Introduction to Data 5
Structures

Linked List

A data structure used for collecting a
sequence of objects

Easy to add and remove elements
Example

- Maintaining a list of employees
- Maintained by name

Problem with storing in array
- Shifting when inserting or deleting
Answer
- Inserting or deleting in linked list does not require

Linked List

Consists of a number of notes, each of
which has a reference to the next node.

o] e [e [e [LS

Linked List

Visiting elements
- Sequential order is effective
- Random order is not effective

Linked List

Sequence of Nodes
- Node

* Value or object
- Reference to next node
- Remove a Node
- Change the reference
- How do I get to the node
- List iterator
- Goes to 1%t node
- Goes to node it is pointing to
- Continues till you get to the node

Java Class Linked List

Generic class

Must use < >

Put the kind of objectin <>

Use methods to add to beginning and
end

Traversing the linked list
- List Iterator

Creating a Linked List
Type dString

Type String

LinkedList<String> students = new
LinkedList<String>();

Type BankAccounts
LinkedList<BankAccount> students = new
LinkedList<BankAccount>();

Adding Nodes
Add first node

Students.addLast("Dick”); Node<]§’tuli:1ents>
13 ic 3

Null

Add another node after “Dick”
- Student.addLast(“Tom”);

e
Node<Students> Node<Students>
HDiCk!! “Tom!’

Null

LinkedList Class Methods

void addFirst(element)
void addLast(element)
e getFirst()

e getLast()

e removeFirst()

e removeLast()

Notice no way to move within list

Listlterator

listlterator is a method of the LinkedlList
class.
Create
Linkedlterator<sString>
iterator = students.listlterator();
Purpose: to iterate through a list of and
visit each element.

Listlterator

Begins before the first element.

Move Forward
iterator.next();
- Returns the element that the iterator is passing.

- The type to be returned will depend on the type
specified in the <>

Check to see if there is another element
if (iterator.hasNext());

Listlterator

Add

- Iterator.add(“Kathy”);
- Added after iterator position
- Moves position

Remove
- Iterator.remove()

- Removes the object that was returned by last call
to next or previous

Listlterator

Careful using the remove method

- Can be called only once after calling next()

- Cannot call remove immediately after a call to
add.

LinkedList Class

Nodes store tow links:
- One to next element
- One to previous element

Doubly linked list
For listlterator method

- Has previous
* previous

Listlterator

Traverse entire list
- For each loop
For (String name: students)
{
String studentName = name.getName();
System.out.println(studentName);

Under the Hood

Node Class
public class Node

{
public Object data;

public Node next;
}

- data is the object we want to add
- next is the location of the next node

Under the Hood

Create First or Head

- Pointer to initial element in the linked list
- Initially it will be blank
- Would go in constructor of linked list

public LinkedlList ()
{

first = null;

Under the Hood

Method to Retrieve First/Head
public Object getFirst()

{

if (first == null)
throw new NoSuchElement Exception();
return first;

}

Under the Hood

Method to Add First/Head

Special case

New list pointer must point to it

Node

first =

data =

Node

Node
data =

—— next =

\4
next =

Under the Hood

Method to Add First/Head

public void addFirst(Object element)
{
Node newNode = newNode();
newNode.data = element;
newNode.next = first;
first = newNode;

Under the Hood

Method to Remove first element in the list

public void removeFirst()

{
if (first = = null)
throw new NoSuchElementException();
Object element = first.data;
first = first.next();

return element;

}

Implementing the Iterator Class

Standard library implements 9 methods
we will only implement only 5

Iterator class
- Inner class to LinkedList
- Has access to private member of LinkedList
- Has access to first and the private Node class

Method to define the listlterator

public Listlterator listlterator()

{

return new LinkedListlterator();

}

Create the LinkedListlterator

private class LinkedListlterator
implements Listlterator

public LinkedlListlterator()
{
position = null;
previous = null;
!
private Node position;
private Node previous;

Next Method

// position is the lsat visited node.
private class LinkedListlterator
implement Listlterator

public Object next()

{
if(ThasNext())

throw new NoSuch ElementExceeption
previous = position; // remember for remove
if (position == null)

position = first;
else

position = position.next;
return position.data;

}

hasNext Method

private class LinkedlListlterator
implement Listlterator

public boolean hasNext()

// check for no element after current
if (position == null)

return first ! = null;
else

return position.next !|=null;

Remove Method

public void remove()
{
if (previous == position)
throw new IllegalStateException();
if (postion == first)

removeFirst();
|
else
{ . .
previous.next = position.next,;
}

position = previous;

}

Remember: position points to the last visited node.
previous points to the last node before that.

Set Method

public void set(Object element)
{
if (previous == position)
throw new IllegalStateException();
position.data = element;

Add Method

public void add(Object element)
if (position == null)

addFirst(element);
postion = first;

else

Node newNode = new Node();
newNode.data = element;
newNode.next = postion.next;
position.next = newNode;
postion = newNode;

}

previous = position;

Abstract and Concrete
Data Types

Concrete

- Sequence of node objects with the links between
them.

