
NFIS2 Software



2

Software
• Image Group of the National Institute of 

Standards and Technology (NIST)
• NIST Fingerprint Image Software Version 2 

(NFIS2)
• Developed for Federal Bureau of Investigation 

(FBI) and Department of Homeland Security 
(DHS)
• Aims to facilitate and support the automated 

manipulation and processing of fingerprint 
images. 
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NIST Fingerprint Image Software 
Version 2 (NFIS2)
• NFIS2 contains 7 general categories. 
• We investigate 4 out of 7: PCASYS, MINDTCT, 

NFIQ and BOZORTH3. 
• PCASYS is a neural-network based fingerprint 

classification system, which categorized a 
fingerprint image into the class of arch, left or 
right loop, scar, tented arch, or whorl. 
• PCASYS is the only known no cost system of its 

kind. 
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NIST Fingerprint Image Software 
Version 2 (NFIS2)
• MINDTCT is a minutiae detector that 

automatically locates and records ridge ending 
and bifurcations in a fingerprint image. 
• MINDTCT includes minutiae quality assessment 

based on local image conditions. 
• The FBI’s Universal Latent Workstation uses 

MINDTCT, and it too is the only known no cost 
system of its kind. 
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NIST Fingerprint Image Software 
Version 2 (NFIS2)
• NFIQ is a fingerprint image quality 

algorithm that analyses a fingerprint 
image and assigns a quality value of 1 
(highest quality) – 5 (lowest quality) to 
the image. 
• Higher quality images produce significantly 

better performance with matching 
algorithm. 
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NIST Fingerprint Image Software 
Version 2 (NFIS2)
• BOZORTH3 is a minutiae based fingerprint 

matching algorithm that will do both one-to-one 
and one-to-many matching operations.  
• BOZORTH3 matching algorithm computes a 

match score between the minutiae from any two 
fingerprints to help determine if they are from 
the same finger.
• BOZORTH3 accepts minutiae generated by the 

MINDTCT algorithm. 
• Written by Allan S. Bozorth while at the FBI.
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Fingerprint Classification (PCASYS)

• PCASYS is a prototype/demonstration pattern-level 
fingerprint classification program. 
• It is provided in the form of a source code distribution 

and is intended to run on a desktop workstation. 
• The program reads and classifies each of a set of 

fingerprint image files, optionally displaying the results 
of several processing stages in graphical form. 
• This distribution contains 2700 fingerprint images that 

may be used to demonstrate the classifier; it can also be 
run on user-provided images.
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Fingerprint Classification (PCASYS)

• The basic method used by the PCASYS 
fingerprint classifier consists of,
– First, extracting from the fingerprint to be classified 

an array (a two-dimensional grid in this case) of the 
local orientations of the fingerprint’s ridges and 
valleys.

– Second, comparing that orientation array with similar 
arrays made from prototype fingerprints ahead of 
time.

• Refer to nbis_non_export_control.pdf for details
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Fingerprint Classification (PCASYS)

Fingerprint used to demonstrate the fingerprint classification process 
(s0025236.wsq).
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PCASYS -- Segmentor

• Segmentor input an 8-bit grayscale raster of width 
at least 512 pixels and height at least 480 pixels 
(these dimensions, and scanned at about 19.69 pixels 
per millimeter (500 pixels per inch). 

• The segmentor produces, as its output, an image that 
is 512×480 pixels in size by cutting a rectangular 
region of these dimensions out of the input image.
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PCASYS -- Segmentor
1. the segmentor produces a small binary (two-valued or logical-

valued) image, and the part of the image that contains ink is called 
foreground. 

2. the routine performs some cleanup work on the foreground-image, 
the main purpose of which is to delete those parts of the foreground 
that correspond to printing or writing rather than the finger 
impression.

3-6. the routine uses the edges to calculate the overall slope of the 
foreground and fits a straight line to each edge by linear regression.

7.  last frame in Figure 7 is the (cleaned-up) foreground with an outline 
superimposed on it showing where the segmentor has decided to 
cut.
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PCASYS -- Segmentor

resulting segmented image
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PCASYS - Image Enhancement

• Perform the forward two-dimensional Fast 
Fourier transform (FFT) to convert the data from 
its original (spatial) representation to a 
frequency representation. 
• The backward 2-d FFT is done to return the 

enhanced data to a spatial representation before 
snipping out the middle 16×16 pixels and 
installing them into the output image.
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PCASYS - Image Enhancement
• Noticeable difference seen between the original and 

enhanced versions is the increase in contrast.
• The more important change caused by the enhancer is the 

improved smoothness and stronger ridge/valley structure
of the image.
• Discontinuities are visible at the boundaries of some 

output squares have no major harmful effect on 
subsequent processing.

