Object-Oriented Design &
Patterns

2nd edition
Cay S. Horstmann

ulﬂj:utl%lln'imulml
Design & Patterns

AAAAAAAAAAAA

Chapter 2: The Object-Oriented
Design Process

CPSC 2100
Software Design and Development

o]

Chapter Objective

In this chapter we introduce the main topic of the book;
object-oriented design.

The chapter introduces a miniature version of a typical
object-oriented design methodology that can guide you
from the functional specifications of a program to its
implementation.

You will see how to find and document classes and the
relationships between them, wusing CRC cards and UML
Diagrams.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 (W

Chapter Topics

* From Problem to Code.

e The Object and Class Concepts.

e Identifying Classes.

e Identifying Responsibilities.

e Relationships Between Classes.

e Use Cases.

e CRC Cards.

e UML Class Diagrams.

« Sequence Diagrams.

e State Diagrams.

e Using javadoc for Design Documentation.
e (Case Study: A Voice Mail Systenm.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

From Problem to Code

* Three Phases:
 Analysis.
* Design.
e Implementation.

e Case Study: Voice Mail System

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

o4

Analysis Phase

e Functional Specification:

o Completely defines the tasks to be performed.

o Free from internal contradictions.

o Readable both by domain experts and software
developers.

o Reviewable by diverse interested parties.
o Testable against reality.

e Answers the questions:

o who will use the system?
o What the system will do?
o Where and when 1t will be used?

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

®5

Analysis Phase

Example:

e Writing a word-processing program.
o Fonts, footnotes, multiple columns, document sections.
o Interaction of those features.

e User manual.

o Precisely worded to remove as much ambiguity as possible.

* Use case = describe the behavior of the system.

is a description of a sequence of actions that
yields a benefit for a user of a system.

e What needs to be done, not how it should be done.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

056

Analysis Phase

This phase has three steps:
1. Develop an analysis strategy
. Model the current system (as-is system)
. Formulate the new system (to-be system)

2. Gather the requirements (through interviews or
questionnaires)

3 Develop a system concept

. Create a business model to represent:
o Business data
o Business processes

3. Develop a system proposal

CPSC 2100 System Analysis and Design with UML 4t edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden (W4

Design Phase

Goals:

o Identify classes.

o Identify behavior of classes.

o Identify relationships among classes.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

o3

Design Phase

Artifacts:

o Textual description of classes and most important
responsibilities (key methods).

o Diagrams of class relationships.
o Diagrams of important usage scenarios.

o State diagrams for objects whose behaviors is highly
state-dependent.

Typically, the design phase is more time-consuming than the
actual programming.

A good design greatly reduces the time required for
implementation and testing.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 o9

Design Phase

e The design phase has four steps:
1. Develop a design strategy.
2. Design architecture and interfaces.
3. Develop databases and file specifications.
4. Develop the program design to specify:

* What programs to write

* What each program will do

CPSC 2100 System Analysis and Design with UML 4t edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e10

Implementation Phase

This phase has three steps:
1. Construct the system
e Build it (write the programming code)
e Test it
2. Install system
* Train the users

3. Support the system (maintenance)

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

1]

Object-Oriented Systems

Analysis and Design

 Use-case driven
o Use-cases define the behavior of a system

o Each use-case focuses on one business process

« Architecture centric:
o Functional (external) view: focuses on the
user’s perspective.

o Static (structural) view: focuses on
attributes, methods, classes & relationships.

o Dynamic (behavioral) view: focuses on messages
between classes and resulting behaviors.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 o122

Object-Oriented Systems

Analysis and Design

« Benefits of OO0SAD
o Break a complex system into smaller, more manageable
modules.
o Work on modules individually.
o See the system more realistically—as the users do.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 13

The Unified Process

e A specific methodology that maps out when and how to
use the various UML techniques for object-oriented
analysis and design.

e A two-dimensional process consisting of phases and
workflows

o Phases are time periods in development.
o Workflows are the tasks that occur in each phase.
o Activities in both phases & workflows will overlap.

CPSC 2100 System Analysis and Design with UML 4t edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e14

W
7
D
QO
®
=

o

o

o

=
o

-
)

-

—

Elaboration

=
¥
;
%
L

Business Modeling

Requirements

Analysis

Design

Implementation

Test

Deployment

Configuration and
Change Management

Project Management

Environment

®15

System Analysis and Design with UML 3¢ edition

Dennis, Wixon and Tegarden

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

Unified Modeling Language (UML)

e Provides a common vocabulary of object-oriented terms
and diagramming techniques rich enough to model any
systems development project from analysis through
implementation.

e Version 2.0 has 14 diagrams in 2 major groups:
o Structure diagrams
o Behavior diagrams

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden C S

* Represent the data and static relationships in an

UML Structure Diagrams

information system

O

O O O O O

Class

Object

Package

Deployment
Component

Composite structure

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

System Analysis and Design with UML 3@ edition

Dennis, Wixon and Tegarden

L AV

UML Behavior Diagrams

e Depict the dynamic relationships among the instances or
objects that represent the business information system

— Use-case diagrams

— Activity

— Sequence

— Communication

— Interaction overview

— Timing

— Behavior state machine
— Protocol state machine,

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @18

The Object and Class Concept

e Object: Three characteristic concepts:

1. State: the condition of an object at a certain stage
in its lifetime.

2. Behavior: what an object does of capable of doing.
3. Identity: what distinguishes it from other objects.

Example: mailbox in a voice mail system.
e (Class: Collection of similar objects.

e Methods & Messages
o Methods: the behavior of a class

o Messages: information sent to an object to trigger a
method (procedure call)

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 019

Identifying Classes

* Rule of thumb: Look for nouns in problem description
o Mailbox.

