
Object-Oriented Design &
Patterns

2nd edition
Cay S. Horstmann

Chapter 2: The Object-Oriented
Design Process

CPSC 2100
Software Design and Development

1

Chapter Objective
In this chapter we introduce the main topic of the book;
object-oriented design.

The chapter introduces a miniature version of a typical
object-oriented design methodology that can guide you
from the functional specifications of a program to its
implementation.

You will see how to find and document classes and the
relationships between them, using CRC cards and UML
Diagrams.

2
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Chapter Topics
• From Problem to Code.
• The Object and Class Concepts.
• Identifying Classes.
• Identifying Responsibilities.
• Relationships Between Classes.
• Use Cases.
• CRC Cards.
• UML Class Diagrams.
• Sequence Diagrams.
• State Diagrams.
• Using javadoc for Design Documentation.
• Case Study: A Voice Mail System.

3
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

From Problem to Code

• Three Phases:
• Analysis.
• Design.
• Implementation.

• Case Study: Voice Mail System

4
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Analysis Phase
• Functional Specification:

o Completely defines the tasks to be performed.
o Free from internal contradictions.
o Readable both by domain experts and software

developers.
o Reviewable by diverse interested parties.
o Testable against reality.

• Answers the questions:
o who will use the system?
o What the system will do?
o Where and when it will be used?

5
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Analysis Phase
Example:
• Writing a word-processing program.

o Fonts, footnotes, multiple columns, document sections.
o Interaction of those features.

• User manual.
o Precisely worded to remove as much ambiguity as possible.

• Use case ð describe the behavior of the system.
is a description of a sequence of actions that
yields a benefit for a user of a system.

• What needs to be done, not how it should be done.

6
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Analysis Phase
This phase has three steps:

1. Develop an analysis strategy
• Model the current system (as-is system)
• Formulate the new system (to-be system)

2. Gather the requirements (through interviews or
questionnaires)
• Develop a system concept
• Create a business model to represent:

o Business data
o Business processes

3. Develop a system proposal

7
System Analysis and Design with UML 4th edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Design Phase
• Goals:

o Identify classes.
o Identify behavior of classes.
o Identify relationships among classes.

8
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Design Phase
• Artifacts:

o Textual description of classes and most important
responsibilities (key methods).

o Diagrams of class relationships.
o Diagrams of important usage scenarios.
o State diagrams for objects whose behaviors is highly

state-dependent.

• Typically, the design phase is more time-consuming than the
actual programming.

• A good design greatly reduces the time required for
implementation and testing.

9
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Design Phase
• The design phase has four steps:

1. Develop a design strategy.

2. Design architecture and interfaces.

3. Develop databases and file specifications.

4. Develop the program design to specify:

• What programs to write

• What each program will do

10
System Analysis and Design with UML 4th edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Implementation Phase

This phase has three steps:

1. Construct the system

• Build it (write the programming code)

• Test it

2. Install system

• Train the users
3. Support the system (maintenance)

11
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Object-Oriented Systems
Analysis and Design

• Use-case driven
o Use-cases define the behavior of a system
o Each use-case focuses on one business process

• Architecture centric:
o Functional (external) view: focuses on the
user’s perspective.

o Static (structural) view: focuses on
attributes, methods, classes & relationships.

o Dynamic (behavioral) view: focuses on messages
between classes and resulting behaviors.

12
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Object-Oriented Systems
Analysis and Design

• Benefits of OOSAD
o Break a complex system into smaller, more manageable

modules.
o Work on modules individually.
o See the system more realistically—as the users do.

13
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

The Unified Process
• A specific methodology that maps out when and how to

use the various UML techniques for object-oriented
analysis and design.

• A two-dimensional process consisting of phases and
workflows
o Phases are time periods in development.
o Workflows are the tasks that occur in each phase.
o Activities in both phases & workflows will overlap.

14
System Analysis and Design with UML 4th edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

The Unified Process

15
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Unified Modeling Language (UML)

• Provides a common vocabulary of object-oriented terms
and diagramming techniques rich enough to model any
systems development project from analysis through
implementation.

