Data Structure & Algorithms in
JAVA

5th edition
Michael T. Goodrich
Roberto Tamassia

Data Structures

nJAVA

Chapter 13: Graph Algorithms

CPSC 3200
Algorithm Analysis and Advanced Data Structure

Chapter Topics

* Graphs.

* Data Structure for Graphs.
* Graph Traversals.

* Directed Graphs.

Shortest Paths.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 2

Graphs

* A graphisa pair (V; E), where:

* Vis a set of nodes, called vertices.

» E is a collection of pairs of vertices, called edges.

* Vertices and edges are positions and store elements.
 Example:

* A vertex represents an airport and stores the three-letter airport
code.

* An edge represents a flight route between two airports and stores
the mileage of the route.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 3

Edge Types

* Directed edge
 ordered pair of vertices (u,v)
* first vertex u is the origin

flight
* second vertex v is the destination ORD 9 @

AA 1206
* e.g., aflight
* Undirected edge
i - of verti
unordered pair of vertices (u,v) - 84}9 VD
* e.g, a flight route miles

* Directed graph
* all the edges are directed
* e.g, route network
* Undirected graph
* all the edges are undirected
* e.g., flight network

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 4

Applications

* Electronic circuits el e
* Printed circuit board
* Integrated circuit

 Transportation networks
* Highway network

* Flight network brown_edﬁ_
[o] [ecoooo] [oc

qwest.net

 Computer networks
* Local area network

e Internet
« Web

* Databases
 Entity-relationship diagram

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia

Terminology

End vertices (or endpoints) of
an edge:

* Uand V are the endpoints of a
Edges incident on a vertex:

*a,d, and b are incidenton V
Adjacent vertices:

* Uand V are adjacent
Degree of a vertex:

* X has degree 5
Parallel edges:

* h and i are parallel edges.
Self-loop:

* j is a self-loop

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia o)

Terminology (cont.)

 Path:

* sequence of alternating vertices
and edges.

* begins with a vertex.
e ends with a vertex.

* each edge is preceded and
followed by its endpoints.

Simple path:
 path such that all its vertices
and edges are distinct.
 Examples
* P,=(V,b,X,h,Z) is a simple path.
* P,=(U,c,WeXgYEWdV)is a
path that is not simple.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 7

Terminology (cont.)

* Cycle:
* circular sequence of alternating
vertices and edges.

* each edge is preceded and
followed by its endpoints.

* Simple cycle:
* cycle such that all its vertices
and edges are distinct.

 Examples
* C.=(VbX,gYtW,.U,aV)isa
simple cycle
* C,=(U,c,WeX,gYEWdVaU)isa
cycle that is not simple

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 8

Properties

Property 1
>, deg(v) =2m
Proof: each edge is
counted twice.
Property 2

In an undirected graph
with no self-loops and
no multiple edges

m<n(n-1)/2
Proof: each vertex has
degree at most (n — 1)

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Notation
n number of vertices
m number of edges

deg(v) degree of vertex v

Example
m n=4

m m=6

m deg(v)=3

© 2010 Goodrich, Tamassia

9

Main Methods of the Graph ADT

* Vertices and edges: * Update methods:
* are positions * insertVertex(0): insert a vertex
e store elements storing element o.

e Accessor methods: * insertEdge(v, w, 0): insert an

 endVertices(e): an array of the edge (v,w) storing element o.

two endvertices of e. * removeVertex(v): remove

- opposite(v, e): the vertex vertex v (and its incident edges).

opposite of v on e. removeEdge(e): remove edge e.
o areAdjacent(v, w): true iff vand * Iterable collection methods:

w are adjacent. * incidentEdges(v): edges
« replace(v, x): replace element at incident to v.

vertex v with x. * vertices(): all vertices in the
* replace(e, x): replace element at graph.

edge e with x. » edges(): all edges in the graph.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 10

Edge List Structure

Vertex object:
* element.

* reference to position in
vertex sequence.

Edge object:

* element.
* origin vertex object.
* destination vertex object.

* reference to position in

edge sequence.
Vertex sequence:
* sequence of vertex objects.
Edge sequence:
* sequence of edge objects.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamassia

11

Adjacency List Structure

« Edge list structure. C@}@{@)
* Incidence sequence for

each vertex:

* sequence of ®)

references to edge R ?li R
objects of incident L [4]u HEE
edges.

* Augmented edge objects

* references to
associated positions
in incidence
sequences of end
vertices.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 12

Adjacency Matrix Structure

 Edge list structure. C{%
* Augmented vertex objects

* Integer key (index)

associated with vertex. R R Q
e 2D-array adjacency array T
» Reference to edge object L° ‘[1]e v 2|¢|w

for adjacent vertices.

