Objectives

• List digital evidence storage formats
• Explain ways to determine the best acquisition method
• Describe contingency planning for data acquisitions
• Explain how to use acquisition tools
Objectives (continued)

• Explain how to validate data acquisitions
• Describe RAID acquisition methods
• Explain how to use remote network acquisition tools
• List other forensic tools available for data acquisitions
Understanding Storage Formats for Digital Evidence

• Three formats
 – Raw format
 – Proprietary formats
 – Advanced Forensics Format (AFF)
Raw Format

• Makes it possible to write bit-stream data to files
• Advantages
 – Fast data transfers
 – Can ignore minor data read errors on source drive
 – Most computer forensics tools can read raw format
• Disadvantages
 – Requires as much storage as original disk or data
 – Tools might not collect marginal (bad) sectors
Proprietary Formats

• Features offered
 – Option to compress or not compress image files
 – Can split an image into smaller segmented files
 – Can integrate metadata into the image file

• Disadvantages
 – Inability to share an image between different tools
 – File size limitation for each segmented volume
Advanced Forensics Format

• Developed by Dr. Simson L. Garfinkel of Basis Technology Corporation

• Design goals
 – Provide compressed or uncompressed image files
 – No size restriction for disk-to-image files
 – Provide space in the image file or segmented files for metadata
 – Simple design with extensibility
 – Open source for multiple platforms and OSs
Advanced Forensics Format (continued)

- Design goals (continued)
 - Internal consistency checks for self-authentication
- File extensions include .afd for segmented image files and .afm for AFF metadata
- AFF is open source
Determining the Best Acquisition Method

• Types of acquisitions
 – Static acquisitions and live acquisitions

• Four methods
 – Bit-stream disk-to-image file
 – Bit-stream disk-to-disk
 – Logical disk-to-disk or disk-to-disk data
 – Sparse data copy of a file or folder
Determining the Best Acquisition Method (continued)

• Bit-stream disk-to-image file
 – Most common method
 – Can make more than one copy
 – Copies are bit-for-bit replications of the original drive
 – ProDiscover, EnCase, FTK, SMART, Sleuth Kit, X-Ways, iLook

• Bit-stream disk-to-disk
 – When disk-to-image copy is not possible
 – Consider disk’s geometry configuration
 – EnCase, SafeBack, SnapCopy
Determining the Best Acquisition Method (continued)

- **Logical acquisition or sparse acquisition**
 - When your time is limited
 - Logical acquisition captures only specific files of interest to the case
 - Sparse acquisition also collects fragments of unallocated (deleted) data
 - For large disks
 - PST or OST mail files, RAID servers
Determining the Best Acquisition Method (continued)

• When making a copy, consider:
 – Size of the source disk
 • Lossless compression might be useful
 • Use digital signatures for verification
 – When working with large drives, an alternative is using tape backup systems
 – Whether you can retain the disk
Contingency Planning for Image Acquisitions

- Create a duplicate copy of your evidence image file
- Make at least two images of digital evidence
 - Use different tools or techniques
- Copy host protected area of a disk drive as well
 - Consider using a hardware acquisition tool that can access the drive at the BIOS level
- Be prepared to deal with encrypted drives
 - *Whole disk encryption* feature in Windows Vista Ultimate and Enterprise editions
Using Acquisition Tools

• Acquisition tools for Windows
 – Advantages
 • Make acquiring evidence from a suspect drive more convenient
 – Especially when used with hot-swappable devices
 – Disadvantages
 • Must protect acquired data with a well-tested write-blocking hardware device
 • Tools can’t acquire data from a disk’s host protected area
Windows XP Write-Protection with USB Devices

• USB write-protection feature
 – Blocks any writing to USB devices
• Target drive needs to be connected to an internal PATA (IDE), SATA, or SCSI controller
• Steps to update the Registry for Windows XP SP2
 – Back up the Registry
 – Modify the Registry with the write-protection feature
 – Create two desktop icons to automate switching between enabling and disabling writes to USB device
Windows XP Write-Protection with USB Devices (continued)
Acquiring Data with a Linux Boot CD