Message.

User.

Passcode.

Extension.

O O O O O

Menu.

e Focus on concepts, not implementation.
o MessageQueue stores messages.
o Don't worry yet how the queue is implemented.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 e 20

Categories of Classes

« Tangible Things.
o Mailbox class, Message class, Document class,
e Agents.
o Scanner class.
e Events and Transactions.
o MouseEvent class.
e Users and Roles.
o Administrator class, Reviewer class.
e Systems.
o MailSystem class.
e System interfaces and devices.
o File class.
* Foundational Classes.
o String class, Date class,

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 2]

Identifying Responsibilities
* Rule of thumb: Look for verbs in problem description.

Example: Behavior of MessageQueue:
e Add message to tail.
e Remove message from head.
e Test whether queue is empty.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®2?

Responsibilities

e 00 Principle: Every operation is the responsibility of
a single class.

Example: Add message to mailbox
* Who is responsible: Message or Mailbox?

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®23

Relationships Between Classes

 Dependency ("uses")
« Aggregation ("has")
e Inheritance ("is")

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013 e24

Dependency Relationship

e C depends on D: Method of C manipulates objects of D.

Example: Mailbox depends on Message

e If C doesn't use D, then C can be developed without
knowing about D.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 @25

Coupling

e One important design goal is to Minimize dependency
(reduce coupling).

Example:

public class Message

{
public void print()
{

System.out.println(text);

}

}

* Removes dependence on System, PrintStream.
public String getText() // can print anywhere

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 026

Aggregation
e Object of a class contains objects of another class.

e Example: MessageQueue aggregates Messages.
o MessageQueue has a Message.

e Example: Mailbox aggregates MessageQueue
o Mailbox has a MessageQueue.

e Implemented through instance fields.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 e27

Multiplicities

e 1:1 or 1:0...1 relationship:
public class Mailbox

{

private Greeting myGreeting;

e 1:n relationship:
public class MessageQueue

{

private ArraylList<Message> elements;

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 e28

Inheritance

* More general class = superclass
* More specialized class = subclass

e Subclass supports all method interfaces of superclass
(but implementations may differ).

e Subclass may have added methods, added state.
e Subclass inherits from superclass.

e Example: ForwardedMessage inherits from Message.
o ForwardMessage is a Message

« Example: Greeting does not inherit from Message (Can't
store greetings in mailbox).

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 e 29

Exercise

A department store has a bridal registry. This registry
keeps information about the customer, the products that
the store carries, and the products each customer
register for. Customers typically register for a large

number of products and many customers register for the
same products.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ®30

Exercise

Whenever new patient are seen for the first time, they
complete a patient information form that asks their name,
address, phone number and insurance carrier, which are
stored in the patient information file. Patients can be
signed up with only one carrier, but they must be signed
up to be seen by a doctor. Each time a patient visits the
doctor, an insurance claim is sent to the carrier for
payment. The claim must contain information about the
visit, such as the date, purpose, and cost. It would be
possible for a patient to submit two claims on the same
day.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden 3]

Business Process Modeling

e Functional models: describe business processes and the
interaction of an information system with its
environments.

* Business process models describe the activities that
collectively support a business process.

* A very powerful tool for communicating the analyst’s
current understanding of the requirements with the
user.

 Activity diagrams are used to logically modeling the
behavior in a business process and workflows.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ®32

Activity Diagram Syntax

Action or Activity
— Represents action or set of actions

Control Flow
— Shows sequence of execution >

Initial Node
— The beginning of a set of actions ‘

Decision Node
— Represents a test condition

Final Node
— Stops all flows in an activity @

CPSC 2100 System Analysis and Design with UML 3@ edition
@ University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @33

Sample Activity Diagram

[New patient]

[Existing patient]

CPSC 2100 System Analysis and Design with UML 3 edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @34

Guidelines for Activity Diagrams

1. Set the scope of the activity being modeled.

2. Identify the activities, control flows, and object
flows that occur between the activities.

3. Identify any decisions that are part of the process
being modeled.

4. Identify potential parallelism in the process.

5. Draw the activity diagram.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @35

Use Cases

A use case illustrates the activities that are
performed by users of a system.

e Describe basic functions of the system
o What the user can do
o How the system responds

e Use cases are building blocks for continued design
activities.

e Use case name should be a verb-noun phrase (e.g., Make
Appointment).