* Null for non
nonadjacent vertices.
* The “old fashioned”

version just has 0 for no
edge and 1 for edge.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamass ia 13

Performance

= n vertices, m edges
= no parallel edges
= no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

incidentEdges(v) m deg(v) n
areAdjacent (v, w) | m | min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n?
insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n?
removeEdge(e) 1 1 1

CPSC 3200 University of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamass ia 14

Subgraphs

* A subgraph S of a graph Gisa
graph such that:

* The vertices of S are a
subset of the vertices of G

* The edges of S are a subset
of the edges of G

* A spanning subgraph of G is a
subgraph that contains all the
vertices of G.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Spanning subgraph

© 2010 Goodrich, Tamassia

15

Connectivity

* A graph is connected if there
is a path between every pair
of vertices.

* A connected component of a
graph G is a maximal
connected subgraph of G.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Connected graph

O

Non connected graph with two
connected components

© 2010 Goodrich, Tamassia 16

Trees and Forests

* A (free) treeis an
undirected graph T such
that:

* T is connected.

* T has no cycles.

This definition of tree is
different from the one of a
rooted tree.

* Aforestis an undirected
graph without cycles.

* The connected

components of a forest
are trees

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Tree

O

Forest

o

© 2010 Goodrich, Tamass ia

17

Spanning Trees and Forests

A spanning tree of a connected
graph is a spanning subgraph
that is a tree.

A spanning tree is not unique
unless the graph is a tree.

Spanning trees have Graph
applications to the design of
communication networks.

A spanning forest of a graph is
a spanning subgraph thatis a
forest.

Spanning tree
CPSC 3200

University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 18

Depth-First Search

« Depth-first search (DFS)is * DFSona graph with »
a general technique for vertices and m edges
traversing a graph. takes O(n + m) time

« ADFS traversal ofagraph G~ * DFS can be further
- Visits all the vertices and edges extended to solve other

of G. graph problems
» Determines whether G is * Find and report a path
connected. between two given vertices.
« Computes the connected * Find a cycle in the graph.

components of G.
* Computes a spanning forest of G.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 19

DFS Algorithm

* The algorithm uses a
mechanism for setting and
getting “labels” of vertices and
edges

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v)= UNEXPLORED
DFS(G, v)

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <— opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
DFS(G, w)
else
setLabel(e, BACK)

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamassia 20

Example

@ unexplored vertex

‘ visited vertex

— unexplored edge
—> discovery edge

CPSC 3200
University of Tennessee at Chattanoo ga — Summer 2013 © 2010 Goodrich, Tamass ia 21

Example (cont.)

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 22

Properties of DFS

Property 1

DFS(G, v) visits all the
vertices and edges in the
connected component of v

Property 2

The discovery edges labeled
by DFS(G, v) form a spanning
tree of the connected
component of v,

CPSC 3200
University of Tennessee at Chattanoo ga — Summer 2013 © 2010 Goodrich, Tamass ia 23

Analysis of DFS

Setting/getting a vertex/edge label takes O(1) time.

Each vertex is labeled twice:
e once as UNEXPLORED.
e once as VISITED.

Each edge is labeled twice:
* once as UNEXPLORED.
* once as DISCOVERY or BACK.

Method incidentEdges is called once for each vertex.

DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure.

* Recall that Zv deg(v) =2m

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 24

Breadth-First Search

 Breadth-first search (BFS) ° BFS on a graph with n

is a general technique for vertices and m edges
traversing a graph. takes O(n + m) time
 ABFS traversalofagraph G « BFS can be further
* Visits all the vertices and edges extended to solve other
s raph problems:
* Determines whether G is staph p '
connected. * Find and report a path with
the minimum number of

* Computes the connected
components of G. edges between two given

« Computes a spanning forest of G. vertices.

* Find a simple cycle, if there
1S one.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 25

BFS Algorithm

* The algorithm uses a
mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
BFS(G, v)

Algorithm BFS(G, s)

L, < new empty sequence
Ly.addLast(s)
setLabel(s, VISITED)
i< 0
while —LzisEmpty()
L; ., < new empty sequence
for all v € L.elements()
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <— opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
L; .addLast(w)
else

setLabel(e, CROSS)
i <1+l

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamassia 26

Example

@ unexplored vertex

‘ visited vertex
— unexplored edge
—> discovery edge

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 27

Example (cont.)

- ———

- ——

- ——

- ———

[S —— N ———————

CPSC 3200 University of Tennessee at Chattanooga
— Summer 2013

© 2010 Goodrich, Tamassia 28

Example (cont.)

- ——

- ——

N ——————

———

© 2010 Goodrich, Tamassia 29

CPSC 3200 University of Tennessee at Chattanooga
— Summer 2013

Properties

Notation Q
G,: connected component of s
Property 1
BFS(G, s) visits all the vertices and
edges of G,
Property 2 G o

The discovery edges labeled by
BFS(G, s) form a spanning tree T, of
G,

Property 3
For each vertex v in L;

* The path of T, from s to v has i edges.

* Every path from s to v in G, has at
least i edges.

