Prediction of Overuse Syndromes in College Athletes through Preseason Screening Brienna L. Morris, MS, ATC; Kirsten C. Ely, MS, ATC; Gary B. Wilkerson, EdD, ATC; Marisa A. Colston, PhD, ATC

BACKGROUND AND PURPOSE

- Lower extremity (LE) injuries account for over 50% of all injuries sustained by intercollegiate athletes¹
- 8.13 injuries per 1000 athlete-exposures
- Pre-participation identification of risk factors may enhance the effectiveness of injury prevention efforts
- Poor core muscle endurance has been associated with the occurrence of acute LE sprains and strains²
- Pre-participation surveys relating to functional status also appear to have injury prediction value^{3,4}
- Limited research evidence is available to guide screening for identification of overuse injury risk⁵
- The purpose of this study was to identify any pre-participation performance capabilities, physical limitations, or
 personal characteristics associated with subsequent occurrence of an overuse core or LE musculoskeletal injury

PARTICIPANTS AND PROCEDURES

- Participants were 100 NCAA Division I college athletes from 9 different teams
 - 30 male athletes (Tennis, Golf, Track/ Cross Country)
- 70 female athletes (Tennis, Golf, Track/ Cross Country, Volleyball, Soccer, Basketball)
- Potential predictors of injury, quantified at pre-participation physical examination prior to first practice session
 Core muscle endurance tests: Wall Sit Hold (WSH), Horizontal Trunk Hold (HTH), Y-Balance
 Survey for effects of previous injuries on functional capabilities: Assessment of Functional Status (AFS)
- Electronic injury documentation system used for injury surveillance throughout sport season
- Overuse injury: Core or LE musculoskeletal injury without clearly defined onset
- Acute injury: Core or LE musculoskeletal sprain or strain associated with clearly defined traumatic event
- Data analysis procedures:
 - Receiver operating characteristic (ROC) analyses utilized to establish cut-points for each variable
 - Odds ratio (OR), and relative risk (RR) calculated to assess associations with injury occurrence
 - Logistic regression analysis used to identify the strongest set of predictors for core or LE overuse injury

Table 1			
Variable	Gender	Mean	SD
450	male	94.33	8.05
AFS	female	86.09	13.87
	male	24.95	18.88
WSHAsym	female	24.44	17.69
нтн	male	56.47	25.29
	female	54.19	30.40

Table 2

Any Core or LE Musculoskeletal Injury Injured = 18 Uninjured = 82			Overuse Core or LE Musculoskeletal Injury Injured = 13 Uninjured = 87				Acute Core or LE Musculoskeletal Injury Injured = 7 Uninjured = 93				
Predictor	Cut-Point	OR	P-value	Predictor	Cut-Point	OR	P-value	Predictor	Cut-Point	OR	P-value
AFS	≤ 97	4.15	.044	AFS	≤ 97	2.61	.184	AFS	≤ 95	4.33	.149
нтн	≤ 62 s	3.72	.033	нтн	≤61 s	3.88	.063	нтн	≤ 31 s	5.19	.047
WSHAsym	≥ 25%	2.33	.088	WSHAsym	≥ 32 %	3.67	.033	WSHAsym	≥ 24%	1.77	.367

Table 3

Any Core or LE Musculoskeletal Injury Injured = 18 Uninjured = 82				Overuse Core or LE Musculoskeletal Injury Injured = 13 Uninjured = 87				Acute Core or LE Musculoskeletal Injury Injured = 7 Uninjured = 93			
Predictor	Cut-Point	Adj OR [.]	90% CI	Predictor	Cut-Point	Adj OR	90% CI	Predictor	Cut-Point	Adj OR	90% CI
AFS	≤ 97	4.17	1.11, 15.58	AFS	≤ 97	2.52	0.65, 9.82	AFS	≤ 95	4.36	0.69, 27.67
нтн	≤ 62 s	3.90	1.26, 12.12	нтн	≤61 s	4.12	1.07, 15.87	нтн	≤ 31 s	5.24	1.35, 20.29
WSHAsym	≥ 25%	2.64	1.03, 6.76	WSHAsym	≥ 32 %	3.91	1.38, 11.09	WSHAsym	≥ 24%	-	-
3-Factor Model	≥ 2 Factors +	OR = 6.26	1.73, 26.27	3-Factor Model	≥ 2 Factors +	OR = 12.28	2.14, 70.52	2-Factor Model	2 Factors +	OR = 5.59	1.43, 21.84
* Adjusted Odds Ratio (Adj OR)											

THE UNIVERSITY of TENNESSEE

RESULTS

- Descriptive statistics for males and females presented in Table1
- 18% (18/100) of the athletes sustained either an acute or overuse core or LE musculoskeletal injury
- Results of univariable analyses for: 1) overuse or acute, 2) overuse only, and 3) acute only presented in Table 2
 Comparison of injury occurrence for high-risk versus low-risk status
- Logistic regression analyses yielded a different prediction model for each category of injury type (Table 3)
 - 3-factor model for any core or LE musculoskeletal injury: 1) AFS, 2) HTH, 3) WSH-Asymmetry (WSHAsym)
 - 3-factor model for overuse core or LE musculoskeletal injury: 1) AFS, 2) HTH, 3) WSHAsym
 - 2-factor model for acute core or LE musculoskeletal injury: 1) AFS, 2) HTH
- ROC analyses identified number of positive factors for optimal discrimination of high-risk from low-risk cases
 ROC curves for each category of injury type presented in Figures 1-3
- RR values demonstrate substantial difference between high-risk and low-risk classification for each injury category
- Overuse or acute injury: ≥ 2 factors positive (AFS ≤ 97, HTH ≤ 62 s, WSHAsym ≥ 25%) = 4.9 X greater risk
- Overuse injury: ≥ 2 factors positive (AFS ≤ 97, HTH ≤ 61 s, WSHAsym ≥ 32%) = 9.8 X greater risk
- Acute injury: Both of 2 factors positive (AFS \leq 95, HTH \leq 31 s) = 4.6X greater risk

CLINICAL RELEVANCE

- The combination of AFS, HTH and WSHAsym can quantify risk for occurrence of overuse core or LE injury
 - A larger number of overuse injury cases is needed to improve prediction model accuracy and precision
- Pre-participation screening for assessment of injury risk can identify a subset of athletes who would derive benefit from an intervention that addresses modifiable risk factors for overuse or acute musculoskeletal injury

REFERENCES

- Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Ath Train. 2007;42:311-319.
 Hides JA, Brown CT, Penfold L, Stanton WR. Screening the lumbope/kic muscles for a relationship to injury of the quadriceps, hamstrings, and adductor muscles among elite Australian Football League davers. J Orthos Control Phys. Tenc. 2011;41:176-1772.
- Irrgang JJ, Anderson AF, Boland AL, et al. Development and validation of the International Knee Documentation Committee subjective knee form. Am J Sports Med. 2001;29:600-613.
- 4. Martin RL, Irrgang JJ, Burdett RG, Conti SF, Van SJ M. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). Foot Ankle Int. 2005; 26:968-983.
- 5. Wilkerson GB, Giles JL, Seibel DK. Prediction of core and lower extremity strains and sprains in college football players: a preliminary study. J Athl Train. 2012;47:273-281.