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @364

Types of Use Cases

I T R

High-level overview of Detailed description of issues
issues essential to essential to understanding

understanding required required functionality
functionality

High-level overview of a Detailed description of a
specific set of steps specific set of steps performed
performed on the real on the real system once

system once implemented implemented

CPSC 2100 System Analysis and Design with UML 3 edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @37

Use Case Elements: Relationships

e Association

documents the communication between the use case and the
actors that use the use case.

e Extend

represents the extension of the functionality of the use
case to incorporate optional behavior.

e Include
shows the mandatory inclusion of another use case.

e Generalization
allows use cases to support inheritance

CPSC 2100 System Analysis and Design with UML 3@ edition

® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden

38

Use Case Elements: Flows

* Normal Flows

include only those steps that normally are executed in a
use case.

e Sub-Flows

the normal flow of events decomposed to keep the normal
flow of events as simple as possible.

e Alternate or Exceptional Flows

flows that do happen but are not considered to be the
norm.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @ 39

Lise-Case Name: Make appointment 1D 2 Importance Leve High

Primary Actor Patient Use Case Type: Detail, essential

Stakeholders and Interests
Patient - wants to make, change, or cancel an appointment
Doctor - wants to ensure patient’s needs are met in a timely manner

Brier Descrption: This use case describes how we make an appointment as well as changing or canceling an appointment.
Frigger: Patient calls and asks for a new appointment or asks to cancel or change an existing appointment.
Type: External
* Sample use case R |
Association Patient

] 1 Include Make Payment Arrangements
des C r‘lpt 1on Extend: Create New Patient
Ceneralization

Normal Flow of Events:
1. The Patient contacts the office regarding an appointment.
2. The Patient provides the Receptionist with his or her name and address.
3. The Receptionist validates that the Patient exists in the Patient database.
4. The Receptionist executes the Make Payment Arrangements use case.
5. The Receptionist asks Patient if he or she would like to make a new appointment, cancel an existing appointment, or change
an existing appointment.
If the patient wants to make a new appointment,
the S-1: new appointment subflow is performed.
If the patient wants to cancel an existing appointment,
the $-2: cancel appointment subflow is performed.
If the patient wants to change an existing appointment,
the S-3: change appointment subflow is performed.
6. The Receptionist provides the results of the transaction to the Patient.

SUDHOWS
S-1: New Appointment
1. The Receptionist asks the Patient for possible appointment times,
2. The Receptionist matches the Patient’s desired appointment times with available dates and times and schedules the
new appointment.
S-2: Cancel Appointment
1. The Receptionist asks the Patient for the old appointment time.
2. The Receptionist finds the current appointment in the appointment
file and cancels it.
S-3: Change Appointment
1. The Receptionist performs the $-2: cancel appointment subflow.
2. The Receptionist performs the S-1: new appointment subflow.

System Analysis and Design with UML 3 edition R ———
. R ernmnate XCCptiona ONVSS
Dennis, Wixon and Tegarden 3a: The Receptionist executes the Create New Patient use case.
S-1, 2al: The Receptionist proposes some alternative appointment times based on what is available in the appointment schedule.
CPSC 2100 S-1, 2a2: The Patient chooses one of the proposed times or decides not to make an appointment.
@ University of Tennessee at Chattanooga —Fall 2013

Use-Case Diagrams

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 042

Use Case Diagram Syntax

e Actor
— person or system that derives benefit from g%
and is external to the subject

e Use Case

— Represents a major piece of system (:::::::)
functionality

* Association Relationship

e Include Relationship Seincludes s

 Extend Relationship <<extends>>

* Generalization Relationship

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @43

Sample Use Case

Appointment System

Make
Appointment
Make Payment
Arrangements
Make New O
Patient Appt. s &1
/\
Patient

Update Patient
Information

Produce Schedule . ’ f\\
Information N
New Patient
:?\
Record R &
m .
Availability Old Patient
Manage
schedule
CPSC 2100 System Analysis and Design with UML 3¢ edition

® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @ 44

Creating Use-Case
Descriptions
and Use-Case Diagrams

CPSC 2100

® University of Tennessee at Chattanooga —Fall 2013

® 45

Identify the Major Use Cases

1. Review the activity diagram.
2. Find the subject’s boundaries.
3. Identify the primary actors and their goals.

4. Identify and write the overviews of the major use
cases for the above.

5. Carefully review the current use cases. Revise as
needed.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @44

Extend the Major Use Cases

6. Choose one of the use cases to expand.
7. Start filling in the details of the chosen use case.
8. Write the normal flow of events of the use case.

9. If the normal flow of events is too complex or long,
decompose into sub flows.

10. List the possible alternate or exceptional flows.

11. For each alternate or exceptional flow, list how the
actor and/or system should react.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @47

Confirm the Major Use Cases

12. Carefully review the current set of use cases. Revise
as needed.

13. Start at the top again.

CPSC 2100 System Analysis and Design with UML 3@ edition
@ University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @48

Create the Use Case Diagram

1. Draw the subject boundary.
2. Place the use cases on the diagram.
3. Place the actors on the diagram.

4. Draw the associations.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @49

Exercise

A. Create an activity diagram and a set of detail use
case descriptions for the process of buying glasses
from the viewpoint of the patient, but do not bother
to identify the flow of events within each use case.
The first step is to see an eye doctor who will give
you a prescription. Once you have a prescription, you
go to a glasses store, where you select your frames
and place the order for your glasses. Once the glasses
have been made, you return to the store for a fitting
and pay for the glasses.

