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Preface 

This report is intended to provide a self-contained introduction to Cartesian tensors for students 

just entering graduate school in engineering and science majors, especially those interested in 

computational engineering and applied computational science.  This introduction assumes 

students have a background in multivariable calculus but no familiarity with tensors. 
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AN INTRODUCTION TO VECTORS AND TENSORS 

FROM A COMPUTATIONAL PERSPECTIVE 
_____________________________________________________________________________________________________________________ 

1.  Introduction 

1.1  Vectors and Tensors in Physics 

Magnitude and direction are common geometric properties of physical entities.  Scalars are 

physical quantities such as density and temperature that have magnitude (measured in a specified 

system of units) but no directional orientation.  Vectors are physical quantities such as velocity 

and force with magnitude (length) and a single direction.  The direction of vectors can be defined 

only in relation to a specified set of N reference directions that comprise a frame of reference for 

the N-dimensional physical space considered: typically N = 1, 2 or 3.  The reference frame could 

be a set of unit vectors or a coordinate system.  Vector magnitude and direction are quantified by 

N scalar components that are defined by scalar projection onto these directions.  Although vector 

components depend on the choice of reference directions, the magnitude and direction of the 

vector are invariant physical properties that are independent of the frame of reference.  Tensors 

are physical quantities such as stress and strain that have magnitude and two or more directions.  

For example, stress is a relationship between force and area (magnitude and two directions) and 

is thus a second-order tensor with 
2N  components.  Tensors also have invariant physical 

properties that are coordinate independent.  True physical tensors of order higher than two are 

uncommon, but higher order tensors are common in mathematical descriptions of physics. 

1.2  Vectors and Tensors in Mathematics 

Mathematically, vectors and tensors describe physical entities and their mathematical 

abstractions as directional objects represented by scalar components that are defined by 

projection onto a specified set of base vectors (possibly unit vectors) comprising a basis, and that 

satisfy transformation laws for a change of basis.  It is important to recognize that the term 

tensor is a general mathematical description for geometric objects that have magnitude and any 

number of directions.  A tensor of order p has content from p directions and has 
pN  

components.  Thus a scalar is a zeroth-order tensor, a vector is a first-order tensor, and so on. 

1.3  A Computational Perspective 

The present introduction will consider vectors and tensors as encountered in computational 

simulations of physical fields in which scalar, vector and tensor quantities vary with position in 

space and with time.  Fields require a coordinate system to locate points in space.  Vector and 

tensor fields also require a local basis at each point to define vector/tensor components.   

Disconflation of Vector Bases and Coordinates Systems - Most mathematical treatments of 

tensors assume that the local basis is aligned with the coordinate directions: cf. [1,2] .  However, 

the alignment of base vectors and coordinate directions introduces complexity in curvilinear 
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orthogonal and especially in nonorthogonal coordinates that is not present in Cartesian 

coordinates:  The local basis is constant for Cartesian coordinates but varies with spatial position 

using any curvilinear coordinate system.  Nonorthogonal coordinates introduce a dual basis: one 

basis is parallel to the coordinate lines (the contravariant basis) and a reciprocal basis (the 

covariant basis) is perpendicular to coordinate tangent planes.  These parallel and reciprocal 

bases coincide for curvilinear orthogonal coordinates but vary with spatial position. 

The resulting complications include differentiation of spatially varying base vectors, the metric 

tensor, dual base vectors, contravariant and covariant components, tensor differentiation, and 

Christoffel symbols.  The calculus of tensors in general nonorthogonal coordinates is therefore 

significantly more complicated than that of Cartesian tensors.  However, the complexity of 

variable-direction and nonorthogonal base vectors in general coordinates is commonly avoided 

in computational solution of both differential and integral conservation laws in discrete form, 

whether using structured or unstructured grids.   