- Linux can access a drive that isn’t mounted
- Windows OSs and newer Linux automatically mount and access a drive
- Forensic Linux Live CDs don’t access media automatically
 - Which eliminates the need for a write-blocker
- Using Linux Live CD Distributions
 - Forensic Linux Live CDs
 - Contain additionally utilities
Acquiring Data with a Linux Boot CD (continued)

• Using Linux Live CD Distributions (continued)
 – Forensic Linux Live CDs (continued)
 • Configured not to mount, or to mount as read-only, any connected storage media
 • Well-designed Linux Live CDs for computer forensics
 – Helix
 – Penguin Sleuth
 – FCCU

• Preparing a target drive for acquisition in Linux
 – Linux distributions can create Microsoft FAT and NTFS partition tables
Acquiring Data with a Linux Boot CD (continued)

- Preparing a target drive for acquisition in Linux (continued)
 - `fdisk` command lists, creates, deletes, and verifies partitions in Linux
 - `mkfs.msdos` command formats a FAT file system from Linux

- Acquiring data with `dd` in Linux
 - `dd` ("data dump") command
 - Can read and write from media device and data file
 - Creates raw format file that most computer forensics analysis tools can read
Acquiring Data with a Linux Boot CD (continued)

• Acquiring data with dd in Linux (continued)
 – Shortcomings of dd command
 • Requires more advanced skills than average user
 • Does not compress data
 – dd command combined with the split command
 • Segments output into separate volumes

• Acquiring data with dcfldd in Linux
 – dd command is intended as a data management tool
 • Not designed for forensics acquisitions
Acquiring Data with a Linux Boot CD (continued)

• Acquiring data with dcfldd in Linux (continued)
 – dcfldd additional functions
 • Specify hex patterns or text for clearing disk space
 • Log errors to an output file for analysis and review
 • Use several hashing options
 • Refer to a status display indicating the progress of the acquisition in bytes
 • Split data acquisitions into segmented volumes with numeric extensions
 • Verify acquired data with original disk or media data
Capturing an Image with ProDiscover Basic

• Connecting the suspect’s drive to your workstation
 – Document the chain of evidence for the drive
 – Remove the drive from the suspect’s computer
 – Configure the suspect drive’s jumpers as needed
 – Connect the suspect drive
 – Create a storage folder on the target drive

• Using ProDiscover’s Proprietary Acquisition Format
 – Image file will be split into segments of 650MB
 – Creates image files with an .eve extension, a log file (.log extension), and a special inventory file (.pds extension)
Capturing an Image with ProDiscover Basic (continued)

![Image of Split Image dialog box]

Figure 4-4 The Split Image dialog box
Figure 4-5 The Capture Image dialog box
Capturing an Image with ProDiscover Basic (continued)

- Using ProDiscover’s Raw Acquisition Format
 - Select the UNIX style dd format in the Image Format list box
 - Raw acquisition saves only the image data and hash value
Capturing an Image with AccessData FTK Imager

- Included on AccessData Forensic Toolkit
- View evidence disks and disk-to-image files
- Makes disk-to-image copies of evidence drives
 - At logical partition and physical drive level
 - Can segment the image file
- Evidence drive must have a hardware write-blocking device
 - Or the USB write-protection Registry feature enabled
- FTK Imager can’t acquire drive’s host protected area
Capturing an Image with AccessData
FTK Imager (continued)

Figure 4-6 The FTK Imager main window
Capturing an Image with AccessData
FTK Imager (continued)

• Steps
 – Boot to Windows
 – Connect evidence disk to a write-blocker
 – Connect target disk to write-blocker
 – Start FTK Imager
 – Create Disk Image
 • Use Physical Drive option
Capturing an Image with AccessData FTK Imager (continued)

![Select Source dialog box](image)

Figure 4-7 The Select Source dialog box
Capturing an Image with AccessData FTK Imager (continued)

Figure 4-8 The Select Image Type dialog box
Capturing an Image with AccessData FTK Imager (continued)

Figure 4-9 Selecting where to save the image file
Capturing an Image with AccessData FTK Imager (continued)