B. Draw a use case diagram for the process of buying
glasses.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ® 50

Structural Model

e A formal way of representing the objects that are used
and created by a business system

o People
o Places
o Things

e Main goal: to discover the key data contained in the
problem domain and to build a structural model of the
objects.

e Typical structural models:
o Class Responsibility Collaboration (CRC) cards
o Class (and Object) diagrams

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e5]

Classes, Attributes, and Operations

e (Classes

/ Templates for instances of
people, places, or things
-volume

- material h « Attributes
+ill () Properties that describe the

+empty () state of an instance of a class
(an object)

Box

N\

« Operations

Actions or functions that a
class can perform

CPSC 2100 System Analysis and Design with UML 3@ edition
@ University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @52

Relationships

* Describe how classes relate to one another

e Three basic types in UML

1. Generalization
Enables inheritance of attributes and operations

2. Aggregation
Relates parts to wholes

3. Association
Miscellaneous relationships between classes

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ® 53

Responsibilities and Collaborations

* Responsibilities
o Knowing: things that an instance of a class must be
capable of knowing.

o Doing: things that an instance of a class must be capable
of doing.

* Collaboration
o Objects working together to service a request.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @54

Front-Side of a CRC Card

Class Name: Patient D: 3 Type: Concrete, Domain
Description: An individual that needs to receive or has received Associated Use Cases: 2
medical attention
R(N|)un.~i|)i|i|i(‘\' Collaborators

Make appointment Appointment

Calculate last visit

Change status

Provide medical history Medical history

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

System Analysis and Design with UML 3¢ edition
Dennis, Wixon and Tegarden ® 55

Back-Side of a CRC Card

Attributes:
Amount (double)

Insurance carrier (text)

Relationships:

Generalization (a-kind-of): Person

Aggregation (has-parts): Medical History

Other Associations: Appointment

CPSC 2100 System Analysis and Design with UML 3 edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ® 564

Elements of a Class Diagram

A class:
* Represents a kind of person, place, or thing about
which the system will need to capture and store

information.
* Has a name typed in bold and centered in its top
compartment. -attributel
* Has a list of attributes in its middle compartment. | +operation()

* Has a list of operations in its bottom compartment.

* Does not explicitly show operations that are
available to all classes.

An attribute:

* Represents properties that describe the state of an)
object. attribute name

» Can be derived from other attributes, shown by /derived attribute name
placing a slash before the attribute’s name.

An operation:

* Represents the actions or functions that a class
can perform.

* Can be classified as a constructor, query, or operation name ()
update operation.

* Includes parentheses that may contain parameters
or information needed to perform the operation.

CPSC 2100 System Analysis and Design with UML 3 edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ®57

Attribute Visibility

e Attribute visibility can be specified in the class
diagram
o Public attributes (+) are visible to all classes

o Private attributes (-) are visible only to an instance of
the class in which they are defined

o Protected attributes (#) are like private attributes, but
are also visible to descendant classes

e Visibility helps restrict access to the attributes and
thus ensure consistency and integrity

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ® 58

Operations

* Constructor
o Creates object

* Query
o Makes information about state available

« Update
o Changes values of some or all attributes

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ® 59

Class Diagrams

e Rectangle with class name.
e Optional compartments

o Attributes
e text
 text : String

o Methods
» getMessage()

» getMessage(index

Class name

Message

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

int) : Message

Mailbox

newMessages -
savedMessages

I
L —

add() -—
getCurrentMessage()

—_—"
-
L -

Attributes

Methods

® 40

Class Relat10nsh1ps

Dependency

Aggregation <>

Inheritance >

Composition P

Association

Directed

Association

YV

Interface Type

Implementation

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013 04]

Multiplicities

“has” relationship (Aggregation)

* any number (© or more): *
e one or more: 1..%*

* Zero or one: 0..1

e exactly one: 1

1
Message L

Queue

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

Message

062

Composition

e Special form of aggregation.

e (Contained objects don’t exist outside container.
e Example: Message queues permanently contained in mail

box.

Mailbox |e

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

Message
Queue

®43

e Some designers don’t like aggregation - implementation

specific.

Association

* More general association relationship.

e Association can have roles

Course

registers for

has as participant

e Some associations are bidirectional. Can navigate from
either class to the other.

CPSC 2100

® University of Tennessee at Chattanooga —Fall 2013

Student

® 64

More on Association

 Some associations are directed.

Example: Message doesn't know about message queue

containing it.

Message

*

Queue

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

Message

® 65

Interface Types

e Interface type describes a set of methods.

* No implementation, no state.

e (Class implements interface if it implements its
methods.

e In UML, use stereotype «interface»

«interface»

Message [---r==smmemm=mcemecce————- ' Comparable

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ® 66

Multiplicities

Department Boss Exactly one:
A department has one and
only one boss

Employee Child Zero or more:
An employee has zero to
many children

Boss Employee One or more:
A boss is responsible for
one or more employees

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @467

Employee

Spouse Zero or one:

An employee can be

married to O or 1 spouse

Vacation Specified range:

An employee can take 2 to

4 vacations each year

Committee Multiple disjoint ranges:

1 0.1
Employee
1 2.4
Employee
1 1..3,5
CPSC 2100

® University of Tennessee at Chattanooga —Fall 2013

An employee can be in 1 to

3 or 5 committees

System Analysis and Design with UML 3@ edition
Dennis, Wixon and Tegarden @48

Sample Class Diagram

-amount
-insurance carrier

+make appointment(}
+calculate last visit()
+change status()
+provides medical history

-:-asmame " -heart diseas=
~firstname provides » -high blocd pressure
-address -diabetes