• Version 2.0 has 14 diagrams in 2 major groups:
o Structure diagrams
o Behavior diagrams

16
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

UML Structure Diagrams

• Represent the data and static relationships in an
information system
o Class
o Object
o Package
o Deployment
o Component
o Composite structure

17
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

UML Behavior Diagrams

• Depict the dynamic relationships among the instances or
objects that represent the business information system
– Use-case diagrams
– Activity
– Sequence
– Communication
– Interaction overview
– Timing
– Behavior state machine
– Protocol state machine,

18
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

The Object and Class Concept
• Object: Three characteristic concepts:

1. State: the condition of an object at a certain stage
in its lifetime.

2. Behavior: what an object does of capable of doing.
3. Identity: what distinguishes it from other objects.

Example: mailbox in a voice mail system.

• Class: Collection of similar objects.

• Methods & Messages
o Methods: the behavior of a class
o Messages: information sent to an object to trigger a

method (procedure call)

19
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Identifying Classes
• Rule of thumb: Look for nouns in problem description

o Mailbox.
o Message.
o User.
o Passcode.
o Extension.
o Menu.

• Focus on concepts, not implementation.
o MessageQueue stores messages.
o Don't worry yet how the queue is implemented.

20
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Categories of Classes
• Tangible Things.

o Mailbox class, Message class, Document class, . . .

• Agents.
o Scanner class.

• Events and Transactions.
o MouseEvent class.

• Users and Roles.
o Administrator class, Reviewer class.

• Systems.
o MailSystem class.

• System interfaces and devices.
o File class.

• Foundational Classes.
o String class, Date class, . . .

21
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Identifying Responsibilities
• Rule of thumb: Look for verbs in problem description.

Example: Behavior of MessageQueue:
• Add message to tail.
• Remove message from head.
• Test whether queue is empty.

22
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Responsibilities
• OO Principle: Every operation is the responsibility of

a single class.

Example: Add message to mailbox
• Who is responsible: Message or Mailbox?

23
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Relationships Between Classes
• Dependency ("uses")
• Aggregation ("has")
• Inheritance ("is")

24
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Dependency Relationship
• C depends on D: Method of C manipulates objects of D.

Example: Mailbox depends on Message
• If C doesn't use D, then C can be developed without

knowing about D.

25
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Coupling
• One important design goal is to Minimize dependency

(reduce coupling).

Example:
public class Message
{

public void print()
{

System.out.println(text);
}

}

• Removes dependence on System, PrintStream.
public String getText() // can print anywhere

26
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Aggregation
• Object of a class contains objects of another class.

• Example: MessageQueue aggregates Messages.
o MessageQueue has a Message.

• Example: Mailbox aggregates MessageQueue
o Mailbox has a MessageQueue.

• Implemented through instance fields.

27
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Multiplicities
• 1:1 or 1:0...1 relationship:

public class Mailbox
{

. . .
private Greeting myGreeting;

}

• 1:n relationship:
public class MessageQueue
{

. . .
private ArrayList<Message> elements;

}

28
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Inheritance
• More general class = superclass

• More specialized class = subclass

• Subclass supports all method interfaces of superclass
(but implementations may differ).

• Subclass may have added methods, added state.

• Subclass inherits from superclass.

• Example: ForwardedMessage inherits from Message.
o ForwardMessage is a Message

• Example: Greeting does not inherit from Message (Can't
store greetings in mailbox).

29
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Exercise
A department store has a bridal registry. This registry
keeps information about the customer, the products that
the store carries, and the products each customer
register for. Customers typically register for a large
number of products and many customers register for the
same products.

30
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Exercise
Whenever new patient are seen for the first time, they
complete a patient information form that asks their name,
address, phone number and insurance carrier, which are
stored in the patient information file. Patients can be
signed up with only one carrier, but they must be signed
up to be seen by a doctor. Each time a patient visits the
doctor, an insurance claim is sent to the carrier for
payment. The claim must contain information about the
visit, such as the date, purpose, and cost. It would be
possible for a patient to submit two claims on the same
day.