Structured Grids - In differential approaches using coordinate systems, the technique used is to 

transform spatial derivative terms from Cartesian to general curvilinear coordinates, while 

retaining a uniform Cartesian local basis for vector/tensor components.  The governing equations 

are thereby written in general curvilinear coordinates, but the Cartesian vector/tensor 

components remain as dependent variables.  This approach is widely discussed and has been 

standard practice in computational fluid dynamics for many years: cf. [3,4,5].  The use of a 

uniform Cartesian local basis may also reduce spatial discretization error in computations.  The 

reason is that spatial variation in base vectors causes extraneous, nonphysical spatial variation in 

components that when differentiated may require higher local resolution than Cartesian 

components: for example in regions of large coordinate curvature.   

Unstructured Grids - Another common approach for spatial discretization uses unstructured 

grids, for which no identifiable family of coordinate lines exists: cf. [6,7].  The governing 

equations are typically written in integral rather than differential form, with discrete integral 

approximations that require multidimensional interpolation of vectors and tensors rather than 

differentiation.  A pointwise Cartesian local basis is used for vector/tensor components, with a 

local rotation of Cartesian unit vectors for alignment with local surfaces as needed in the 

interpolation process. 

Finally, it should be emphasized that tensor mathematics is a broad area of study that can be far 

more complicated than what is needed and discussed here as background for computational field 

simulation.  The present introduction covers basic material that is fundamental to the 

understanding and computation of physical vector and tensor fields.  It is hoped that the present 

effort to disconflate the local vector basis and coordinate system will provide useful insight into 

the computation of tensor fields.  The main body of this report addresses Cartesian coordinates 

and basis vectors and that are not necessarily aligned.  For those who are interested, the 

APPENDIX gives a summary of dual-basis vector calculus for general curvilinear coordinates.  

Detailed discussions of vectors and tensors are given in [1,2,8] and in many other references. 
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2.  Vector Basics  

First consider a vector a  with base O and tip A, as shown in the sketch.  The 

vector is a directed line segment (arrow) that has inherent magnitude and 

direction.  The vector is called a free vector if its location is not specified and 

a fixed or bound vector if the base O has a specific location in space. 

The direction of a is quantified by direction cosines of the angles between a  and a set of N  

arbitrary but linearly independent base vectors comprising a basis.  The standard Euclidean basis 

is a set of right-hand mutually orthogonal unit vectors (called an orthonormal basis) located at 

the base O and denoted  1 2 3ˆ ˆ ˆ, ,e e e .  All examples in this introduction will assume 3N  . 

Although the magnitude a  a  and direction of a  are 

invariants that do not depend on the choice of basis, the 

direction cosines are obviously basis dependent.  For a given 

basis, a vector is represented by N scalar components, which 

are the scalar projections of the vector a  onto the set of N 

base vectors, as shown in the nearby figure.  Letting 

 1ˆcos ,a e  denote the cosine of the included angle between 

a  and 1ê , and with similar notation for 2ê  and 3ê , the 

components of a  are given by 

 1 1ˆcos ,a  a a e ;     2 2ˆcos ,a  a a e ;     3 3ˆcos ,a  a a e  

The vector a  is then expressed as a linear combination of the base vectors: 

1 1 2 2 3 3ˆ ˆ ˆa a a  a e e e . 

The vector components in a given basis are equivalent to the vector itself, since it is a simple 

matter to calculate the invariant magnitude and direction from known values of  1 2 3, ,a a a : 

2 2 2
1 2 3a a a a   ;       1 1ˆcos , /a aa e ;       2 2ˆcos , /a aa e ;       3 3ˆcos , /a aa e  

3.  Index Notation for Vectors, Tensors and Matrices 

Index notation is a concise way to represent vectors, matrices, and tensors.  Instead of writing the 

components of a  separately as  1 2 3, ,a a a , the indexed variable ia  represents all 

components of a  collectively as follows: 

 1 2 3, ,ia a a a
 

By convention, the index is understood to take on values in the range 1, 2 , 3i   or more 

generally 1, 2 , ,i N .  Using index notation, the complete vector a  can be written as  
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3