-phone -allergies

-birthdate

-fage

-date
-amount

-purposs
+generate cancellation fe() I

a.r a.* -time
| -date
+primary Sroason
insurance +cancel without notice()
camrier
o~
suffer »
o - Pe
1.7
has scheduled »
[0.*

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

-name -description

System Analysis and Design with UML 3¢ edition

Dennis, Wixon and Tegarden

049

Tips

e Use UML to inform, not to impress.

e Don't draw a single monster diagram.

e Each diagram must have a specific purpose.
e Omit inessential details.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 /0

Object Diagram

-insurance carrier schaedulas »
+make appointment())
+calculate last visit() o
Odgd hi:
ProVicesIn stoyO J APPOINTMENT
0.* 0. 0. has schaduled » iy DOCTOR
-name

aprimary -reason

insurance +cancel without notice()

carriar

suffoer »
-name

JOHN DOE : FIGURE 7-2::PATIENT DR. SMITH : FIGURE 7-2::DOCTOR
address : String = 1000 Main Street reason = pain in neck address : String = Doctor's Clinic
phone : String = 555-555-5555 phone : String = 999-555-5555
birthdate : Date birthdate :

/ age : int /age : int

amount

SYMPTOM1 : FIGURE 7-2::SYMPTOM

CPSC 2100 System Analysis and Design with UML 3 edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden 7]

Exercise

e Draw a class diagram for the following classes.
Consider that the entities represent a system for a
patient billing system. Include only the attributes
that would be appropriate for this context.

e Patient:
o (age, name, address, insurance carrier)
e Insurance carrier:
o (name, number of patients on plan, address, phone)
* Doctor:
o (specialty, provider identification number, phone, name).

e Create an Object diagram based on the class diagram you
drew before.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden 72

Exercise

e A university is interested in designing a system that
will track its researchers. Information of interest
includes: researcher name, title, position; university
name, location, enrollment; and research interests.
Researchers are associated with one institution, and
each researcher has several research interests.

e Draw a class diagram.

e Create an object diagram based on the class diagram.
e Create a CRC card for the Researcher class.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ®7/3

Behavioral Modeling

e Systems have static and dynamic characteristics

o Structural models describe the static aspects of the
system.

o Behavioral models describe the dynamics and interactions
of the system and its components.

e Behavioral models describe how the classes described in
the structural models interact in support of the use
cases.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e7/4

Interaction Diagram Components

e Objects
an instantiation of a class.

e Operations
the behaviors of an instance of a class.

* Messages

information sent to objects to tell them to execute one of
their behaviors.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden ®/5

Sequence Diagrams

e Illustrate the objects that participate in a use-case.

e Show the messages that pass between objects for a
particular use-case.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e7/46

Sequence Diagram Syntax

An actor: ,_.i?;i_
B s a person or system that derives benefit from and is external to the system.
B Participates in a sequence by sending and/or receiving messages. S8,
® s placed across the top of the diagram. anActor
B |s depicted either as a stick figure (default) or, if a nonhuman actor is involved, as
a rectangle with <<actor>=> in it (alternative). S
Actor/Role
An object:
B Participates in a sequence by sending and/or receiving messages. anObject : aClass
B s placed across the top of the diagram.
A lifeline: :
B Denotes the life of an object during a sequence. :
B Contains an X at the point at which the class no longer interacts. :
An execulion occurrence:
B |sa long narrow rectangle placed atop a lifeline.
m Denotes when an object is sending or receiving messages.
CPSC 2100 System Analysis and Design with UML 3 edition

® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e7/7

More Sequence Diagram Syntax

A message:

m Conveys information from one object to another one. 3Messagel

B A operation call is labeled with the message being sent and a solid arrow, whereas Ruturn Value
a return is labeled with the value being returned and shown as a dashed arrow. €

A guard condition:

® Represents a test that must be met for the message to be sent. [aGuardCondition): aMessage()

L

For object destruction:

B An X is placed at the end of an object’s lifeline to show that it is going out X
of existence.

A frame:

B Indicates the context of the sequence diagram.

CPSC 2100 System Analysis and Design with UML 3 edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e7/8

Sample Sequence Diagram

aPatient aRecéptionist Patients:PatientsList | |UnpaidBills:BillsList] | Appointments: ApptsList
: RequestApptiname, address): 1 ‘ . }
LookUpPatient() :
> i
1
! 1
| | |
! ! i
[aPatient Exists] LaookupBills() =2 :
NewCancelChangeAppt?() :) U :
B ! | |
" ApptTimes?() : : ;
= 1
: MatchAppts) | o
: | i
|
@
: - ' »| anAppt:Appointment
| . ; .
L - ! | 1 I
I | | ! i i
i | . | i !
. ! ' ' 1 i
CPSC 2100 System Analysis and Design with UML 3@ edition

® University of Tennessee at Chattanooga —Fall 2013

Dennis, Wixon and Tegarden

®7/9

Steps to build Sequence Diagrams

1. Set the context.
2. Identify which objects will participate.
3. Set the lifeline for each object.
4. Lay out the messages from top to bottom of the
diagram based on the order in which they are sent.