Sample fingerprint after enhancement
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PCAYSIS - Ridge-Valley Orientation 
Detector

• This step detects the local orientation of 
the ridges and valleys of the finger 
surface, and produces an array of regional 
averages of these orientations.
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PCAYSIS - Ridge-Valley Orientation Detector
• depicts the local average orientations that were detected 

in the segmented and filtered image from the example 
fingerprint.
• Array of local average orientations of the example 

fingerprint. Each bar, depicting an orientation, is 
approximately parallel to the local ridges and valleys.
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PCASYS -- Registration

• Registration is a process that the classifier 
uses in order to reduce the amount of 
translation variation between similar 
orientation arrays.
• registration improves subsequent 

classification accuracy.
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PCASYS -- Registration

• Left: Orientation array Right: Registered orientation 
array. The plus sign is registration point (core) found by 
R92 (an algorithm), and plus sign in a square is standard 
(median) registration point. 
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PCASYS -- Regional Weights

• In order to allow the important central 
region of the fingerprint to have more 
weight than the outer regions; what we 
call regional weights.
• Involving the application of linear 

transforms prior to PNN distance 
computations, we obtained the best 
results by using regional weights.
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PCASYS -- Regional Weights
• Absolute values of the optimized regional 

weights. Each square represents one weight, 
associated with a 2×2 block from the registered 
orientation array.
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PCASYS --Probabilistic Neural Network Classifier
• Input the low-dimensional feature vector that is 

the output of the transform (PCA) and 
determine the class of the fingerprint.
• Probabilistic Neural Network (PNN) classifies an 

incoming feature vector by computing the value 
of spherical Gaussian kernel functions centered 
at each of a large number of stored prototype 
feature vectors.
• These prototypes were made ahead of time

from a training set of fingerprints of known class
by using the same preprocessing and feature 
extraction that was used to produce the 
incoming feature vector. 
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PCASYS --Probabilistic Neural Network 
Classifier

• For each class, an activation is made by 
adding up the values of the kernels 
centered at all prototypes of that class; 
the hypothesized class is then defined to 
be the one whose activation is largest. 
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PCASYS --Probabilistic Neural Network 
Classifier
• This is a bar graph of the normalized activations 

produced for the example fingerprint.
• All 6 normalized activations are shown here. 
• The whorl (W) class has won and so is the hypothesized 

class (correctly as it turns out), but the left loop (L) class 
has also received a fairly large activation and therefore 
the confidence is only moderately high.

PNN output activations for the 
example fingerprint
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PCASYS -- Multi-Layer Perceptron 
Neural Network Classifier
• MLP output activations for the example 

fingerprint
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PCASYS - Output
• Each line shows: the fingerprint filename; the actual 

class (A, L, R, S, T, and W stand for the pattern-level 
classes arch, left loop, right loop, sear, tented arch, and 
whorl); the output of the classifier (a hypothesized class 
and a confidence); the output of the auxiliary pseudo-
ridge tracing whorl detector (whether or not a concave-
upward shape, a “conup,” was found); the final output 
of the hybrid classifier, which is a hypothesized class and 
a confidence; and whether this hypothesized class was 
right or wrong.
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Minutiae Detection (MINDTCT)
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Minutiae Detection (MINDTCT)

• MINDTCT takes a fingerprint image and locates 
all minutiae in the image, assigning to each 
minutia point its location, orientation, type, and 
quality.
• The command, mindtct, reads a fingerprint 

image from an ANSI/NIST, WSQ, baseline JPEG, 
lossless JPEG file, or IHead formatted file.
• Mindtct outputs the minutiae identification based 

on the ANSI/NIST standard or the M1 (ANSI 
INCITS 378-2004) representation. 
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Detected Minutiae 

