
Chapter 15

A data structure used for collecting a

sequence of objects

Easy to add and remove elements

Example
• Maintaining a list of employees

• Maintained by name

Problem with storing in array
• Shifting when inserting or deleting

Answer
• Inserting or deleting in linked list does not require

Consists of a number of notes, each of

which has a reference to the next node.

Visiting elements
• Sequential order is effective

• Random order is not effective

Sequence of Nodes
• Node

 Value or object

 Reference to next node

• Remove a Node

 Change the reference

• How do I get to the node

 List iterator

 Goes to 1st node

 Goes to node it is pointing to

 Continues till you get to the node

Generic class

Must use < >

Put the kind of object in < >

Use methods to add to beginning and

end

Traversing the linked list
• List Iterator

Type String

LinkedList<String> students = new

LinkedList<String>();

Type BankAccounts

LinkedList<BankAccount> students = new

LinkedList<BankAccount>();

Add first node
Students.addLast(“Dick”);

Add another node after “Dick”
• Student.addLast(“Tom”);

Node<Students>

“Dick”

Null

Node<Students>

“Dick”

Node<Students>

“Tom”

Null

void addFirst(element)

void addLast(element)

e getFirst()

e getLast()

e removeFirst()

e removeLast()

Notice no way to move within list

 listIterator is a method of the LinkedList

class.

Create

LinkedIterator<String>

iterator = students.listIterator();

Purpose: to iterate through a list of and

visit each element.

Begins before the first element.

Move Forward
iterator.next();

• Returns the element that the iterator is passing.

• The type to be returned will depend on the type
specified in the <>

Check to see if there is another element
if (iterator.hasNext());

Add
• Iterator.add(“Kathy”);

• Added after iterator position

• Moves position

Remove
• Iterator.remove()

• Removes the object that was returned by last call

to next or previous

Careful using the remove method
• Can be called only once after calling next()

• Cannot call remove immediately after a call to

add.

Nodes store tow links:
• One to next element

• One to previous element

Doubly linked list

For listIterator method
• Has previous

• previous

Traverse entire list
• For each loop

For (String name: students)

{

String studentName = name.getName();

System.out.println(studentName);

}

Node Class
public class Node

{

public Object data;

public Node next;

}

• data is the object we want to add

• next is the location of the next node

Create First or Head
• Pointer to initial element in the linked list

• Initially it will be blank

• Would go in constructor of linked list

public LinkedList ()

{

first = null;

}

Method to Retrieve First/Head

public Object getFirst()

{

if (first == null)

throw new NoSuchElement Exception();

return first;

}

Method to Add First/Head

Special case

New list pointer must point to it

data =

data =

next =

first =

Node
Node

Node

next =

1
2

3

Method to Add First/Head

public void addFirst(Object element)

{

Node newNode = newNode();

newNode.data = element;

newNode.next = first;

first = newNode;

}

Method to Remove first element in the list

public void removeFirst()
{

if (first = = null)
throw new NoSuchElementException();

Object element = first.data;
first = first.next();
return element;

}

Standard library implements 9 methods

we will only implement only 5

 Iterator class
• Inner class to LinkedList

• Has access to private member of LinkedList

• Has access to first and the private Node class

public ListIterator listIterator()

{

return new LinkedListIterator();

}

private class LinkedListIterator
implements ListIterator

{
public LinkedListIterator()
{

position = null;
previous = null;

}
private Node position;
private Node previous;
……
}

// position is the lsat visited node.
private class LinkedListIterator

implement ListIterator
{

…..
public Object next()
{
if(!hasNext())

throw new NoSuch ElementExceeption
previous = position; // remember for remove
if (position == null)

position = first;
else

position = position.next;
return position.data;
}

private class LinkedListIterator
implement ListIterator

{
……
public boolean hasNext()
{

// check for no element after current
if (position == null)

return first ! = null;
else

return position.next !=null;

public void remove()
{

if (previous == position)
throw new IllegalStateException();

if (postion == first)
{

removeFirst();
}
else
{

previous.next = position.next;
}
position = previous;

}

Remember: position points to the last visited node.
previous points to the last node before that.

public void set(Object element)

{

if (previous == position)

throw new IllegalStateException();

position.data = element;

}

public void add(Object element)
{

if (position == null)
{

addFirst(element);
postion = first;

}
else
{

Node newNode = new Node();
newNode.data = element;
newNode.next = postion.next;
position.next = newNode;
postion = newNode;

}
previous = position;

}

Concrete
• Sequence of node objects with the links between

them.