1

1 1 2 2 3 3ˆ ˆ ˆ ˆ

i

i ia a a a


   a e e e e

 
3.1  Einstein Summation Convention  

The important summation convention states that if an index appears twice in a single term, then 

it is understood that the repeated index is summed over its range from 1 to N.  The summation  

symbol is then redundant, and the vector can be written concisely as  

  1 1 2 2 3 3ˆ ˆ ˆ ˆi ia a a a   a e e e e      (with implied summation on i) 

Finally, once a basis ˆ ie  has been identified, all vectors and tensors can be unambiguously 

represented by their components alone; actual display of the base vectors is unnecessary and 

purely a matter of notational preference.  Thus the vector a  is represented concisely as 

iaa
 

3.2  Index Rules and Terminology  

The index notation can be used with any number of subscripts.  For example, i jA  denotes the 

square matrix 

11 12 13

21 2 2 2 3

31 32 33

i j

A A A

A A A A

A A A

 
 

  
 
    

In general, the i and j indices can be assigned separate ranges, for example to represent a 3 5  

matrix.  However, all indices are assumed to have the same 3N   range in this report. 

Range Convention Variables, terms and expressions may be assigned one or more Latin index 

letters such as , ,i j k .  Each of these indices can independently take on 

integer values in their range 1, 2 , , N .  For example, i ka b  and 

i jka A  are terms combining vectors ia  and kb  and the matrix jkA . 

Index Rule Each index letter can occur either once or twice in a single term, but no 

index can occur more than twice. For example, j jka A  is a valid term, but 

j j ja A  is invalid. 

Free Indices An index letter that occurs only once in a single term is called a free index 

(or range index).  A valid equation must have the same free indices in each 

term.  For example, jk jk jkA B C   is valid, but i j i k jkA B C   is 

invalid.  A tensor with p free indices has order p and 
pN  components. 
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Summation Indices An index letter that occurs twice in a single term is called a summation 

index.  The repeated index invokes a summation over its range.  For 

example, 

3

1

1 1 2 2 3 3
j

j j j ja b a b a b a b a b


    .   

Dummy Indices A summation index is also called a dummy index because it can be replaced 

by a different index letter without changing its meaning.  For example, in the 

equation i i j k k ja A a A , i and k are arbitrary dummy indices, and j is a 

free index that must appear once in each term. 

3.3  Special Symbols 

There are two specially defined symbols that simplify index notations and operations: 

The Kronecker delta i j  is defined by 

1 if  

0 if  
i j

i j

i j



 


    , or if expressed as an array:   

1 0 0

0 1 0

0 0 1

i j

 
 


 
 
 

 

The Levi-Civita symbol or permutation symbol i j k  is a three-dimensional array defined by 

1 if , , are an even (or cyclic) permutation of 1, 2, 3

1 if , , are an odd (or non-cyclic) permutation of 1, 2, 3

0 if any index is repeated

i j k

i j k

i j k




 

  

An even permutation is any three consecutive integers in the sequence   1, 2, 3, 1, 2, 3 .  An 

odd permutation is any three consecutive integers in the sequence  3, 2, 1, 3, 2, 1 .  Thus, 

1 2 3 2 31 31 2 1      , and 3 2 1 2 1 3 1 3 2 1      .  All other values are zero.  

It is perhaps of passing interest that the following    identity can be used to generate all of 

the identities of vector analysis: 

i j k i r s j r k s j s r k      
 

3.4  Vector Operations in Index Notation 

Scalar or Dot Product:  
ˆ ˆ

i j i je e
  

ˆ ˆ( ) ( )i i j j i j i j k ka b a b a b  a b e e
  

Vector or Cross Product:  ˆ ˆ ˆi j i j k ke e e  

ˆ ˆ ˆ( ) ( )i i j j i j i j k ka b a b   a b e e e
 

Magnitude of a Vector:      
1/2 1/2( ) ( )k ka a a a a  
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Determinant of a Square Matrix: 

11 12 13

21 2 2 23 1 2 3

31 32 33

det i j k i j k

A A A

A A A A A A

A A A

  A A

 4.  Tensor Basics 

We have seen that vectors are familiar geometric objects with invariant magnitude and direction.  

