
Object-Oriented Design &
Patterns
2nd edition

Cay S. Horstmann

Chapter 1: A Crash Course in Java

CPSC 2100
Software Design and Development

Chapter Topics
• Hello,	World in	Java
• Documentation	Comments	
• Primitive	Types	
• Control	Flow	Statements	
• Object	References	
• Parameter	Passing	
• Packages	
• Basic	Exception	Handling	
• Strings	
• Reading	Input	
• Array	Lists	and	Linked	Lists	
• Arrays
• Static	Fields	and	Methods	
• Programming	Style	

2
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Chapter Objective

The purpose of this chapter is to teach you the elements of
the Java programming language or to give you an opportunity
to review them assuming that you know an object-oriented
programming language.

3
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

“Hello, World!” in Java
Greeter.java

4
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

• Construct	new	objects	with	new	operator	(Instantiating	the	
class)

new Greeter("World")

• Can	invoke	method	on	newly	constructed	object
new Greeter("World").sayHello()

• More	common:	store	object	reference	in	object	variable
Greeter worldGreeter = new Greeter("World");

• Then	invoke	method	on	variable:
String greeting = worldGreeter.sayHello();

5
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

• mainmethod	is	called	when	program	starts.	
• main is	static:	it	doesn't	operate	on	any	objects.	
• There	are	no	objects	yet	when	main starts.	
• In	OO	program,	main constructs	objects	and	invokes	
methods.

6

“Hello, World!” in Java
GreeterTester.java

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Using the SDK
Software Development Kit

1. Create	a	new	directory	to	hold	your	files.

2. Use	a	text	editor	to	prepare	files	(Greeter.java,	GreeterTest.java).	

3. Open	a	shell	window.	

4. Use	the	cd	command	to	the	directory	that	holds	your	files.

5. Compile:	javac GreeterTest.java

6. Run: java GreeterTest

7. Note	that	Greeter.java	is	automatically	compiled.

8. Output	is	shown	in	shell	window

7
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

8

Using the SDK
Software Development Kit

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Big java, 4th edition, Horstmann, Wiley.

9
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Documentation Comments

• Delimited	by	/**	...	*/	

• First	sentence	=	summary.	

• @param followed	by	the	parameter	name	and	small	
explanation.	

• @return	describe	the	return	value.

• Javadoc utility	extracts	HTML	file	

10
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Whoa!	I	am	supposed	to	write	all	this	stuff?

• The	Javadoc utility	will	format	your	comments	into	a	nicely	
formatted	set	of	HTML	documents.

• It	is	possible	to	spend	more	time	pondering	whether	a	comment	
is	too	trivial	to	write	than	it	takes	just	to	write	it.	

every class,	everymethod,	every parameter,		every return	
value	should	have	a	comment.

• It	is	a	good	idea	to	write	the	method	comment	first,	before	
writing	the	method	code	(Understand	what	you	need	to	
program).

11
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

12
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Javadoc utility

• After	you	have	written	the	documentation	comments,	
invoke	the	Javadoc utility.

1. Open	the	shell	window.
2. Use	the	cd	command	to	change	to	the	directory	you	have	your	files	in.
3. Run	the	Javadoc utility
4. Javadoc *.java

Check	the	Java	development	kit	documentation	
Application	programming	interface	(API)
http://docs.oracle.com/javase/7/docs/api/

13
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Primitive Types
Type Size Range

int 4 bytes -2,147,483,648 … 2,147,483,647
long 8 bytes -9,223,372,036,854,775,808L …

9,223,372,036,854,775,807L
short 2 bytes -32768 … 32767
byte 1 byte -128 … 127
char 2 bytes ‘\u0000’ …. ‘\uFFFF’

http://www.unicode.org
boolean false, true
double 8 bytes approximatly 1.79769313486231570E+308
float 4 bytes approximatly 3.40282347E+38F

14
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

http://www.unicode.org/

Character Escape Sequence

15
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Conversion and Casting

• No	Information	loss.
o short	to	int
o float to	double

• Casting	is	needed	to	avoid	the	loss	of	precision.
All	integer	types	can	be	converted	to	float	or	double,	even	though	some	of	the	
conversions	(such	as	long	to	double)	lose	precision.

double x = 10.0 / 3.0; // sets x to
3.3333333333333335
int n = (int) x; //sets n to 3

float f = (float) x; //sets f to 3.3333333

16
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Math Class

17

• Does	not	operate	on	objects.
• Numbers	are	supplied	as	parameters.

double y = Math.sqrt(x);

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Control Flow Statements

If	statement:

if (x >= 0)

y = Math.sqrt(x);
else

y = 0;

18
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Control Flow Statements

while		statement:

while (x < target)

{
x = x * a;

n++;

}

19

do	statement:

do

{
x = x * a;

n++;

} while (x <
target);

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Control Flow Statements

for	statement:

for (i = 1; i <= n; i++)

{
x = x * a;

sum = sum + x;

}

Variable	scope.