Abstract
• A linked list is an ordered sequence of data

items that can be traversed with a iterator

Abstract Data Type
• Define the fundamental operations on the data

but does not specify an implementation

public interface ListIterator

{

Object next();

boolean hasNext();

void add(Object element);

void remove();

void set(Object element);

…..

}

Stack
• Collection of items with “last in first out”

retrieval.

• Can insert or remove at the top only

• Can insert in middle

Queue
• Collection of times with “first in first out”

retrieval.

• Add at the end

• Remove at the top

Stack class in Java Library

How to use
• Stack <String> s = new Stack<String>();

• s.push()

• s.pop()

• s.peek()

 Java class uses an array to implement

Can be easily implemented in a linked

list

A stack can be used to verify whether a

program contains balanced braces
• An example of balanced braces

abc{defg{ijk}{l{mn}}op}qr

• An example of unbalanced braces

abc{def}}{ghij{kl}m

Requirements for balanced braces
• Each time you encounter a “}”, it matches an

already encountered “{”

• When you reach the end of the string, you have

matched each “{”

Figure 7.2

Traces of the algorithm that checks for balanced braces

StackException

• A Java method that implements the balanced-

braces algorithm should do one of the following

 Take precautions to avoid an exception

 Provide try and catch blocks to handle a possible

exception

Queue class in Java Library
How to use

• Queue <Integer> q = new Queue<Integer>();

• q.add() // adds to the tail

• q.remove() // removes from the top

• q.peek() //get the head of the queue without
removing

 Java class uses an array to implement
Can be easily implemented in a linked

list

import java.util.LinkedList;

public class LinkedListQueue

{

public LinkedListQueue()

{

list = new LinkedList();

}

public void add(Object element)

{

list.addLast(element);

}

public Object remove()

{

return list.removeFirst();

}

int size()

{

return list.size();

}

private LinkedList list;

}

When the ADT stack is used to solve

a problem, the use of the ADT’s

operations should not depend on its

implementation

To evaluate an infix expressions
• Convert the infix expression to postfix form

• Evaluate the postfix expression

4/5/202141

4/5/2021
42

 In prefix notation the operator is

written before its operands without the

use of parentheses or rules of

operator precedence.

The expression (A+B)/(C-D) would be

written as /+AB-CD in prefix notation.

4/5/2021
43

Postfix notation is a way of writing

algebraic expressions without the use

of parentheses or rules of operator

precedence.

The expression (A+B)/(C-D) would be

written as AB+CD-/ in postfix notation.

 A postfix calculator
• Requires you to enter postfix expressions

 Example: 2, 3, 4, +, *

• When an operand is entered, the calculator

 Pushes it onto a stack

• When an operator is entered, the calculator

 Applies it to the top two operands of the stack

 Pops the operands from the stack

 Pushes the result of the operation on the stack

http://scriptasylum.com/tutorials/infix_p

ostfix/algorithms/infix-postfix/index.htm

http://scriptasylum.com/tutorials/infix_postfix/algorithms/infix-postfix/index.htm

Figure 7.7

The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

To evaluate a postfix expression which is
entered as a string of characters
• Simplifying assumptions
 The string is a syntactically correct postfix expression

 No unary operators are present

 No exponentiation operators are present

 Operands are single lowercase letters that represent
integer values

 An infix expression can be evaluated by first being
converted into an equivalent postfix expression

 Facts about converting from infix to postfix
• Operands always stay in the same order with respect to

one another

• An operator will move only “to the right” with respect to
the operands

• All parentheses are removed

Figure 7.8

A trace of the algorithm that converts the infix expression a - (b + c * d)/e to postfix

form

