
Access Control

Discretionary Access Control
Lecture 4

1

Introduction

“Access control” is where security engineering meets
computer science.
Its function is to control which (active) subject have access
to a which (passive) object with some specific access
operation.

subject Access
Operation

object

2

Access Control
Discretionary Access Control (DAC)
– Access Matrix Model
– Implementation of the Access Matrix
– Vulnerabilities of the Discretionary Policies
– Additional features of DAC

3

Discretionary Access Control
§ Access to data objects (files, directories, etc.) is
permitted based on the identity of users.

§ Explicit access rules that establish who can, or
cannot, execute which actions on which resources.

§ Discretionary: users can be given the ability of
passing on their privileges to other users, where
granting and revocation of privileges is regulated
by an administrative policy.

4

Discretionary Access Control

§ DAC is flexible in terms of policy
specification

§ This is the form of access control widely
implemented in standard multi-user
platforms Unix, NT, Novell, etc.

5

Access control matrix
– Describes protection state precisely
– Matrix describing rights of subjects
– State transitions change elements of matrix

State of protection system
– Describes current settings, values of system

relevant to protection

Discretionary Access Control

6

Access Control
Discretionary Access Control
– Access Control Matrix Model
– Implementation of the Access Matrix
– Vulnerabilities of the Discretionary Policies
– Additional features of DAC

7

Access Control Matrix Model
Access control matrix
– Firstly identify the objects, subjects and actions.
– Describes the protection state of a system.
– State of the system is defined by a triple (S, O, A)

• S is the set of subject,
• O is the set of objects,
• A is the access matrix

– Elements indicate the access rights that subjects
have on objects

• Entry A[s, o] of access control matrix is the privilege
of s on o

8

Description
objects (entities)

su
bj

ec
ts

s1
s2

…

sn

o1 … om s1 … sn Subjects S = { s1,…,sn }
Objects O = { o1,…,om }
Rights R = { r1,…,rk }
Entries A[si, oj] Í R
A[si, oj] = { rx, …, ry }
means subject si has
rights rx, …, ry over
object oj

9

Boolean Expression Evaluation

ACM controls access to database fields
– Subjects have attributes
– Action/Operation/Verb define type of access
– Rules associated with objects, action pair

Subject attempts to access object
– Rule for object, action evaluated, grants or

denies access

10

Example
Subject Annie
– Attributes role (artist), groups (creative)

Verb paint
– Default 0 (deny unless explicitly granted)

Object picture
– Rule:

Annie paint picture if:
‘artist’ in subject.role and
‘creative’ in subject.groups and
time.hour ≥ 0 and time.hour < 5

11

ACM at 3AM and 10AM

… picture …

…
 a

nn
ie

 …

paint

At 3AM, time condition
met; ACM is:

… picture …

…
 a

nn
ie

 …

At 10AM, time condition
not met; ACM is:

12

Access Controlled by History
Statistical databases need to
– answer queries on groups
– prevent revelation of individual

records
Query-set-overlap control
– Prevent an attacker to obtain

individual piece of information
using a set of queries C

– A parameter r (=2) is used to
determine if a query should be
answered

Name Position Age Salary

Alice Teacher 45 40K

Bob Aide 20 20K

Cathy Principal 37 60K

Dilbert Teacher 50 50K

Eve Teacher 33 50K

13

Access Controlled by History
Query 1:
– sum_salary(position = teacher)
– Answer: 140K
Query 2:
– sum_salary(age > 40 & position =

teacher)
– Should not be answered as Matt’s

salary can be deduced

Can be represented as an ACM

Name Position Age Salary

Celia Teacher 45 40K

Leonard Teacher 50 50K

Matt Teacher 33 50K

Name Position Age Salary
Celia Teacher 45 40K

Leonard Teacher 50 50K

14

Solution: Query Set Overlap Control
(Dobkin, Jones & Lipton ’79)

Query valid if intersection of query
coverage and each previous query < r
Can represent as access control matrix
– Subjects: entities issuing queries
– Objects: Powerset of records
– Os(i) : objects referenced by s in queries 1..i
– M[s,o] = read iff (1)

s
q i

q o r
OÎ -
" Ç <

15

M[s,o] = read iff

Query 1: O1 = {Celia, Leonard, Matt} so the query
can be answered. Hence
– M[asker, Celia] = {read}
– M[asker, Leonard] = {read}
– M[asker, Matt] = {read}

Query 2: O2 = {Celia, Leonard} but | O2 Ç O1 | =
2; so the query cannot be answered
– M[asker, Celia] = Æ
– M[asker, Leonard] = Æ