31
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Business Process Modeling
• Functional models: describe business processes and the

interaction of an information system with its
environments.

• Business process models describe the activities that
collectively support a business process.

• A very powerful tool for communicating the analyst’s
current understanding of the requirements with the
user.

• Activity diagrams are used to logically modeling the
behavior in a business process and workflows.

32
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Activity Diagram Syntax

33

• Action or Activity
– Represents action or set of actions

• Control Flow
– Shows sequence of execution

• Initial Node
– The beginning of a set of actions

• Final Node
– Stops all flows in an activity

• Decision Node
– Represents a test condition

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sample Activity Diagram

34
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Guidelines for Activity Diagrams
1. Set the scope of the activity being modeled.

2. Identify the activities, control flows, and object
flows that occur between the activities.

3. Identify any decisions that are part of the process
being modeled.

4. Identify potential parallelism in the process.

5. Draw the activity diagram.

35
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Cases
• A use case illustrates the activities that are

performed by users of a system.

• Describe basic functions of the system
o What the user can do
o How the system responds

• Use cases are building blocks for continued design
activities.

• Use case name should be a verb-noun phrase (e.g., Make
Appointment).

36
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Types of Use Cases

37

Pu
rp

os
e

Amount of information

Overview Detail

Es
se

nt
ia

l High-level overview of
issues essential to
understanding required
functionality

Detailed description of issues
essential to understanding
required functionality

Re
al

High-level overview of a
specific set of steps
performed on the real
system once implemented

Detailed description of a
specific set of steps performed
on the real system once
implemented

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case Elements: Relationships
• Association

documents the communication between the use case and the
actors that use the use case.

• Extend
represents the extension of the functionality of the use
case to incorporate optional behavior.

• Include
shows the mandatory inclusion of another use case.

• Generalization
allows use cases to support inheritance

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 38

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case Elements: Flows
• Normal Flows

include only those steps that normally are executed in a
use case.

• Sub-Flows
the normal flow of events decomposed to keep the normal
flow of events as simple as possible.

• Alternate or Exceptional Flows
flows that do happen but are not considered to be the
norm.

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 39

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

v
• Sample use case

description

40

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use-Case Diagrams

42
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case Diagram Syntax
• Actor

– person or system that derives benefit from
and is external to the subject

• Use Case
– Represents a major piece of system

functionality

• Association Relationship
• Include Relationship
• Extend Relationship
• Generalization Relationship

<<extends>>

<<includes>>

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 43

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sample Use Case

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 44

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Creating Use-Case
Descriptions

and Use-Case Diagrams

45
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Identify the Major Use Cases
1. Review the activity diagram.

2. Find the subject’s boundaries.

3. Identify the primary actors and their goals.

4. Identify and write the overviews of the major use
cases for the above.

5. Carefully review the current use cases. Revise as
needed.

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 46

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Extend the Major Use Cases
6. Choose one of the use cases to expand.

7. Start filling in the details of the chosen use case.

8. Write the normal flow of events of the use case.

9. If the normal flow of events is too complex or long,
decompose into sub flows.

10. List the possible alternate or exceptional flows.

11. For each alternate or exceptional flow, list how the
actor and/or system should react.

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 47

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Confirm the Major Use Cases
12. Carefully review the current set of use cases. Revise

as needed.

13. Start at the top again.

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 48

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Create the Use Case Diagram
1. Draw the subject boundary.

2. Place the use cases on the diagram.

3. Place the actors on the diagram.

4. Draw the associations.

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden 49

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Exercise
A. Create an activity diagram and a set of detail use

case descriptions for the process of buying glasses
from the viewpoint of the patient, but do not bother
to identify the flow of events within each use case.
The first step is to see an eye doctor who will give
you a prescription. Once you have a prescription, you
go to a glasses store, where you select your frames
and place the order for your glasses. Once the glasses
have been made, you return to the store for a fitting
and pay for the glasses.

