EFFECT OF A MULTI-SEGMENTAL ROTARY EXERCISE PROGRAM ON HIP EXTERNAL ROTATOR AND ANKLE INVERTOR STRENGTH Kayleigh K. Edwards, MS, LAT, ATC; Marisa A. Colston, PhD, ATC; Gary B. Wilkerson, EdD, ATC

BACKGROUND AND PURPOSE

- Lower extremity (LE) sprains / strains account for 36% of all injuries treated in emergency rooms¹
- Many intrinsic and extrinsic risk factors have been associated with LE injury²
- Neuromuscular performance capabilities influence an individual's response to external loads and forces³
- Both dynamic control of foot pronation and core stability appear to be important contributors to force dissipation⁴
- Integrated LE function can be enhanced through improvement of neuromuscular activation and coordination⁵⁻⁷
- The closed-kinetic chain core-LE linkage within the transverse plane has not been thoroughly investigated
- The purpose of this study was to quantify the effectiveness of a rotary closed-chain LE strengthening program for improvement of isometric force output of the hip external rotators and ankle invertors

SUBJECTS AND PROCEDURES

- Participants were 19 college students (21.9 5.7 years of age)
- 4 males: 177.8 6.9 cm; 90.5 10.7 kg; 15 females: 168.7 5.5 cm; 70.3 12.1 kg
- Exclusion Criteria:
- Participation in an intercollegiate sport within previous year; LE injury sustained within the 3 weeks of testing
- Joint-specific surveys administered to quantify functional status prior to initiation of strengthening program
- Oswestry Disability Index (ODI)
- International Knee Documentation Committee knee survey (IKDC)
- Foot and Ankle Ability Measure Sport Subscale (FAAM)
- Hip external rotation (HER) and ankle inversion (INV) force output measured by hand-held dynamometer (R & L)
 - Resistive force standardized through use of stabilization belt (Figures 1 & 2)
- Wall sit hold (WSH) muscle endurance test administered to both right (R) and left (L) extremities (Figure 3)
- Exercise program initiated within 72 hours of pretesting participants met 3 times per week for 3 weeks
- 2 HER/INV exercises (Figures 4 & 5) performed for each extremity on Standing Firm System[®] (New Castle, PA)
- Measurements repeated after 3-week program; 15-level (-7, 0, +7) Global Rating of Change (GRC) administered
- Intraclass correlation coefficient (ICC) calculated to assess measurement precision
- Dependent t-tests (α =.05) and 90% minimum detectable change (MDC₉₀) used to assess improvement
- Receiver operating characteristic (ROC) analysis used to assess association between strength gain and status

THE UNIVERSITY of TENNESSEE JHATTANOOGA

Figure 1

Figure 3

Figure 4

Figure 5

RESULTS

- ICC (2,K) for comparison of R and L pre-test average of 3 values: HER =.882; INV=.914
- MDC₉₀ for assessment of strength gain: HER =0.95 kg (2.09 lbs); INV=1.59 kg (3.50 lbs)
- Statistically significant pre-test to post-test change observed for INV (R & L), HER (R), WSH (R & L), and ODI
- ROC analysis demonstrated an association between WSH improvement and HER strength gain (Figure 6, Table 2)
- 80% of cases with HER increase (R & L Avg) \geq 0.56 kg (1.23 lbs) had \geq 8 sec improvement in WSH (R & L Avg)
- 78% of cases with < 0.56 kg (1.23 lbs) HER increase had < 8 sec WSH improvement
- ROC analysis demonstrated an association between lack of survey score increase and lack of strength gain
- 85% of cases without any improvement in IKDC had < 3.44 kg (7.57 lbs) INV-L increase (Figure 7)
- 80% of cases without any improvement in ODI had < 0.36 kg (0.80 lbs) HER-L increase (Figure 8)
- Average GRC = +3.5 units; 95% of participants (18/19) reported improvement in overall functional capabilities

Table 1						
Variable	Pre-Test Mean	Post-Test Mean	P-Value	Post - Pre Change	SRM	Post - Pre % Change
INV-R	4.30 ± 4.60	6.72 ± 8.43	<.001	+2.42	1.00	36%
INV-L	3.97 ± 5.70	6.72 ± 8.52	<.001	+2.75	1.53	41%
HER-R	3.77 ± 2.62	4.39 ± 2.69	.010	+0.62	0.66	14%
HER-L	3.57 ± 2.56	3.90 ± 2.26	.103	+0.33	0.39	8%
WSH-R	17.75 ± 8.94	26.21 ± 13.66	<.001	+8.46	1.19	32%
WSH-L	15.72 ± 9.26	23.11 ± 11.57	.016	+7.39	0.61	34%
ODI	3.05 ± 5.05	1.47 ± 2.74	.028	+1.58	0.55	-
IKDC	90.80 ± 11.88	92.32 ± 10.31	.103	+1.52	0.39	-
FAAM	99.18 ± 2.04	98.52 ± 3.66	.360	-0.66	-0.22	-

CLINICAL RELEVANCE

• HER and INV measurements obtained from hand-held dynamometer demonstrated exceptionally good consistency

· Use of stabilization belt appears to reduce variability of measurements

• Transverse plane strengthening program produced substantial improvements in multiple aspects of functional status

• Standing Firm System[®] appears to provide a valuable exercise mode for improvement of multi-segmental function

• Improvements in both measures of muscle performance and survey-derived function scores suggests that transverse plane strengthening may provide an important contribution to optimization of core and LE dynamic stability

REFERENCES

1. Lambers K, et al. Incidence of patients with lower extremity injuries presenting to US emergency departments by anatomic region, disease category, and age. Clin Orthop Relat Res. 2012;470:284-290.

2. Murphy DF, et al. Risk factors for lower extremity injury: a review of the literature. Br J Sports Med. 2003;37:13-29.

3. Bullock-Saxton JE. Local sensation changes and altered hip muscle function following severe ankle sprain. Phys Ther. 1994;74:17-28.

4. Bolga LA, Malone TR. Plantar fasciitis and the windlass mechanism: a biomechanical link to clinical practice. Am J Sports Med. 2004;39:77-82. 5. Myer GD, et al. A pilot study to determine the effect of trunk and hip focused neuromuscular training on hip and knee isokinetic strength. Br J Sports Med. 2008;42:614-619.

6. Zazulak BT, et al. The effects of core proprioception on knee injury. Am J Sports Med. 2007;35:368-373.

7. Leetun DT, et al. Core stability measures as risk factors for lower extremity injury in athletes. *Med Sci Sports Exerc*. 2004;36:926-934.