Tensors extend the description of vectors to geometric objects that have magnitude and any 

number of directions. 

Order of a Tensor – The order of a tensor is equal to the number of its free indices.  A tensor of 

order p has p free indices, involves p directions in an N-dimensional space, and has 

pN components, as summarized in the following Table: 

Type Notation Order Components 

Scalar 
 0 0N  

Vector ai
 

1 1N  

Tensor i jA
 

2 2N  

Tensor i j pA
 

p pN  

The indices i and j each take on the values 1, 2, 3i   and 1, 2, 3j   for 3N   dimensions.  

Although any second-order tensor i jA  can be interpreted as a square matrix, all square matrices 

are not tensors.  Matrices are simple arrays of arbitrary elements; whereas, tensors incorporate 

geometric directional information, satisfy transformation laws for a change of basis, and have 

invariant properties independent of basis.  Note that a common naming convention (followed in 

the table above) uses lower-case Greek letters to denote scalars, lower-case Latin letters for 

vectors, and upper-case Latin letters for matrices and tensors.   

Physical Example - The stress tensor of continuum mechanics is a familiar example of a 

second-order tensor.  Stress is a force per unit area acting on an internal surface within a material 

body.  The state of stress at a point is uniquely determined by knowledge of the three-component 

stress vector acting on each of three mutually perpendicular planes.  Therefore, stress is 

described by a second-order tensor defined by nine component stresses.  The stress vector acting 

on any arbitrary plane passing through a point can be found by a projection of the stress tensor 

onto the normal direction of that plane. 
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Contraction of Free Indices – The summation convention is invoked by equating any two free 

indices (replacing them by a common index letter), and this is called a contraction of indices.  

Contraction of two indices reduces the order of a tensor by two. 

 Contraction of i and j in i jA  gives the scalar kkA .  The trace of a square matrix is a 

contraction of its indices:  i j i iA Atr  

 Contraction of i and j in i j kA  gives the first-order tensor m m kA  (a vector). 

Outer and Inner Products of Tensors  

 The outer or tensor product of two tensors A  and Β  is expressed as Α B .  The tensor 

product symbol   is usually omitted when using index notation, so that if A  and Β  are 

second-order tensors, then Α B  is simply written as j k r sA B .  Other examples of 

outer products are i j kA B  , i jA B , and  i j k rA B .   

 The inner or dot product of two tensors is written as
 
Α B , or if A  and Β  are second-

order tensors: j k r sA BΑ B .  It is evaluated by contracting the innermost pair of 

free indices, made up of one index from each term in the product (in this case k and r).  

For example, both j k r s j m ms j sA B A B C   and i j k j j k ka b a b c   are inner 

products.  An inner product is thus an outer product plus a contraction of the two 

innermost indices.  This dot-product contraction reduces the order of a tensor by two. 

Recall that a vector a  can be written either as iaa  or ˆi iaa e .  A second-order tensor A  

with components i jA  can be written either as i jAA  or ˆ ˆi j i jAA e e .  The outer product 

of two vectors such as ˆ ˆi je e  or i ja b  is called a dyad, a term from vector analysis. 

5.  Vector and Tensor Fields 

The previous discussion has only considered vectors and tensors defined at a point, without 

stating where the point is located.  Vector and tensor fields are defined by assigning a vector or 

tensor to each point in a region of space, and their components are then functions of spatial 

position, as located by a global 

coordinate system.  A vector field is 

illustrated in the nearby figure.  Points 

in space are located by a spatial 

position vector  x  directed from a fixed 

origin O to each arbitrary point  P x , 

and then vector components are defined 

using a local basis.  A rectangular 

Cartesian coordinate system is defined 
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by choosing an orthonormal coordinate basis  1 2 3ˆ ˆ ˆ ˆ, ,i e e e e  located at the origin O.  The 

Cartesian coordinates  1 2 3, ,ix x x x  of point P are simply the scalar components of the 

position vector x  defined by projection onto the Cartesian basis: 

1 1 2 2 3 3ˆ ˆ ˆ ˆi ix x x x   x e e e e
 

A scalar field is expressed as   x , and a vector field is denoted by  a x .  A local basis is 

needed to define the scalar components  ia x  at each point in the field.  The simplest choice for 

a local basis is shown in the preceding figure, which is to use the Cartesian coordinate basis ˆ ie  at 

the origin O but to relocate it by translation without rotation from the origin O to the point P.  