5. Add execution occurrence to each object‘s lifeline.
6. Validate the sequence diagram.

CPSC 2100 System Analysis and Design with UML 3@ edition

® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @30

Components of State Machines

» States
values of an object’s attributes at a point in time

* Events
change the values of the object’s attributes

e Transitions
movement of an object from one state to another

e Actions
atomic, non-decomposable processes

e Activities
non-atomic, decomposable processes

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e8]

State Machine Syntax

A state:
B Is shown as a rectangle with rounded corners. m
B Has a name that represents the state of an object.

An initial state:

® s shown as asmall, filled-in circle. .
B Represents the point at which an object begins to exist.

A final state:

. . o) ’ S
B Is shown as a circle surrounding a small, filled-in circle (bull's-eye). ;.g
B Represents the completion of activity. =
An event:
B Is a noteworthy occurrence that triggers a change in state.
B Can be a designated condition becoming true, the receipt of an explicit signal ankvent

from one object to another, or the passage of a designated period of time.
B s used to label a transition.
A transition:
® Indicates that an object in the first state will enter the second state.
_

B s triggered by the occurrence of the event labeling the transition.
B Is shown as a solid arrow from one state to another, labeled by the event name.

A frame:

® Indicates the context of the behavioral state machine.

CPSC 2100 System Analysis and Design with UML 3 edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden e 32

State Machine Example

Enters Hospital Checks In
Entering

[Diagnosis = Unhealthy]

< [Diagnosis = Healthy]
Under Observation |

N

[Diagnosis = Healthy] [> 2 weeks] /gt

A

CPSC 2100

@ University of Tennessee at Chattanooga —Fall 2013

System Analysis and Design with UML 3¢ edition

Dennis, Wixon and Tegarden

e 383

Steps to Build a State Machine

1. Set the context.

2. Identify the initial, final, and stable states of the
object.

3. Determine the order in which the object will pass
through the stable states.

4. Identify the events, actions, and guard conditions
associated with the transitions.

5. Validate the behavioral state machine.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @34

Behavioral State Machines

e A dynamic model that shows the different states through
which a single object passes during its life in

response to events, along with its responses and
actions

* Typically not used for all objects
o Just for complex ones

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @385

Exercise

* Create a sequence diagram for the following scenario
description:

When members join the health club, they pay a fee
for a certain length of time. The club wants to mail
out remainder letters to members asking them to renew
their memberships one month before their memberships
expire. About half of the members do not renew their
memberships. These members are sent follow-up surveys
to complete asking why they decided not to renew so
that the club can learn how to increase retention. If
the member did not renew because of cost, a special
discount is offered to that customer. Typically, 25
percent of accounts are reactivated because of this
offer.

CPSC 2100 System Analysis and Design with UML 3@ edition
® University of Tennessee at Chattanooga —Fall 2013 Dennis, Wixon and Tegarden @364

Unified Modeling Language (UML)

e UML is a modeling language for object oriented system
analysis, design, and deployment. UML is not a product,
nor is a process or methodology.

e UML support multiple views of same system, with varying
degrees of detail or generalization as needed:

1. Owner’s view: what the owner wants, or the
conceptual view of the system.

2. Architect’s view: how the architect conceives the
solution, of the logical view of the system.

3. Builder’s view: the blueprints for building the
product, or the physical view of the system.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 [XSV4

Use Cases

« Analysis technique.
e Each use case focuses on a specific scenario.

« Use case = sequence of actions.

e Action = interaction between actor and computer system.

o Leave a message.
o Retrieve a message.

e Each action yields a result.
e Each result has a value to one of the actors.

e Use variations for exceptional situations.
o Message queue is full.
o Wrong password.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 @38

Sample Use Case

1. Caller dials main number of voice mail system.

2. System speaks prompt
Enter mailbox number followed by #.

3. User types extension number.

System speaks
You have reached mailbox xxxx. Please leave a message
NOW.

5. Caller speaks message.
Caller hangs up.
7. System places message in recipient's mailbox.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 @39

Sample Use Case -- Variations

e Variation #1

1.1. In step 3, user enters invalid extension number.
1.2. Voice mail system speaks:

You have typed an invalid mailbox number.
1.3. Continue with step 2.

e Variation #2

2.1. After step 4, caller hangs up instead of speaking
message.
2.3. Voice mail system discards empty message.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 e 90

CRC Cards

e CRC cards describe Classes, Responsibilities,
Collaborators (dependent classes).

 Developed by Beck and Cunningham.
e Use an index card for each class.
e (Class name on top of card.

* Responsibilities on left.

Collaborators on right.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

09]

CRC Card Example

Mai lbox

manage passcode MessageQueue

manage greetz ng

mzmage new and saved messages

e Responsibilities should be high Level.

e 1 - 3 responsibilities per card.

e Collaborators are for the class, not for each
responsibility.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 09?2

Walkthroughs

e Use case: "Leave a message*

e (Caller connects to voice mail system.
e Caller dials extension number.
e "Someone" must locate mailbox.

e Neither Mailbox nor Message can do this.