20
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Object References
• An	object	value	is	always	a	reference	to	an	object.

Greeter worldGreeter = new Greeter("World");

• Can	have	multiple	references	to	the	same	object
Greeter anotherGreeter = worldGreeter;

• After	applying	mutator method,	all	references	access	modified	object
anotherGreeter.setName("Dave");

// now worldGreeter.sayHello() returns "Hello, Dave!"

21
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

The null References

• null	refers	to	no	object	
• Can	assign	null	to	object	variable:

worldGreeter = null;

• Can	test	whether	reference	is	null
if (worldGreeter == null) . . .

• Dereferencing	null	causes	NullPointerException

22
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Parameter Passing
• Object	reference	on	which	you	invoke	a	method	is	called	
implicit	parameters.

• A	method	may	have	any	number	of	explicit	parameters	that	are	
supplied	between	parenthesis.

myGreeter.setName(“Mars”)

• Occasionally,	you	need	to	refer	to	the	implicit	parameter	of	a	
method	by	its	special	name	(this).

public void setName (String name)
{

this.name = name;
}

23
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Parameter Passing
• Java	uses	"call	by	value":

o Method	receives	copy	of	parameter	value.	
o Copy	of	object	reference	lets	method	modify	object.

public void copyNameTo(Greeter other)
{

other.name = this.name;
}

Greeter worldGreeter = new Greeter("World");
Greeter daveGreeter = new Greeter("Dave");
worldGreeter.copyNameTo(daveGreeter);

24
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Parameter Passing
• Java has no "call by reference"

public void copyLengthTo (int n)
{

n = name.length();
}

public void copyGreeterTo (Greeter other)
{

other = new Greeter(name);
}

• Neither	call	has	any	effect	after	the	method	returns

int length = 0;
Greeter worldGreeter = new Greeter("World");
Greeter daveGreeter = new Greeter("Dave");

worldGreeter.copyLengthTo(length); // length still 0

worldGreeter.copyGreeterTo(daveGreeter) // daveGreeter unchanged

25
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Packages

• Classes	are	grouped	into	packages.	
• Package	names	are	dot-separated	identifier	sequences:

java.util
javax.swing
com.sun.misc
edu.sjsu.cs.cs151.alice

• Recommendation
Unique	package	names:	start	with	reverse	domain	name.

26
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Packages
• Add	package	statement	to	top	of	file.

package edu.sjsu.cs.cs151.alice;

public class Greeter
{

. . .
}

• Class	without	package	name	is	in	"default	package"	
• Full	name	of	class	=	package	name	+	class	name

edu.sjsu.cs.cs151.alice.Greeter

java.util.ArrayList

javax.swing.JOptionPane

27
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Packages
• Tedious	to	use	full	class	names.	
• import allows	you	to	use	short	class	name.

import java.util.Scanner;
. . .
Scanner a; // i.e. java.util.Scanner

• Can	import	all	classes	from	a	package.
import java.util.*;

28
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Packages
• Cannot	import	from	multiple	packages

import java.*.*; // NO

• If	a	class	occurs	in	two	imported	packages,	import	is	no	
help	(such	as	class	Date).

import java.util.*;
import java.sql.*;

• You	must	use	the	full	name:
java.util.Date date;

• Never	need	to	import	java.lang

29
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Packages and Directories
• Package	name	must	match	subdirectory	name.

edu.sjsu.cs.sjsu.cs151.alice.Greeter
• must	be	in	subdirectory	

basedirectory/edu/sjsu/cs/sjsu/cs151/alice

• Always	compile	from	the	base	directory
javac edu/sjsu/cs/sjsu/cs151/alice/Greeter.java

or
javac edu\sjsu\cs\sjsu\cs151\alice\Greeter.java

• Always	run	from	the	base	directory
java edu.sjsu.cs.cs151.alice.GreeterTest

30
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Exception Handling
• Example:	NullPointerException

String name = null;
int n = name.length(); // ERROR

• Cannot	apply	a	method	to	null	
• Virtual	machine	throws	exception	(NullPointerException)
• Unless	there	is	a	handler,	program	exits	with	stack	trace

Exception in thread "main"
java.lang.NullPointerException
at Greeter.sayHello(Greeter.java:25)
at GreeterTest.main(GreeterTest.java:6)

31
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Checked and Unchecked Exceptions

• Compiler	tracks	only	checked exceptions.
• NullPointerException is	not	checked.
• IOException is	checked.