Abstract

- A linked list is an ordered sequence of data
items that can be traversed with a iterator

Abstract Data Type

- Define the fundamental operations on the data
but does not specify an implementation

Define the Fundamental
Operations

public interface Listlterator
{
Object next();
boolean hasNext();
vold add(Object element);
void remove();
void set(Object element);

Stacks and Queues

Stack

- Collection of items with “last in first out”
retrieval.

- Can insert or remove at the top only
- Can insert in middle
Queue

- Collection of times with “first in first out”
retrieval.

- Add at the end
- Remove at the top

Stack

Stack class in Java Library
How to use
« Stack <String> s = new Stack<String>();
« s.push()
* s.pop()
. s.peek()
Java class uses an array to implement
Can be easily implemented in a linked

list

Checking for Balanced Braces

A stack can be used to verify whether a

program contains balanced braces
- An example of balanced braces
abc{defg{i1jk}{l{mn}}oplgr

- An example of unbalanced braces
stlee lalc B0 [a0 el

Checking for Balanced Braces

Requirements for balanced braces

- Each time you encounter a “}”, it matches an
already encountered “{”

- When you reach the end of the string, you have
matched each “{”

Checking for Balanced Braces

Input string Stack as algorithm executes

1. 2. 3. 4 1. push *

2.push "{"

3. pop

4. pop

Stack empty —> balanced

1. push " {"

2. push " {"

3. pop
Stack not empty = not balanced

1. push " {"

2. pop
Stack empty when last "} " encountered =—=>not balanced

Figure 7.2

Traces of the algorithm that checks for balanced braces

Checking for Balanced Braces

StackException

- A Java method that implements the balanced-
braces algorithm should do one of the following
- Take precautions to avoid an exception

- Provide try and catch blocks to handle a possible
exception

Queue

Queue class in Java Library

How to use

« Queue <Integer> g = new Queue<Integer>();
- q.add() // adds to the tail

- g.remove() // removes from the top

- g.peek() //get the head of the queue without
removing

Java class uses an array to implement
Can be easily implemented 1in a linked

list

import java.util.LinkedList;
public class LinkedListQueue

{

public LinkedListQueue()
{

}
public void add(Object element)

{

list = new LinkedList();

list.addLast(element);

}
public Object remove()
{
return list.removeFirst();
}
int size()
{
return list.size();
}

private LinkedList list;

Queue

Application:
Algebraic Expressions

When the ADT stack is used to solve
a problem, the use of the ADT’s
operations should not depend on its
iImplementation

To evaluate an infix expressions

- Convert the infix expression to postfix form
- Evaluate the postfix expression

Infix, Prefix and Postfix

Prefix Notation

In prefix notation the operator Is
written before its operands without the
use of parentheses or rules of
operator precedence.

The expression (A+B)/(C-D) would be
written as /+AB-CD In prefix notation.

4/5/2021
42

Postfix Notation

Postfix notation Is a way of writing
algebraic expressions without the use
of parentheses or rules of operator
precedence.

The expression (A+B)/(C-D) would be
written as AB+CD-/ In postfix notation.

4/5/2021
43

Evaluating Postiix Expressions

A postfix calculator

- Requires you to enter postfix expressions
- Example: 2, 3,4, +,*

- When an operand is entered, the calculator
- Pushes it onto a stack

- When an operator is entered, the calculator
- Applies it to the top two operands of the stack
- Pops the operands from the stack
- Pushes the result of the operation on the stack

Converting Infix to Postfix

http://scriptasylum.com/tutorials/infix_postfix/algorithms/infix-postfix/index.htm

Key entered

Figure 7.7

Calculator action

push 2
push 3
push 4

operand?2
operandl

= pop stack
pop stack

Evaluating Postiix

Expressions

Stack (bottom to top)

result = operandl + operand2

push result

operand?
operandl

= pop stack
pop stack

result = operandl * operand2 (14)
push result

The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

Evaluating Postiix
Expressions

To evaluate a postfix expression which is
entered as a string of characters
- Simplifying assumptions
- The string is a syntactically correct postfix expression
- No unary operators are present

- No exponentiation operators are present

- Operands are single lowercase letters that represent
integer values

to Equivalent Postiix
Expressions

An infix expression can be evaluated by first being
converted into an equivalent postfix expression
Facts about converting from infix to postfix
- Operands always stay in the same order with respect to
one another
- An operator will move only “to the right” with respect to
the operands
- All parentheses are removed

to Equivalent Postiix
Expressions

ch stack (bottom to top) postfixExp

a

a

a

ab

ab

abc

abc

abcd

abcdx Move operators

abcdx + from stack to

abcdx + postfixExp until " (
abcdx +

abcdx +e Copy operators from
abcd* +e/- stack to postfixExp

[
* %

+ + + + +

(
(
(
(
=
(
(
(

Figure 7.8
A trace of the algorithm that converts the infix expression a - (b + ¢ * d)/e to postfix

form