Figure 4-10 A completed image save
Validating Data Acquisitions

- Most critical aspect of computer forensics
- Requires using a hashing algorithm utility
- Validation techniques
 - CRC-32, MD5, and SHA-1 to SHA-512
Linux Validation Methods

• Validating dd acquired data
 – You can use md5sum or sha1sum utilities
 – md5sum or sha1sum utilities should be run on all suspect disks and volumes or segmented volumes

• Validating dcfldd acquired data
 – Use the hash option to designate a hashing algorithm of md5, sha1, sha256, sha384, or sha512
 – hashlog option outputs hash results to a text file that can be stored with the image files
 – vf (verify file) option compares the image file to the original medium
Windows Validation Methods

- Windows has no built-in hashing algorithm tools for computer forensics
 - Third-party utilities can be used
- Commercial computer forensics programs also have built-in validation features
 - Each program has its own validation technique
- Raw format image files don’t contain metadata
 - Separate manual validation is recommended for all raw acquisitions
Performing RAID Data Acquisitions

• Size is the biggest concern
 – Many RAID systems now have terabytes of data
Understanding RAID

• **Redundant array of independent** (formerly “inexpensive”) **disks** (RAID)
 – Computer configuration involving two or more disks
 – Originally developed as a data-redundancy measure

• **RAID 0**
 – Provides rapid access and increased storage
 – Lack of redundancy

• **RAID 1**
 – Designed for data recovery
 – More expensive than RAID 0
Understanding RAID (continued)

• RAID 2
 – Similar to RAID 1
 – Data is written to a disk on a bit level
 – Has better data integrity checking than RAID 0
 – Slower than RAID 0

• RAID 3
 – Uses data stripping and dedicated parity

• RAID 4
 – Data is written in blocks
Understanding RAID (continued)
Understanding RAID (continued)

Figure 4-12: RAID 1: Mirroring

128 KB file

Disk 1

Disk 2

Disk 3

Disk 4
Understanding RAID (continued)

Figure 4-13 RAID 2: Striping (bit level)
Understanding RAID (continued)

- **RAID 5**
 - Similar to RAIDs 0 and 3
 - Places parity recovery data on each disk
- **RAID 6**
 - Redundant parity on each disk
- **RAID 10, or mirrored striping**
 - Also known as RAID 1+0
 - Combination of RAID 1 and RAID 0
Understanding RAID (continued)

Figure 4-14 RAID 5: Block-level striping with distributed parity
Acquiring RAID Disks

• Concerns
 – How much data storage is needed?
 – What type of RAID is used?
 – Do you have the right acquisition tool?
 – Can the tool read a forensically copied RAID image?
 – Can the tool read split data saves of each RAID disk?

• Older hardware-firmware RAID systems can be a challenge when you’re making an image
Acquiring RAID Disks (continued)

• Vendors offering RAID acquisition functions
 – Technologies Pathways ProDiscover
 – Guidance Software EnCase
 – X-Ways Forensics
 – Runtime Software
 – R-Tools Technologies

• Occasionally, a RAID system is too large for a static acquisition
 – Retrieve only the data relevant to the investigation with the sparse or logical acquisition method
Using Remote Network Acquisition Tools

• You can remotely connect to a suspect computer via a network connection and copy data from it
• Remote acquisition tools vary in configurations and capabilities
• Drawbacks
 – LAN’s data transfer speeds and routing table conflicts could cause problems
 – Gaining the permissions needed to access more secure subnets
 – Heavy traffic could cause delays and errors
Remote Acquisition with ProDiscover

• With ProDiscover Investigator you can:
 – Preview a suspect’s drive remotely while it’s in use
 – Perform a live acquisition
 – Encrypt the connection
 – Copy the suspect computer’s RAM
 – Use the optional stealth mode

• ProDiscover Incident Response additional functions
 – Capture volatile system state information
 – Analyze current running processes
Remote Acquisition with ProDiscover (continued)

• ProDiscover Incident Response additional functions (continued)
 – Locate unseen files and processes
 – Remotely view and listen to IP ports
 – Run hash comparisons
 – Create a hash inventory of all files remotely