• Generally, checked exceptions are thrown for reasons
beyond the programmer's control.

• Two	approaches	for	dealing	with	checked	exceptions
o Declare	the	exception	in	the	method	header	(preferred)	
o Handle	or	Catch	the	exception	

32
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Declaring Checked Exceptions

• Opening	a	file	may	throw	FileNotFoundException:
public void read(String filename) throws FileNotFoundException
{

FileReader reader = new FileReader(filename);
. . .

}

• Can	declare	multiple	exceptions

public void read(String filename) throws IOException, ClassNotFoundException

public static void main(String[] args) throws IOException,
ClassNotFoundException

33
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Catching Exceptions
try
{

code that might throw an IOException
}

catch (IOException exception)
{

take corrective action
}

• Corrective	action	can	be:
o Notify	user	of	error	and	offer	to	read	another	file.	
o Log	error	in	error	report	file.	

• For	debugging	purposes	you	need	to	see	the	stack	trace.

exception.printStackTrace();
System.exit(1);

34
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

The finally Clause
• Cleanup	needs	to	occur	during	normal	and	exceptional	processing.	

Example: Close a file

FileReader reader = null;
try
{

reader = new FileReader(name);
...

}

finally
{

if (reader != null) reader.close();
}

35
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Strings
• Sequence	of	Unicode	characters.	
• Strings	positions	start	at	0.

String greeting = “Hello”;

char ch = greeting.charAt(1); // sets ch to ‘e’

• lengthmethod	yields	the	number	of	characters	in	a	String.
• “ ” is	the	empty	string	of	length	0,	different	from	null.	

• “Hello”.length() is 5.

36
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Strings
• Substring	method	yields	substrings:

"Hello".substring(1, 3) is "el"

• Since	strings	are	objects,	use	equals	method	to	compare	strings

if (greeting.equals("Hello"))

• == only	tests	whether	the	object	references	are	identical.

if ("Hello".substring(1, 3) == "el")...// NO!

37
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

String concatenation
• + operator	concatenates	strings:

"Hello, " + name

• If	one	argument	of	+	is	a	string,	the	other	is	converted	into	a	string:
int n = 7;
String greeting = "Hello, " + n; // yields "Hello, 7“

• toStringmethod	is	applied	to	objects
Date now = new Date();
String greeting = "Hello, " + now;
// concatenates now.toString()
// yields "Hello, Wed Jan 17 16:57:18 PST 2001"

38
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Converting Strings to Numbers
• Use	static	methods

Integer.parseInt
Double.parseDouble

Example:
String input = "7";
int n = Integer.parseInt(input); // yields integer 7

• If	string	doesn't	contain	a	number,	throws	a NumberFormatException
(unchecked)	

39
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Reading Input
• Construct	Scanner from	input	stream	(e.g.	System.in)

• If	the	user	types	input	that	is	not	a	number,	InputMismatchException
is	thrown.		

hasNextInt,	hasNextDouble test	whether	next	token	is	a	number.	

40
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Reading Input
• next reads	next	string	(delimited	by	whitespace).	
• nextLine reads	next	line.

Scanner in = new Scanner (new FileReader (“input.txt”));

While (in.hasNextLine())

{

String line = in.nextLine();
…….

}

41
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

The ArrayList<E> class
• Generic	class: ArrayList<E>	collects	objects	of	type	E.	
• E	cannot	be	a	primitive	type.

You	can	use	an	ArrayList<Date>	but	NOT ArrayList<int>

• add appends	to	the	end	of	the	array	list.

ArrayList<String> countries = new ArrayList<String>();

countries.add("Belgium");

countries.add("Italy");

countries.add("Thailand");

42
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

The ArrayList<E> class
• get gets	an	element;	no	need	to	cast	to	correct	type:

String country = countries.get(i);

• set sets	an	element
countries.set(1, "France");

• sizemethod	yields	number	of	elements
for (int i = 0; i < countries.size(); i++) . .