L,

- ———
—_———— -

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 30

Analysis

Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice :
e once as UNEXPLORED.
e once as VISITED.

* Each edge is labeled twice:
* once as UNEXPLORED.
* once as DISCOVERY or CROSS.

* Each vertex is inserted once into a sequence L;
* Method incidentEdges is called once for each vertex.

* BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

* Recall that SV deg(v) =2m

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 31

DFS vs. BFS

Applications DFS | BFS
Spanning forest, connected J J
components, paths, cycles

Shortest paths v
Biconnected components \

CPSC 3200 DFS

University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 32

DFS vs. BFS (cont.)

(vw) (vw)

w is an ancestor of v in the w is in the same level as v or
tree of discovery edges in the next level

_———— -

DFS

CPSC 3200 University of Tennessee at Chattanooga D Lo e Tamestia 33
— Summer 2013 '

Path Finding

* We can specialize the DFS Algorithm pathDFS(G, v,)
algorithm to find a path setLabel(v, VISITED)
between two given vertices u S.push(v)
and z using the template if v=z
method pattern return S.elements()

« We call DFS(G, u) with u as the for all e € G.incidentEdges(v)
start vertex if getLabel(e) = UNEXPLORED

 We use a stack S to keep track W < opposite(ve)
of the path between the start if getLabel(w) = UNEXPLORED

vertex and the current vertex ;etLa: RCLFOCOVERT)
* As soon as destination vertex z -push(e)

: pathDFS(G, w, 7)

is encountered, we return the S.pop(e)

path as the contents of the else.

stack setLabel(e, BACK)

S.pop(v)

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 34

Weighted Graphs

* In a weighted graph, each edge has an associated numerical
value, called the weight of the edge.

* Edge weights may represent, distances, costs, etc.
* Example:

* In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 35

Shortest Paths

* Given a weighted graph and two vertices # and v, we want to find a
path of minimum total weight between u and v.

* Length of a path is the sum of the weights of its edges.
* Example:

 Shortest path between Providence and Honolulu
* Applications

* Internet packet routing

* Flight reservations

* Driving directions

CPSC 3200 University of Tennessee at Chattanooga D Ll Tanesia . 36
— Summer 2013 ’

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path.
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices.

Example:
Tree of shortest paths from Providence.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 37

Dijkstra’s Algorithm

e The distance of a vertex v
from a vertex s is the
length of a shortest path
between s and v.

* Dijkstra’s algorithm
computes the distances of
all the vertices from a
given start vertex s.

* Assumptions:
* the graph is connected.

* the edges are undirected.

* the edge weights are
nonnegative.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

 We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices.

* We store with each vertex v a label
d(v) representing the distance of v
from s in the subgraph consisting
of the cloud and its adjacent
vertices.

* Ateach step

 We add to the cloud the vertex
u outside the cloud with the
smallest distance label, d(u).

* We update the labels of the
vertices adjacent to u.

© 2010 Goodrich, Tamassia 38

Edge Relaxation

* Consider an edge e =(u,z) such
that

* u is the vertex most recently
added to the cloud

e zis notin the cloud

* The relaxation of edge e updates
distance d(z) as follows:

d(z) < min{d(z),d(u) + weight(e)}

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

—_————
-

-
f”
-

AW e e S -
-
-~
~
-~
-~
—_——

~

10 d(z) =75

© 2010 Goodrich, Tamassia 39

Example

CPSC 3200 s -
University of Tennessee at Chattanooga — Summer 2013~ "====7 © 2010 Goodrich, Tamassia 40

Example (cont.)

—— -

CPSC 3200
© 2010 Goodrich, Tamassia 41

University of Tennessee at Chattanooga — Summer 2013

Dijkstra’s Algorithm

* A heap-based adaptable

priority queue with location-
aware entries stores the
vertices outside the cloud

» Key: distance

e Value: vertex

* Recall that method
replaceKey(l,k) changes the key
of entry [

We store two labels with each
vertex:

* Distance
* Entry in priority queue

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Algorithm DijkstraDistances(G, s)

0 < new heap-based priority queue
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ©)
| < Q.insert(getDistance(v), v)
setEntry(v, I)
while —Q.isEmpty()
| < Q.removeMin()
u < lLgetValue()

for all e € G.incidentEdges(u) { relax e }

z < G.opposite(u,e)

r < getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)
O.replaceKey(getEntry(z), r)

© 2010 Goodrich, Tamassia

Analysis of Dijkstra’s Algorithm

Graph operations
« Method incidentEdges is called once for each vertex
* Label operations
* We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time
* Priority queue operations

« Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

* The key of a vertex in the priority queue is modified at most deg(w) times,
where each key change takes O(log n) time

* Dijkstra’s algorithm runs in O((n + m) log n) time provided the graph
is represented by the adjacency list structure
« Recall that 2, deg(v) = 2m

* The running time can also be expressed as O(m log n) since the graph
is connected

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 43

End of Chapter 13

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

44