B. Draw a use case diagram for the process of buying
glasses.

50
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Structural Model
• A formal way of representing the objects that are used

and created by a business system
o People
o Places
o Things

• Main goal: to discover the key data contained in the
problem domain and to build a structural model of the
objects.

• Typical structural models:
o Class Responsibility Collaboration (CRC) cards
o Class (and Object) diagrams

51
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Classes, Attributes, and Operations

52

• Classes
Templates for instances of
people, places, or things

• Attributes
Properties that describe the
state of an instance of a class
(an object)

• Operations
Actions or functions that a
class can perform

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Relationships
• Describe how classes relate to one another

• Three basic types in UML
1. Generalization

Enables inheritance of attributes and operations

2. Aggregation
Relates parts to wholes

3. Association
Miscellaneous relationships between classes

53
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Responsibilities and Collaborations
• Responsibilities

o Knowing: things that an instance of a class must be
capable of knowing.

o Doing: things that an instance of a class must be capable
of doing.

• Collaboration
o Objects working together to service a request.

54
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Front-Side of a CRC Card

55
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Back-Side of a CRC Card

56
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Elements of a Class Diagram

57
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Attribute Visibility
• Attribute visibility can be specified in the class

diagram
o Public attributes (+) are visible to all classes
o Private attributes (-) are visible only to an instance of

the class in which they are defined
o Protected attributes (#) are like private attributes, but

are also visible to descendant classes

• Visibility helps restrict access to the attributes and
thus ensure consistency and integrity

58
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Operations
• Constructor

o Creates object

• Query
o Makes information about state available

• Update
o Changes values of some or all attributes

59
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Class Diagrams
• Rectangle with class name.
• Optional compartments

o Attributes
• text
• text : String

o Methods
• getMessage()
• getMessage(index : int) : Message

60
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Class Relationships

61
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Multiplicities
“has” relationship (Aggregation)

• any number (0 or more): *
• one or more: 1..*
• zero or one: 0..1
• exactly one: 1

62
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Composition

63

• Special form of aggregation.
• Contained objects don’t exist outside container.
• Example: Message queues permanently contained in mail

box.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Association
• Some designers don’t like aggregation – implementation

specific.

• More general association relationship.
• Association can have roles .

• Some associations are bidirectional. Can navigate from
either class to the other.

64
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

More on Association
• Some associations are directed.

Example: Message doesn't know about message queue
containing it.

65
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Interface Types
• Interface type describes a set of methods.
• No implementation, no state.
• Class implements interface if it implements its

methods.
• In UML, use stereotype «interface»

66
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Multiplicities

67

Department Boss

Employee Child

Boss Employee

1 1

1 0..*

1 1..*

Exactly one:
A department has one and
only one boss

Zero or more:
An employee has zero to
many children

One or more:
A boss is responsible for
one or more employees

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

68

Employee Spouse

Employee Vacation

Employee Committee

1 0..1

1 2..4

1 1..3, 5

Zero or one:
An employee can be
married to 0 or 1 spouse

Specified range:
An employee can take 2 to
4 vacations each year

Multiple disjoint ranges:
An employee can be in 1 to
3 or 5 committees

System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sample Class Diagram

69
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Tips
• Use UML to inform, not to impress.
• Don't draw a single monster diagram.
• Each diagram must have a specific purpose.
• Omit inessential details.

70
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Object Diagram

71
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Exercise
• Draw a class diagram for the following classes.

Consider that the entities represent a system for a
patient billing system. Include only the attributes
that would be appropriate for this context.

• Patient:
o (age, name, address, insurance carrier)

• Insurance carrier:
o (name, number of patients on plan, address, phone)

• Doctor:
o (specialty, provider identification number, phone, name).

• Create an Object diagram based on the class diagram you
drew before.

72
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Exercise
• A university is interested in designing a system that

will track its researchers. Information of interest
includes: researcher name, title, position; university
name, location, enrollment; and research interests.
Researchers are associated with one institution, and
each researcher has several research interests.