The vector field is then given by 

         1 1 2 2 3 3ˆ ˆ ˆ ˆi ia a a a   a x x e x e x e x e
 

A second-order tensor field  A x  with components  i jA x  is expressed as 

    ˆ ˆi j i jAA x x e e .  Note that the x  dependence in terms such as  ia x  and  i jA x  has 

been explicitly shown here for emphasis.  As in other areas of calculus, however, this x  

dependence is often omitted for conciseness, and must be implied by context.  In this example, 

the Cartesian local basis ˆ ie  does not vary with x . 

6.  Calculus Operations in Cartesian Tensor Notation 

The following calculus operations are applicable to rectangular Cartesian coordinate systems 

with the same Cartesian local basis for vector and tensor components: 

Gradient Operator:  The gradient operator implies differentiation by a vector, and its 

components are written as 

1 2 3

( ) , ,
ix x x x

    
     

     

 

It has been mentioned that the display of base vectors is optional, but they can be shown as 

 

1 2 3
1 2 3

ˆ ˆ ˆ ˆ( ) i
ix x x x

   
     

   
e e e e

 

The “Comma” Derivative Notation:  A comma subscript followed by an index is a concise 

notation indicating differentiation, as shown in the following examples: 

,

( )
( ) i

ix

 
 


          , j

j

A
A

x





 ;          ,
i

i j
j

A
A

x





 ;          

2

,
i j

i j m n
m n

A
A

x x



 
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Gradient of Scalar Field:   If    x  is a scalar field, then its gradient is 

, i
i

grad
x


  


   


  or if base vectors are added:  ,ˆ ˆi i i

ix


 


  


e e  

Directional Derivative Operator:  If ˆi inn e  is a unit vector, then the directional derivative 

for direction n  is 

( )
( ) i

i

n
x

 
  


n

 

Divergence of a Vector Field:   If  u u x  is a vector field, then its divergence is 

,
i

i i
i

u
div u

x


   


u u

 

Curl of a Vector Field:   If  u u x  is a vector field, then its curl has components 

,
k

i j k i j k k j
j

u
curl u

x
 


   


 u u

 
or if base vectors are added:      ,ˆ ˆ

k
i j k i i j k k j i

j

u
u

x
 


  


 u e e

 

Note that the vector cross product ˆi j k i j ka ba b e  has a different subscript ordering. 

Laplacian Operator:   

   

2
2

,

( )
( ) ( ) ( ) ( ) i i

i i

div grad
x x

 
          

 
 

If    x  is a scalar field, then its Laplacian is 

 
2 2 2

2
,ˆ ˆ ˆ ˆi j i j i j i i

i j i j i j i ix x x x x x x x

   
  

       
        

             

e e e e

  

If  u u x  is a vector field, then its Laplacian has components 

 

 

2
2

,
k

k i i
i i

u
u

x x


  

 
u   or adding base vectors:  

2
2

,ˆ ˆ
k

k k i i k
i i

u
u

x x


  

 
u e e  
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Divergence of a Second-Order Tensor:   

 
,i j i j i j i

i

A A A
x


    


A

 Double Dot Product:   The term :i j  u  arises in fluid mechanics and is the “double dot” 

product of two tensors.  It is evaluated as the double contraction of i j n
m

u
x

  



 , giving  

,:i j i j i i j i j
j

u u
x

  


  


u  

7.  Transformation Laws for Cartesian Coordinates and Tensor Components 

It is sometimes useful to introduce a rotation of vector basis and coordinates to a different 

orientation.  The tensor components and coordinates then satisfy linear transformation laws that 

define coordinates and components in one basis in terms of known components in another basis.  

This section will give the linear transformation laws for a change from one Cartesian basis to 

another basis that has been rotated about the same origin.  