New class: MailSystem
* Responsibility: manage mailboxes.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

093

Walkthrough Example

MailSystem

manage matlboxes Mai 1box

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 @94

Sequence Diagrams
Object Diagrams

e Each diagram shows dynamics of scenario.
e Interactions between objects.

e Object diagram: class name underlined
o objectName : ClassName (full description).

o objectName
o : ClassName

i, . . Mailbox
Lifelines. aMiallDoX : MessageQueue

newMessages

e Activation bars.

add

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

095

Sequence Diagram - Self call

- MailSystem

—— locateMailbox

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 094

Object Construction

- MailSystem

«create»

>

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

- Mailbox

097

State Diagrams

e Use for classes whose objects have interesting states

connected

extension dialed

recording

passcode entered

mailbox
menu

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013 098

Using javadoc for Design Documentation

e Recommendation: Use Javadoc comments.
e Leave methods blank

/**
Adds a message to the end of the new messages.
@param aMessage a message

*/

public void addMessage(Message aMessage)

{
}

e Don't compile file, just run Javadoc.
e Makes a good starting point for code later.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 099

Case Study
A Voice Mail System

Represent voice as text entered from the keyboard.

12 ... 0 # on a single line means key.
H on a single line means "hang up®.

All other inputs mean voice.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

® 100

Use Case

Reach an Extension

1. User dials main number of voice mail system.

2. System speaks prompt
Enter mailbox number followed by #.

3. User types extension number.

System speaks
You have reached mailbox xxxx. Please leave a
message Now.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 @101

Use Case

Leave a Message

Caller speaks message.
Caller hangs up.

N w N R

System places message in mailbox.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

Caller carries out Reach an Extension.

® 102

Use Case
Log in

1. Mailbox owner carries out Reach an Extension.
2. Mailbox owner types password and #

3. System plays mailbox menu:
Enter 1 to retrieve your messages.
Enter 2 to change your passcode.
Enter 3 to change your greeting.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ® 103

Use Case

Retrieve Messages

1. Mailbox owner carries out Log in.
2. Mailbox owner selects "retrieve messages" menu option.

3. System plays message menu:
Press 1 to listen to the current message

Press 2 to delete the current message
Press 3 to save the current message
Press 4 to return to the mailbox menu

Mailbox owner selects "listen to current message*.

5. System plays current new message, or, if no more new
messages, current old message.

6. System plays message menu.

7. User selects "delete current message". Message 1is
removed.

8. Continue with step 3.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ® 104

Use Case

Retrieve Messages

Variation #1

1.1. Start at Step 6
1.2. User selects "save current message".

Message is removed from new queue and appended to
old queue

1.3. Continue with step 3.

CPSC 2100

® University of Tennessee at Chattanooga —Fall 2013 ® 105

Use Case
Change the Greeting

Mailbox owner carries out Log in.

Mailbox owner selects "change greeting" menu option.
Mailbox owner speaks new greeting.

Mailbox owner presses #

uvi A W N B

System sets new greeting.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

® 106

Use Case
Change the Greeting

Variation #1: Hang up before confirmation
1.1. Start at step 3.

1.2. Mailbox owner hangs up.

1.3. System keeps old greeting.

CPSC 2100

® University of Tennessee at Chattanooga —Fall 2013 ® 107

Use Case
Change the Passcode

Mailbox owner carries out Log in.

Mailbox owner selects "change passcode” menu option.
Mailbox owner dials new passcode.

Mailbox owner presses #.

uvi A W N B

System sets new passcode.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

® 108

Use Case
Change the Passcode

Variation #1: Hang up before confirmation
1.1. Start at step 3.

1.2. Mailbox owner hangs up.

1.3. System keeps old passcode.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

® 109

CRC Cards for Voice Mail System

e Some obvious classes
o Mailbox
o Message
o MailSystem

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®110

Initial CRC Cards: Mailbox

Mai l1box

keep new and saved messages MessageQueue

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

®1]]

Initial CRC Cards: MessageQueue

MessageQueue

add and remove messages in
FIFO order

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 112

Initial CRC Cards: MailSystem

MailSystem

manage mailboxes Mailbox

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®113

Telephone

e Who interacts with user?
e Telephone takes button presses, voice input.
e Telephone speaks output to user.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 114

Telephone

Telephone

take user input from touc/ypaa’,
microphone, hangup
speak output

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®115

Connection

e With whom does Telephone communicate, MailSystem?
e What if there are multiple telephones?

e Each connection can be in different state
(dialing, recording, retrieving messages,...)

* Should mail system keep track of all connection states?
e Better to give this responsibility to a new class.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 0116

Connection

Connection
get input from telephone Telephone
carry out user commands Mail System

keep track of state

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 11/

Use Case

Leave message

1. User dials extension.

Telephone sends number to Connection.
(Add collaborator Connection to Telephone)

2. Connection asks MailSystem to find matching Mailbox.

3. Connection asks Mailbox for greeting
(Add responsibility "manage greeting" to Mailbox,
add collaborator Mailbox to Connection)

4. Connection asks Telephone to play greeting.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®118

Use Case

Leave message

5. User speaks message.

Telephone asks Connection to record it.
(Add responsibility "record voice input" to Connection)

6. User hangs up.
Telephone notifies Connection.

7. Connection constructs Message.
(Add card for Message class, add collaborator
Message to Connection).

8. Connection adds Message to Mailbox

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 119

Result of Use Case Analysis

Telephone

microphone, hangup
speak output

take user input from touchpad, Connection

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

® 120

Result of Use Case Analysis

Connection

get input from telephone
carry out user commands
keep track of state

record voice 1 nput

Telephone
MailSystem

Mailbox
Message

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

®12]