• Draw a class diagram.
• Create an object diagram based on the class diagram.
• Create a CRC card for the Researcher class.

73
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Behavioral Modeling
• Systems have static and dynamic characteristics

o Structural models describe the static aspects of the
system.

o Behavioral models describe the dynamics and interactions
of the system and its components.

• Behavioral models describe how the classes described in
the structural models interact in support of the use
cases.

74
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Interaction Diagram Components
• Objects

an instantiation of a class.

• Operations
the behaviors of an instance of a class.

• Messages
information sent to objects to tell them to execute one of
their behaviors.

75
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sequence Diagrams
• Illustrate the objects that participate in a use-case.

• Show the messages that pass between objects for a
particular use-case.

76
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sequence Diagram Syntax

77
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

More Sequence Diagram Syntax

78
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sample Sequence Diagram

79
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Steps to build Sequence Diagrams
1. Set the context.
2. Identify which objects will participate.
3. Set the lifeline for each object.
4. Lay out the messages from top to bottom of the

diagram based on the order in which they are sent.
5. Add execution occurrence to each object‘s lifeline.
6. Validate the sequence diagram.

80
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Components of State Machines
• States

values of an object’s attributes at a point in time

• Events
change the values of the object’s attributes

• Transitions
movement of an object from one state to another

• Actions
atomic, non-decomposable processes

• Activities
non-atomic, decomposable processes

81
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

State Machine Syntax

82
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

State Machine Example

83
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Steps to Build a State Machine
1. Set the context.
2. Identify the initial, final, and stable states of the

object.
3. Determine the order in which the object will pass

through the stable states.
4. Identify the events, actions, and guard conditions

associated with the transitions.
5. Validate the behavioral state machine.

84
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Behavioral State Machines
• A dynamic model that shows the different states through

which a single object passes during its life in
response to events, along with its responses and
actions

• Typically not used for all objects
o Just for complex ones

85
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Exercise
• Create a sequence diagram for the following scenario

description:
When members join the health club, they pay a fee

for a certain length of time. The club wants to mail
out remainder letters to members asking them to renew
their memberships one month before their memberships
expire. About half of the members do not renew their
memberships. These members are sent follow-up surveys
to complete asking why they decided not to renew so
that the club can learn how to increase retention. If
the member did not renew because of cost, a special
discount is offered to that customer. Typically, 25
percent of accounts are reactivated because of this
offer.

86
System Analysis and Design with UML 3rd edition
Dennis, Wixon and Tegarden

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Unified Modeling Language (UML)
• UML is a modeling language for object oriented system

analysis, design, and deployment. UML is not a product,
nor is a process or methodology.

• UML support multiple views of same system, with varying
degrees of detail or generalization as needed:
1. Owner’s view: what the owner wants, or the

conceptual view of the system.
2. Architect’s view: how the architect conceives the

solution, of the logical view of the system.
3. Builder’s view: the blueprints for building the

product, or the physical view of the system.

87
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Cases
• Analysis technique.

• Each use case focuses on a specific scenario.

• Use case = sequence of actions.
• Action = interaction between actor and computer system.

o Leave a message.
o Retrieve a message.

• Each action yields a result.
• Each result has a value to one of the actors.
• Use variations for exceptional situations.

o Message queue is full.
o Wrong password.

88
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sample Use Case
1. Caller dials main number of voice mail system.
2. System speaks prompt

Enter mailbox number followed by #.

3. User types extension number.
4. System speaks

You have reached mailbox xxxx. Please leave a message
now.

5. Caller speaks message.
6. Caller hangs up.
7. System places message in recipient's mailbox.

89
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sample Use Case -- Variations
• Variation #1

1.1. In step 3, user enters invalid extension number.
1.2. Voice mail system speaks:

You have typed an invalid mailbox number.
1.3. Continue with step 2.

• Variation #2
2.1. After step 4, caller hangs up instead of speaking
message.
2.3. Voice mail system discards empty message.

90
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

CRC Cards
• CRC cards describe Classes, Responsibilities,

Collaborators (dependent classes).