Unstructured Grid Example - A computational example of this basis transformation arises 

when solving integral conservation 

equations using unstructured grids.  

Since there are no coordinate lines 

connecting grid points, the spatial 

points and solution variables are 

identified individually by their global 

Cartesian coordinates.  Discrete 

approximations for integral field 

equations are then constructed for 

individual volume and surface 

elements using multidimensional 

interpolation among localized point groupings.  Components of vector/tensor field variables are 

defined using the global coordinate basis, but components aligned with individual surface 

elements are needed in a rotated local basis, as indicated in the figure above. 

Cartesian Transformation Laws - Consider two rectangular Cartesian coordinate systems 

whose origins coincide, as shown 

in the nearby figure.  The position 

vector x  from the origin to an 

arbitrary point P is identical in 

both coordinate systems.  The 

base vectors ˆ je  and coordinates 
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jx  are unprimed in the first system, and they are denoted by primed variables ˆ 'ie  and 'ix  in the 

second system.  Thus, 

     ˆ ˆ' 'j j i ix x x e e         (7.1) 

The coordinate transformation law is a linear relation that defines the 'ix  coordinates in terms of 

jx , which are assumed to be known.  The 'ix  coordinates are determined by their fundamental 

definition as scalar projections of the position vector x  onto each of the unit vectors ˆ 'ie .  The 

'ix  coordinates can be calculated individually using (7.1) as 

 
 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ' ' ' ( ' ) (1)(1) cos ( ' , )j j j j j jx x x x   e x e e e e e e     (7.2a) 

Similarly, 

           2 2ˆ ˆ' cos ( ' , )j jx x e e  ;            3 3ˆ ˆ' cos ( ' , )j jx x e e     (7.2b) 

Each 'ix  is a sum of jx  components weighted by the direction cosines of the angles between 

the respective 'ix  and jx  axes.  The individual equations in (7.2) are then written collectively as 

ˆ ˆ' cos ( ' , )i j i jx x e e
      

 (7.3) 

For conciseness, the matrix of direction cosines is rewritten as  

   
ˆ ˆcos ( ' , )i j i jR  e e

  
     (7.4) 

where the first and second indices correspond to the primed and unprimed basis vectors, 

respectively.  Substituting in (7.3) then gives the linear coordinate transformation law  

            (7.5) 

The inverse transformation is obtained by a similar derivation in which jx  is calculated from 

known values of 'ix .  The result is 

            (7.6) 

Note that the second index corresponding to jx  is summed in (7.5), whereas the first index 

corresponding to ' jx  is summed in (7.6).  Since the coordinates ix  and 'ix  are just components 

of an arbitrary position vector x , this same transformation applies to components of an arbitrary 

field vector a , so that 

            (7.7) 

       
'i i j ja R a

  
Component Transformation 

       
'i j i ja R a

 
Inverse Transformation  

'i j i jx R x
 

Inverse Transformation  

'i i j jx R x
  

Coordinate Transformation 
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Analogous transformation laws for tensors of any order are given below:  The forward and 

inverse transformation laws for second-order tensors are given by 

                        (7.8) 

The forward and inverse transformation laws for higher-order tensors are given by 

           (7.9) 

Computation of Direction Cosine Matrix - Finally, the elements of the constant matrix i jR  

can be calculated by differentiating (7.5): 

 
' mi

i m m i m i m m j i j
j j j

xx
R x R R R

x x x


 
    

  
R     (7.10) 

A similar differentiation of (7.6) gives the matrix transpose:

 

                      

 
'

'
' ' '

i Tm
m i m m i m i m j j i

j j j

x x
R x R R R

x x x


  
    

  
R    (7.11) 

Combining (7.10) and (7.11) with the chain rule gives

 

     

1'

'

i j T
i k

j k

x x

x x
 

 
   

 
I R R R R      (7.12) 

Equation (7.12) shows that 
1T R R , and thus i jRR  is an orthogonal matrix.