• Use	"for	each"	loop
for (String country : countries) . . .

• Legal	positions	ranges	from	0	to	size()	– 1.

43
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

The ArrayList<E> class

• Insert	and	remove	elements	in	the	middle
countries.add(1, "Germany");
countries.remove(0);

• Not	efficient--use	linked	lists	if	needed	frequently

44
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Linked Lists
• Efficient	insertion	and	removal

• add appends	to	the	end	of	the	linked	list.

LinkedList<String> countries = new LinkedList<String>();
countries.add("Belgium");
countries.add("Italy");
countries.add("Thailand");

• Use	iterators to	edit	in	the	middle

45
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

List Iterators
• Iterator	points	between	list	elements.

• next	retrieves	element	and	advances	iterator

ListIterator<String> iterator = countries.listIterator();
while (iterator.hasNext())
{

String country = iterator.next();
. . .

}

• Or	use	"for	each"	loop:
for (String country : countries)

46
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

List Iterators
• add adds	element	before	iterator	position	

iterator = countries.listIterator();

iterator.next();

iterator.add(“France”);

• remove removes	element	returned	by	last	call	to	next

Example: Remove	the	second	element	of	the	countries	list.
iterator = countries.listIterator();

iterator.next();
iterator.next();

iterator.remove;

47
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Arrays
• Drawback	of	array	lists: can't	store	numbers.	

• Arrays	can	store	objects	of	any	type,	but	their	length	is	fixed.

int [] numbers = new int[10];

• Array	variable	is	a	reference.

48
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Arrays
• Array	access	with	[]	operator:

int n = numbers[i];

• lengthmember	yields	number	of	elements
for (int i = 0; i < numbers.length; i++)

• Use	"for	each"	loop
for (int n : numbers) . . .

49
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Array
• Can	have	array	of	length	0;	not the	same	as	null:

numbers = new int[0];

• Multidimensional	array

int[][] table = new int[10][20];
int t = table[row] [column];

50
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

• Shared	among	all	instances	of	a	class.
• static	field	is	more	accurately	called	class	variable.	

Example: shared	random	number	generator.

public class Greeter
{

. . .
private static Random generator;

}

Example: shared	constants.

public class Math
{

. . .
public static final double PI = 3.14159265358979323846;

}

51

Static Fields

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Static Methods
• Don't	operate	on	objects.
Example:Math.sqrt

• factory	method

public static Greeter getRandomInstance()
{

if (generator.nextBoolean())
return new Greeter("Mars");

else
return new Greeter("Venus");

}

• Invoke	through	class:

Greeter g = Greeter.getRandomInstance();

• Static	fields	and	methods	should	be	rare	in	OO	programs.

52
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Programming Style: Case Convention

• variables,	fields	and	methods:
start	with	lowercase,	use	caps	for	new	words (camelCase):

name
sayHello

• Classes:
start	with	uppercase,	use	caps	for	new	words (PascalCase):

Greeter
ArrayList

• Constants:
use	all	caps,	underscores	to	separate	words

PI
MAX_VALUES

53
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Programming Style: Property Access

• Common	to	use	get/set prefixes:

public String getName()

void setName(String newValue)

• Boolean	property	has	is/set prefixes:

public boolean isPolite()

public void setPolite(boolean newValue)

54
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Programming Style: Braces
• "Allman"	brace	style:	braces	line	up.

public String sayHello()
{

return "Hello, " + name + "!";
}

• "Kernighan	and	Ritchie"	brace	style:	saves	a	line.
public String sayHello() {

return "Hello, " + name + "!";
}

We	will	follow	“Allman”	style.

55
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Programming Style: Fields
• Some	programmers	put	fields	before	methods:

public class Greeter
{

private String name;

public Greeter(String aName) { . . . }
. . .

}

• All	fields	should	be	private.

• Don't	use	default	(package)	visibility.	

56
CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

Programming Style: Miscellaneous
• Spaces	around	operators,	after	keywords,	but	not	after	method	names:

• Don't	use	C-style	arrays:

• No	magic	numbers

57

Bad Good

if(x>Math.sqrt (y)) if (x > Math.sqrt(y))

Bad Good

int numbers[] int[] numbers

Bad Good

h = 31 * h + val[off]; final int HASH_MULTIPLIER = 31;
h = HASH_MULTIPLIER * h + val[off];

CPSC 2100
University of Tennessee at Chattanooga – Fall 2013

End of Chapter 1

58