• Developed by Beck and Cunningham.

• Use an index card for each class.

• Class name on top of card.

• Responsibilities on left.

• Collaborators on right.

91
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

CRC Card Example

92

• Responsibilities should be high level.
• 1 - 3 responsibilities per card.
• Collaborators are for the class, not for each

responsibility.
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Walkthroughs
• Use case: "Leave a message“

• Caller connects to voice mail system.
• Caller dials extension number.
• "Someone" must locate mailbox.
• Neither Mailbox nor Message can do this.

New class: MailSystem
• Responsibility: manage mailboxes.

93
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Walkthrough Example

94
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sequence Diagrams
Object Diagrams

• Each diagram shows dynamics of scenario.
• Interactions between objects.
• Object diagram: class name underlined

o objectName : ClassName (full description).
o objectName
o : ClassName

• Lifelines.
• Activation bars.

95
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sequence Diagram - Self call

96
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Object Construction

97
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

State Diagrams
• Use for classes whose objects have interesting states

98
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Using javadoc for Design Documentation

• Recommendation: Use Javadoc comments.
• Leave methods blank

/**
Adds a message to the end of the new messages.
@param aMessage a message

*/
public void addMessage(Message aMessage)
{

}

• Don't compile file, just run Javadoc.
• Makes a good starting point for code later.

99
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Case Study
A Voice Mail System

• Represent voice as text entered from the keyboard.

• 1 2 ... 0 # on a single line means key.
• H on a single line means "hang up“.
• All other inputs mean voice.

100
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Reach an Extension

1. User dials main number of voice mail system.
2. System speaks prompt

Enter mailbox number followed by #.
3. User types extension number.
4. System speaks

You have reached mailbox xxxx. Please leave a
message now.

101
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Leave a Message

1. Caller carries out Reach an Extension.
2. Caller speaks message.
3. Caller hangs up.
4. System places message in mailbox.

102
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Log in

1. Mailbox owner carries out Reach an Extension.
2. Mailbox owner types password and #
3. System plays mailbox menu:

Enter 1 to retrieve your messages.
Enter 2 to change your passcode.
Enter 3 to change your greeting.

103
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Retrieve Messages

1. Mailbox owner carries out Log in.
2. Mailbox owner selects "retrieve messages" menu option.
3. System plays message menu:

Press 1 to listen to the current message
Press 2 to delete the current message
Press 3 to save the current message
Press 4 to return to the mailbox menu

4. Mailbox owner selects "listen to current message“.
5. System plays current new message, or, if no more new

messages, current old message.
6. System plays message menu.
7. User selects "delete current message". Message is

removed.
8. Continue with step 3.

104
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Retrieve Messages

Variation #1
1.1. Start at Step 6
1.2. User selects "save current message".

Message is removed from new queue and appended to
old queue

1.3. Continue with step 3.

105
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Change the Greeting

1. Mailbox owner carries out Log in.
2. Mailbox owner selects "change greeting" menu option.
3. Mailbox owner speaks new greeting.
4. Mailbox owner presses #
5. System sets new greeting.

106
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Change the Greeting

Variation #1: Hang up before confirmation
1.1. Start at step 3.
1.2. Mailbox owner hangs up.
1.3. System keeps old greeting.

107
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Change the Passcode

1. Mailbox owner carries out Log in.
2. Mailbox owner selects "change passcode" menu option.
3. Mailbox owner dials new passcode.
4. Mailbox owner presses #.
5. System sets new passcode.

108
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Change the Passcode

Variation #1: Hang up before confirmation
1.1. Start at step 3.
1.2. Mailbox owner hangs up.
1.3. System keeps old passcode.

109
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

CRC Cards for Voice Mail System
• Some obvious classes

o Mailbox
o Message
o MailSystem

110
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Initial CRC Cards: Mailbox

111
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Initial CRC Cards: MessageQueue

112
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Initial CRC Cards: MailSystem

113
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Telephone
• Who interacts with user?
• Telephone takes button presses, voice input.
• Telephone speaks output to user.