Result of Use Case Analysis

Mai lbox

manage greeting

keep new and saved messages MessageQueue

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

0122

Result of Use Case Analysis

Message

manage message contents

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®123

Use Case

Retrieve messages

1. User types in passcode.
Telephone notifies Connection.

2. Connection asks Mailbox to check passcode.
(Add responsibility "manage passcode" to Mailbox)

3. Connection sets current mailbox and asks Telephone to
speak menu.

4. User selects "retrieve messages”.
Telephone passes key to Connection.

5. Connection asks Telephone to speak menu.

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013 ®124

Use Case

Retrieve messages

6. User selects "listen to current message".
Telephone passes key to Connection.

7. Connection gets first message from current mailbox.

(Add "retrieve messages" to responsibility
of Mailbox).
Connection asks Telephone to speak message.

8. Connection asks Telephone to speak menu.

9. User selects "save current message".
Telephone passes key to Connection

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

® 125

Use Case

Retrieve messages

10. Connection tells Mailbox to save message
(Modify responsibility of Mailbox to
"retrieve,save,delete messages")

11.Connection asks Telephone to speak menu.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013

® 126

Result of Use Case Analysis

Mai lbox
keep new and saved messages MessageQueue
manage greeting
manage passcode

retrieve, save, delete messages

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®127

CRC Summary

e One card per class.

* Responsibilities at high level.

e Use scenario walkthroughs to fill in cards.
e Usually, the first design isn’t perfect.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ® 128

UML Class Diagram - Mail System

e CRC collaborators yield dependencies:
o Mailbox depends on MessageQueue.

o Message doesn't depends on Mailbox.

o Connection depends on Telephone, MailSystem,
Message, Mailbox.

o Telephone depends on Connection.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 129

Dependency Relationships

Telephone [----=-------

CPSC 2100

@ University of Tennessee at Chattanooga —Fall 2013

MailSystem

TP, *

Connection

———————

Mailbox

Message

® 130

Aggregation Relationships

* A mail system has mailboxes.

e A mailbox has two message queues.

« A message queue has some number of messages.
e A connection has a current mailbox.

e A connection has references to a MailSystem and a
Telephone.

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 e 13]

UML Class Diagram - Voice Mail System

MailSystem

Telephone

CPSC 2100

@ University of Tennessee at Chattanooga —Fall 2013

<>

Connection

Mailbox

2

Message

Message
Queue

Q

@132

Use enters

I

passcode

Userspeaks | ____.occoocaeo--

i

message

D
User hangs up

CPSC 2100

Sequence Diagram - Use Case:

Leave a message

Telephone

:Connection ‘MailSystem ‘Mailbox Message
| | | ! !
1 1 1 1
dial ! ! ! !
1 1 1 1
checkPasscode : X i
] = =
1 I
v 1 1
getGreeting | 1
1
1 1
. (] .
| |
speak : : :
| I |
|—| I I I
I I I
| I |
L | 1 I
record : : : :
| I |
| I |
| I |
e I I |
hangup i : : :
| <<Lcreate>> |]
| | |
| I
| I
s I
addMessage 1

@ University of Tennessee at Chattanooga —Fall 2013

® 133

Interpreting a Sequence Diagram

e Each key press results in separate call to dial, but
only one is shown.

e Connection wants to get greeting to play.
e Each mailbox knows its greeting.

e Connection must find mailbox object:
Call findMailbox on MailSystem object.

 Parameters are not displayed (e.g. mailbox number).

e Return values are not displayed (e.g. found mailbox).

Note that connection holds on to that mailbox over
multiple calls.

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013 134

Sequence Diagram - Use Case:
Retrieve messages

Telephone

Userenters1 7} -
(listen to current message)

User enters 2
(save current message)

CPSC 2100

@ University of Tennessee at Chattanooga —Fall 2013

:Connection Mailbox Message
' ' ' '
1 1 1
dial [1 1
1 1
checkPasscode X X
1
:
1 1
speak | |
3 | |
1 1
1 1
1 1
e I 1
dial ! ! !
1] 1
speak ' |
I 1
I 1
I 1
I 1
L 1 [
N 1 I 1
dial 1 1 1
I 1
getCurrentMessage : :
1
1
,LI !
getText :
T
I
I |
I T
speak ! !
I 1
I 1
I 1
L I 1
dial X | X
I 1
saveCurrentMessage _ 1 l
1
1
1
1
1
1
1
1
1

® 135

Connection State Diagram

connected

extension dialed

recording

hang up
change passcode

passcode entered

passcode entered

2% .
mailbox menu

greeting entered

change greeting

message menu
1%, 2%, 3%

CPSC 2100
@ University of Tennessee at Chattanooga —Fall 2013

® 136

Java Implementation

e See Java program files
2.12.5 Java Implementation (Pages: 74 - 85).

Connection.java

Mailbox.java

MailSystem. java

Message.java
MessageQueue.java

Telephone. java

MailSystemTester.java

CPSC 2100
® University of Tennessee at Chattanooga —Fall 2013 ®137

mail%5CConnection.java.html
mail%5CMailbox.java.html
mail%5CMailSystem.java.html
mail%5CMessage.java.html
mail%5CMessageQueue.java.html
mail%5CTelephone.java.html
mail%5CMailSystemTester.java.html

End of Chapter 2

® 138