(1)
s

q i
q o r

OÎ -
" Ç <

16

Access Control
Discretionary Access Control
– Access Matrix Model
– Implementation of the Access Control Matrix
– Vulnerabilities of the Discretionary Policies
– Additional features of DAC

17

ACM Implementation

ACM is an abstract model
– Rights may vary depending on the object involved

ACM is implemented primarily in three ways
– Authorization Table
– Capabilities (rows)
– Access control lists (columns)

18

Authorization Table
n Three columns: subjects, actions, objects
n Generally used in DBMS systems

19

Access Control List (ACL)
Matrix is stored by column.
Each object is associated with a list
Indicate for each subject the actions that the subject can
exercise on the object

20

Capability List
Matrix is stored by row
Each user is associated with a capability list
Indicating for each object the access that the user is allow
to exercise on the object

21

ACLs vs Capability List
Immediate to check the authorization holding on
an object with ACLs. (subject?)
Immediate to determine the privileges of a
subject with Capability lists. (object?)
Distributed system,
– authenticate once, access various servers
– choose which one?

Limited number of groups of users, small bit
vectors, authorization specified by owner.
– Which one?

22

Basic Operations in Access Control

Grant permissions
– Inserting values in the matrix’s entries

Revoke permissions
– Remove values from the matrix’s entries

Check permissions
– Verifying whether the entry related to a subject

s and an object o contains a given access mode

23

Access Control
Discretionary Access Control

– Access Matrix Model
– State of Protection System
– Implementation of the Access Matrix
– Vulnerabilities of the Discretionary Policies
– Additional features of DAC

24

Vulnerabilities of the
Discretionary Policies

No separation of users from subjects
No control on the flow the information
Malicious code, i.e., Trojan horse

25

Example

Vicky, a top-level manager
A file Market on the new products release
John, subordinate of Vicky
A file called “Stolen”
An application with two hidden operations
– Read operation on file Market
– Write operation on file Stolen

26

Example (cond)

27

Example (cond)

• Restriction should be enforced on the operations that
processes themselves can execute.

• Mandatory policies provide a way to enforce information
flow control through the use of labels

28

Access Control
Discretionary Access Control
– Access Matrix Model
– State of Protection System
– Implementation of the Access Matrix
– Vulnerabilities of the Discretionary Policies
– Additional features of DAC

29

DAC – additional features and
recent trends

Flexibility is enhanced by supporting
different kinds of permissions
– Positive vs. negative
– Strong vs. weak
– Implicit vs. explicit
– Content-based

30

Positive and Negative
Permissions

Positive permissions à Give access
Negative permissions à Deny access
Useful to specify exceptions to a given
policy and to enforce stricter control on
particular crucial data items

31

Positive and Negative
Permissions

-

+

Main Issue: Conflicts

32

Authorization Conflicts

Main solutions:
– No conflicts
– Negative permissions take precedence
– Positive permissions take precedence
– Nothing take precedence
– Most specific permissions take precedence

33

Weak and Strong Permissions

Strong permissions cannot be overwritten
Weak permissions can be overwritten by
strong and weak permissions

34

Implicit and Explicit Permissions

Some models support implicit permissions
Implicit permissions can be derived:
– by a set of propagation rules exploiting the

subject, object, and privilege hierarchies
– by a set of user-defined derivation rules

35

Derivation Rules: Example

Ann can read file F1 from a table if Bob
has an explicit denial for this access
Tom has on file F2 all the permissions that
Bob has
Derivation rules are a way to concisely
express a set of security requirements

36

Derivation Rules

Derivation rules are often expressed
according to logic programming
Several research efforts have been carried
out to compare the expressive power of
such languages
We need languages based on SQL and/or
XML

37

Content-based Permissions
Content-based access control conditions the
access to a given object based on its content
This type of permissions are mainly relevant for
database systems
As an example, in a RDBMS supporting content-
based access control it is possible to authorize a
subject to access information only of those
employees whose salary is not greater than 30K

38

Content-based Permissions
Two most common approaches to enforce
content-based access control in a DBMS
are done:
– by associating a predicate (or a Boolean

combination of predicates) with the
permission

– by defining a view which selects the objects
whose content satisfies a given condition, and
then granting the permission on the view
instead of on the basic objects

39

DAC models - DBMS vs OS
Increased number of objects to be protected
Different granularity levels (relations, tuples,
single attributes)
Protection of logical structures (relations, views)
instead of real resources (files)
Different architectural levels with different
protection requirements
Relevance not only of data physical
representation, but also of their semantics