Minutiae results
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MINDTCT

Minutiae detection process
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MINDTCT -- Generate Image Quality 
Maps
• The image quality of a fingerprint may vary, especially in 

the case of latent fingerprints, it is critical to be able to 
analyze the image and determine areas that are 
degraded and likely to cause problems. 
• Several characteristics can be measured that are 

designed to convey information regarding the quality of 
localized regions in the image. 
• These include determining the directional flow of ridges

in the image and detecting regions of low contrast, low 
ridge flow, and high curvature. 
• These conditions represent unstable areas in the image 

where minutiae detection is unreliable, and together 
they can be used to represent levels of quality in the 
image.
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MINDTCT -- Direction Map
• One of the fundamental steps in this minutiae 

detection process is deriving a directional ridge 
flow map, or direction map. 
• The purpose of this map is to represent areas of 

the image with sufficient ridge structure. Well-
formed and clearly visible ridges are essential to 
reliably detecting points of ridge ending and 
bifurcation.
• In addition, the direction map records the 

general orientation of the ridges as they flow 
across the image. 
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MINDTCT -- Direction Map
• Within an orientation, the pixels along each rotated row of the 

window are summed together, forming a vector of 24 pixel row 
sums. 

• The resonance coefficients produced from convolving each of the 16 
orientation’s row sum vectors with the 4 different discrete 
waveforms are stored and then analyzed. 

• Generally, the dominant ridge flow direction for the block is 
determined by the orientation with maximum waveform resonance.

waveform frequenciesWindow rotation at incremental orientations
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MINDTCT -- Direction Map

• Direction Map Result
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MINDTCT

• Low Contrast Map
• Low Flow Map
• High curve map
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MINDTCT--Quality Map
• the low contrast map, low flow map, and the high curve map all 

point to different low quality regions of the image. 
• The information in these maps is integrated into one general map, 

and contains 5 levels of quality.

Portion of Quality Map
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MINDTCT -- Binarize Image

• The minutiae detection algorithm in this system 
is designed to operate on a bi-level (or binary) 
image where black pixels represent ridges and 
white pixels represent valleys in a finger's 
friction skin. 
• To create this binary image, every pixel in the 

grayscale input image must be analyzed to 
determine if it should be assigned a black or 
white pixel. 
• This process is referred to as image binarization.
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MINDTCT -- Binarize Image
• A pixel is assigned a binary value based on the ridge 

flow direction associated with the block the pixel is 
within.

• With the pixel of interest in the center, the grid is 
rotated so that its rows are parallel to the local ridge 
flow direction
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MINDTCT -- Binarize Image
• Grayscale pixel intensities are accumulated along 

each rotated row in the grid, forming a vector of 
row sums. 
• The binary value to be assigned to the center 

pixel is determined by multiplying the center row 
sum by the number of rows in the grid and 
comparing this value to the accumulated 
grayscale intensities within the entire grid. 
• If the multiplied center row sum is less than the 

grid's total intensity, then the center pixel is set 
to black; otherwise, it is set to white.
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MINDTCT -- Binarize Image

• The binarization results need to be robust in 
terms of effectively dealing with varying degrees 
of image quality and reliable in terms of 
rendering ridge and valley  structures accurately.

Binarization results
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MINDTCT--Detect Minutiae

• This step methodically scans the binary image of a 
fingerprint, identifying localized pixel patterns that 
indicate the ending or splitting of a ridge.
• This pattern may represent the end of a black ridge 

protruding into the pattern from the right. 

Pixel pattern used to detect ridge endings
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MINDTCT -- Pixel patterns used to 
detect minutiae



42

Remove False Minutiae

• These steps include removing islands, 
lakes, holes, minutiae in regions of poor 
image quality, side minutiae, hooks, 
overlaps, minutiae that are too wide, and 
minutiae that are too narrow (pores).
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MINDTCT -- Output Minutiae File

• The direction map is stored in <oroot>.dm;
• The low contrast map is stored in <oroot>.lcm; 
• The low flow map is stored in <oroot>.lfm; 
• The high curve map is stored in <oroot>.hcm; and 
• The quality map is stored in <oroot>.qm. 
• The maps are represented by a grid of numbers, each 

corresponding to a block in the fingerprint image. 
• The resulting minutiae can be accessed in the text file <oroot>.min 

containing a formatted listing of attributes associated with each 
detected minutiae in the fingerprint image. 

• For all input types the detected minutiae are also written to a text 
file <oroot>.xyt that is formatted for use with the bozorth3 
matcher. 