• PDServer remote agent
 – ProDiscover utility for remote access
 – Needs to be loaded on the suspect
Remote Acquisition with ProDiscover (continued)

• PDServer installation modes
 – Trusted CD
 – Preinstallation
 – Pushing out and running remotely
• PDServer can run in a stealth mode
 – Can change process name to appear as OS function
Remote Acquisition with ProDiscover (continued)

- Remote connection security features
 - Password Protection
 - Encryption
 - Secure Communication Protocol
 - Write Protected Trusted Binaries
 - Digital Signatures
Remote Acquisition with EnCase Enterprise

• Remote acquisition features
 – Remote data acquisition of a computer’s media and RAM data
 – Integration with intrusion detection system (IDS) tools
 – Options to create an image of data from one or more systems
 – Preview of systems
 – A wide range of file system formats
 – RAID support for both hardware and software
Remote Acquisition with R-Tools R-Studio

- R-Tools suite of software is designed for data recovery
- Remote connection uses Triple Data Encryption Standard (3DES) encryption
- Creates raw format acquisitions
- Supports various file systems
Remote Acquisition with Runtime Software

• Utilities
 – DiskExplorer for FAT
 – DiskExplorer for NTFS
 – HDHOST

• Features for acquisition
 – Create a raw format image file
 – Segment the raw format or compressed image
 – Access network computers’ drives
Using Other Forensics-Acquisition Tools

- SnapBack DatArrest
- SafeBack
- DIBS USA RAID
- ILook Investigator IXimager
- Vogon International SDi32
- ASRData SMART
- Australian Department of Defence PyFlag
SnapBack DatArrest

- Columbia Data Products
- Old MS-DOS tool
- Can make an image on three ways
 - Disk to SCSI drive
 - Disk to network drive
 - Disk to disk
- Fits on a forensic boot floppy
- SnapCopy adjusts disk geometry
NTI SafeBack

- Reliable MS-DOS tool
- Small enough to fit on a forensic boot floppy
- Performs an SHA-256 calculation per sector copied
- Creates a log file
NTI SafeBack (continued)

• Functions
 – Disk-to-image copy (image can be on tape)
 – Disk-to-disk copy (adjusts target geometry)
 • Parallel port laplink can be used
 – Copies a partition to an image file
 – Compresses image files
DIBS USA RAID

• Rapid Action Imaging Device (RAID)
 – Makes forensically sound disk copies
 – Portable computer system designed to make disk-to-disk images
 – Copied disk can then be attached to a write-blocker device
ILook Investigator IXimager

• IXimager
 – Runs from a bootable floppy or CD
 – Designed to work only with ILook Investigator
 – Can acquire single drives and RAID drives
Vogon International SDi32

- Creates a raw format image of a drive
- Write-blocker is needed when using this tool
- Password Cracker POD
 - Device that removes the password on a drive’s firmware card
ASRData SMART

• Linux forensics analysis tool that can make image files of a suspect drive

• Capabilities
 – Robust data reading of bad sectors on drives
 – Mounting suspect drives in write-protected mode
 – Mounting target drives in read/write mode
 – Optional compression schemes
Australian Department of Defence

PyFlag

• PyFlag tool
 – Intended as a network forensics analysis tool
 – Can create proprietary format Expert Witness image files
 – Uses sgzip and gzip in Linux
Summary

• Data acquisition methods
 – Disk-to-image file
 – Disk-to-disk copy
 – Logical disk-to-disk or disk-to-data file
 – Sparse data copy

• Several tools available
 – Lossless compression is acceptable

• Plan your digital evidence contingencies

• Write-blocking devices or utilities must be used with GUI acquisition tools
Summary (continued)

• Always validate acquisition
• A Linux Live CD, such as Helix, provides many useful tools for computer forensics acquisitions
• Preferred Linux acquisition tool is dcfldd (not dd)
• Use a physical write-blocker device for acquisitions
• To acquire RAID disks, determine the type of RAID
 – And then which acquisition tool to use