40

Access Control -- RBAC

Lecture 4

41

RBAC
Many organizations base access control decisions on “the roles that
individual users take on as part of the organization”.
They prefer to centrally control and maintain access rights that reflect
the organization’s protection guidelines.
With RBAC, role-permission relationships can be predefined, which
makes it simple to assign users to the predefined roles.
The combination of users and permissions tend to change over time,
the permissions associated with a role are more stable.
RBAC concept supports three well-known security principles:
– Least privilege
– Separation of duties
– Data abstraction

42

Role Based Access Control
(RBAC)
Access control in
organizations is
based on “roles
that individual
users take on as
part of the
organization”
A role is “is a
collection of
permissions”

43

RBAC

Access depends on role/function, not
identity
– Example: Allison is bookkeeper for Math

Dept. She has access to financial records. If she
leaves and Betty is hired as the new
bookkeeper, Betty now has access to those
records. The role of “bookkeeper” dictates
access, not the identity of the individual.

44

Advantages of RBAC

Allows Efficient Security Management
– Administrative roles, Role hierarchy

Principle of least privilege allows minimizing
damage
Separation of Duties constraints to prevent fraud
Allows grouping of objects
Policy-neutral - Provides generality
Encompasses DAC and MAC policies

45

RBAC

u1

u2

un

o1

o2

om

u1

u2

un

o1

o2

om

Role
r

n + m
assignments

n ´ m
assignments

Users Permission Users Permissions

(a) (b)

Administrator

Employee

Engineer

Senior
Engineer

Senior
Administrator

Manager

46

RBAC (cont’d)
Is RBAC a discretionary or mandatory access control?
– RBAC is policy neutral; however individual RBAC configurations

can support a mandatory policy, while others can support a
discretionary policy.

Role Hierarcies
Role Administration Project Supervisor

Test engineer Programmer

Project Member
47

Permissions

RBAC (NIST Standard)

Users Roles Operations Objects

Sessions

UA

user_sessions
(one-to-many)

role_sessions
(many-to-many)

PA

An important difference from classical models is that
Subject in other models corresponds to a Session in RBAC

48

Core RBAC (relations)
Permissions = 2Operations x Objects

UA ⊆ Users x Roles
PA ⊆ Permissions x Roles
assigned_users: Roles ® 2Users

assigned_permissions: Roles ® 2Permissions

Op(p): set of operations associated with permission p
Ob(p): set of objects associated with permission p
user_sessions: Users ® 2Sessions

session_user: Sessions ® Users
session_roles: Sessions ® 2Roles

– session_roles(s) = {r | (session_user(s), r) Î UA)}
avail_session_perms: Sessions ® 2Permissions

49

Permissions

RBAC with General Role Hierarchy

Users Roles Operations Objects

Sessions

UA

user_sessions
(one-to-many) role_sessions

(many-to-many)

PA

RH
(role hierarchy)

50

RBAC with General Role Hierarchy

authorized_users: Roles® 2Users

authorized_users(r) = {u | r’ ≥ r &(r’, u) Î UA)
authorized_permissions: Roles® 2Permissions

authorized_users(r) = {p | r’ ≥ r &(p, r’) Î PA)
RH Roles x Roles is a partial order
– called the inheritance relation
– written as ≥.
(r1 ≥ r2) ® authorized_users(r1) ⊆ authorized_users(r2) &
authorized_permisssions(r2) ⊆ authorized_permisssions(r1)

Í

51

Example

Administrator

Employee

Engineer

Senior
Engineer

Senior
Administrator

Manager

px, py

p1, p2

pa, pb px, pye1, e2

px, pye3, e4

px, pye5

px, pye6, e7

px, pye8, e9

px, pye10

pm, pn

po

pp

authorized_users(Employee)?
authorized_users(Administrator)?

authorized_permissions(Employee)?
authorized_permissions(Administrator)?

52

Constrained RBAC

Permissions

Users Roles Operations Objects

Sessions

UA

user_sessions
(one-to-many)

PA

RH
(role hierarchy)Static

Separation
of Duty

Dynamic
Separation

of Duty

53

Separation of Duties
§ No user should be given enough privileges to misuse the
system on their own.

§ Statically: defining the conflicting roles

§ Dynamically: Enforcing the control at access time

54

RBAC’s Benefits

55

Cost Benefits

Saves about 7.01 minutes per employee, per year in
administrative functions
– Average IT admin salary - $59.27 per hour
– The annual cost saving is:

• $6,924/1000; $692,471/100,000
Reduced Employee downtime
– if new transitioning employees receive their system privileges

faster, their productivity is increased
– 26.4 hours for non-RBAC; 14.7 hours for RBAC
– For average employee wage of $39.29/hour, the annual

productivity cost savings yielded by an RBAC system:
• $75000/1000; $7.4M/100,000

56