• This file has one space delimited line per minutiae containing its x 
and y coordinate, direction angle theta, and the minutiae quality.
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Image Quality (NFIQ)
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Image Quality (NFIQ)

• The NFIQ algorithm is an implementation of the 
NIST “Fingerprint Image Quality” algorithm.
• It takes an input image that is in ANSI/NIST or 

NIST IHEAD format or compressed using WSQ, 
baseline JPEG, or lossless JPEG. 
• NFIQ outputs the image quality value
• for the image (where 1 is highest quality and 5 

is lowest quality).
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Image Quality (NFIQ)

• Neural networks offer a very powerful and very 
general framework for representing non-linear 
mappings from several input variables to several 
output variables, where the form of the mapping 
is governed by a number of adjustable 
parameters (weights). 
• The process of determining the values for these 

weights based on the data set is called training 
and the data set of examples is generally 
referred to as a training set. 
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How to perform training
• Fing2pat gets the list of gray-scale fingerprint images in 

the training set along with their class labels as input and 
computes patterns for MLP training and writes them to a 
binary file.
• Each pattern consists of a feature vector, along with a 

class vector.
• The user can compute the global mean and standard 

deviation statistics using znormdat or use the set 
provided in nfiq/znorm.dat. 
• These global statistics can be applied to new pattern 

files using nzormpat. 
• The user needs to write a spec file, setting parameters 

of the training runs that MLP is to perform.
• The spec file used in the training of NIST Fingerprint 

Image Quality can be found in the file nfiq/spec.
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Minutiae Matching (BOZORTH3)
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Minutiae Matching (BOZORTH3)
• The BOZORTH3 matcher uses only the location (x,y) and 

orientation (theta) of the minutia points to match the 
fingerprints. 
• The matcher builds separate tables for the fingerprints 

being matched that define distance and orientation 
between minutia in each fingerprint. 
• These two tables are then compared for compatibility 

and a new table is constructed that stores information 
showing the inter-fingerprint compatibility. 
• The inter-finger compatibility table is used to create a 

match score by looking at the size and number of 
compatible minutia clusters.
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Minutiae Matching (BOZORTH3)

• Two key things are important to note 
regarding this fingerprint matcher:

1. Minutia features are exclusively used and 
limited to location (x,y) and orientation ‘t’, 
represented as {x,y,t}.

2. The algorithm is designed to be rotation 
and translation invariant.
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Minutiae Matching (BOZORTH3)
• The algorithm is comprised of three major steps:
1. Construct Intra-Fingerprint Minutia Comparison Tables

– One table for the probe fingerprint and 
– One table for each gallery fingerprint to be matched against.

2. Construct an Inter-Fingerprint Compatibility Table
– Compare a probe print’s minutia table to a gallery print’s 

minutia table and construct a new inter-fingerprint compatibility 
table. 

3. Traverse the Inter-Fingerprint Compatibility Table
a. Traverse and link table entries into clusters
b. Combine compatible clusters and accumulate a match 
score.
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Minutiae Matching (BOZORTH3)

• Construct Intra-Fingerprint Minutia 
Comparison Tables
– Compute relative measurements from each 

minutia in a fingerprint to all other minutia in 
the same fingerprint. 

– These relative measurements are stored in a 
minutia comparison table and are what 
provide the algorithm’s rotation and 
translation invariance.
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Construct Intra-Fingerprint Minutia 
Comparison Tables

• the distance dkj is computed 
between the two minutia 
locations.
• the angle of each minutia’s 

orientation and the 
intervening line between 
both minutiae. 
• Each entry consists of 

{dkj, β1, β2, k, j, θkj} where
β1 = min(βk,βj) and β2 = 
max(βk,βj)
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• The following three tests are conducted to determine if table 
entries Pm and Gn are “compatible.”
• The first test checks to see if the corresponding distances are 

within a specified tolerance Td.
• The last two tests check to see if the relative minutia angles are 

within a specified tolerance Tβ. ∆d () and ∆β () are “delta” or 
difference functions.
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Traverse the Inter-Fingerprint 
Compatibility Table
• At this point in the process, we have constructed a 

compatibility table which consists of a list of 
compatibility association between two pairs of potentially 
corresponding minutiae. 
• These associations represent single links in a 

compatibility graph. 
• To determine how well the two fingerprints match each 

other, a simple goal would be to traverse the 
compatibility graph finding the longest path of linked 
compatibility associations. 
• The match score would then be the length of the longest 

path.


