	object	is	null.

Assert Statements (2/2)

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

End of Chapter 3

62