114
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Telephone

115
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Connection
• With whom does Telephone communicate, MailSystem?
• What if there are multiple telephones?

• Each connection can be in different state
(dialing, recording, retrieving messages,...)

• Should mail system keep track of all connection states?
• Better to give this responsibility to a new class.

116
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Connection

117
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Leave message

1. User dials extension.
Telephone sends number to Connection.
(Add collaborator Connection to Telephone)

2. Connection asks MailSystem to find matching Mailbox.

3. Connection asks Mailbox for greeting
(Add responsibility "manage greeting" to Mailbox,
add collaborator Mailbox to Connection)

4. Connection asks Telephone to play greeting.

118
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Leave message

5. User speaks message.
Telephone asks Connection to record it.
(Add responsibility "record voice input" to Connection)

6. User hangs up.
Telephone notifies Connection.

7. Connection constructs Message.
(Add card for Message class, add collaborator
Message to Connection).

8. Connection adds Message to Mailbox

119
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Result of Use Case Analysis

120
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Result of Use Case Analysis

121
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Result of Use Case Analysis

122
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

123

Result of Use Case Analysis

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Use Case
Retrieve messages

1. User types in passcode.
Telephone notifies Connection.

2. Connection asks Mailbox to check passcode.
(Add responsibility "manage passcode" to Mailbox)

3. Connection sets current mailbox and asks Telephone to
speak menu.

4. User selects "retrieve messages".
Telephone passes key to Connection.

5. Connection asks Telephone to speak menu.

124
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

6. User selects "listen to current message".
Telephone passes key to Connection.

7. Connection gets first message from current mailbox.
(Add "retrieve messages" to responsibility
of Mailbox).
Connection asks Telephone to speak message.

8. Connection asks Telephone to speak menu.

9. User selects "save current message".
Telephone passes key to Connection

125

Use Case
Retrieve messages

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

10.Connection tells Mailbox to save message
(Modify responsibility of Mailbox to
"retrieve,save,delete messages")

11.Connection asks Telephone to speak menu.

126

Use Case
Retrieve messages

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Result of Use Case Analysis

127
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

CRC Summary
• One card per class.
• Responsibilities at high level.
• Use scenario walkthroughs to fill in cards.
• Usually, the first design isn’t perfect.

128
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

UML Class Diagram - Mail System
• CRC collaborators yield dependencies:

o Mailbox depends on MessageQueue.

o Message doesn't depends on Mailbox.

o Connection depends on Telephone, MailSystem,
Message, Mailbox.

o Telephone depends on Connection.

129
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Dependency Relationships

130
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Aggregation Relationships
• A mail system has mailboxes.

• A mailbox has two message queues.

• A message queue has some number of messages.

• A connection has a current mailbox.

• A connection has references to a MailSystem and a
Telephone.

131
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

UML Class Diagram - Voice Mail System

132
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sequence Diagram - Use Case:
Leave a message

133

<<create>>

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Interpreting a Sequence Diagram
• Each key press results in separate call to dial, but

only one is shown.

• Connection wants to get greeting to play.
• Each mailbox knows its greeting.

• Connection must find mailbox object:
Call findMailbox on MailSystem object.

• Parameters are not displayed (e.g. mailbox number).

• Return values are not displayed (e.g. found mailbox).

• Note that connection holds on to that mailbox over
multiple calls.

134
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Sequence Diagram - Use Case:
Retrieve messages

135
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Connection State Diagram

136
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Java Implementation
• See Java program files

2.12.5 Java Implementation (Pages: 74 – 85).

Connection.java
Mailbox.java
MailSystem.java
Message.java
MessageQueue.java
Telephone.java
MailSystemTester.java

137
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

mail%5CConnection.java.html
mail%5CMailbox.java.html
mail%5CMailSystem.java.html
mail%5CMessage.java.html
mail%5CMessageQueue.java.html
mail%5CTelephone.java.html
mail%5CMailSystemTester.java.html

End of Chapter 2

138