 

8.  Transformation from Cartesian to General Curvilinear Coordinates 

Structured Grid Example – When solving differential forms of field equations, general 

curvilinear coordinates and structured grids are often used to conform to geometric or boundary 

surfaces.  Although standard treatments of non-Cartesian coordinate systems generally use local 

basis vectors aligned with the 

coordinates, this requires differentiation 

of spatially varying base vectors for 

curvilinear coordinates and introduces 

dual base vectors for nonorthogonal 

coordinates.  As mentioned in the 

Introduction, these complexities are 

avoided by transforming the spatial 

derivative terms from Cartesian to general 

curvilinear coordinates, while retaining a 

'i j k i r j s k t r s tA R R R A
      

Component Transformation
 

'i j k r i s j t k r s tA R R R A
      

Inverse Transformation 

'i j i k j l k lA R R A
       

Component Transformation
 

'i j m i n j m nA R R A
    

Inverse Transformation 
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uniform Cartesian local basis for vector/tensor components, as indicated in the adjacent figure.  

The governing equations are thereby expressed in general curvilinear coordinates, but the 

dependent variables are the Cartesian vector/tensor components.  A simple chain-rule derivative 

transformation is all that is needed to implement this approach.  

Coordinate Transformation – A given point in space ( )P x  can be defined using Cartesian 

coordinates  1 2 3, ,ix x x x  or general curvilinear coordinates  1 2 3, ,i    .  The 

transformation from Cartesian to general coordinates is given by  

 1 1 1 2 3, ,x x x   ;     2 2 1 2 3, ,x x x   ;     3 3 1 2 3, ,x x x   

and the inverse transformation is given by 

 1 1 1 2 3, ,x x     ;     2 2 1 2 3, ,x x     ;     3 3 1 2 3, ,x x     

In index notation, these become  j j ix   and  i i jx x  . 

Assuming the governing differential equations are available in Cartesian coordinates, the 

transformed equations are obtained by replacing all Cartesian derivative terms with the chain-

rule substitution 

      

( ) ( )j

i i jx x





    
  

    

      (8.1) 

Equation (8.1) can be implemented analytically if the grid transformation  j ix  is known (for 

example in cylindrical or spherical coordinates).  However in computations, the structured grid is 

usually defined by the Cartesian coordinates of each grid point  i jx  .  In this case, it is a 

simple matter to calculate the derivatives of the inverse transformation /i jx    numerically 

and make use of the identity 

       

i j
i j

j i

x

x






   
   

     

I       (8.2)

 

The substitution (8.1) can then be written in terms of /i jx    as  

      

1

( ) ( )i

i j j

x

x  


    

  
    

      (8.3)
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APPENDIX - DUAL-BASIS VECTOR CALCULUS 

_____________________________________________________________________________________________________________________ 

Preface - In computational field simulations, a local Cartesian vector basis is commonly used to 

define vector/tensor components, even if a curvilinear non-orthogonal orthogonal coordinate 

system is used to locate points in space (see Sections 7 and 8).  However it is common in 

mathematical treatments for curvilinear coordinates to assume that the local vector basis is 

defined in terms of the local coordinate directions.  This introduces a dual system of local base 

vectors consisting of a) the tangent (covariant) base vectors that are tangent to the coordinate 

directions, and b) the reciprocal (contravariant) base vectors that are perpendicular to the 

coordinate surfaces.  These are identical only if the coordinates are orthogonal.  In addition, the 

notation for normalized unit basis vectors is not standardized, since un-normalized base vectors 

often provide simpler formulas.  This APPENDIX summarizes the formulas that arise in dual-

basis vector calculus for general coordinates. 

General Curvilinear Non-Orthogonal Coordinates 

Coordinate Systems and Transformations - Locating a point P  in space requires a coordinate 

system; the location or position of the point is specified by a set of coordinates 

values  1 2 3, ,kx x x x .  This same point location can be expressed in a different coordinate 

system  1 2 3, ,kx x x x    , and the functional relationship  k k kx x x   between the two 

sets of coordinates is called a coordinate transformation.  The inverse transformation is 

 k k kx x x . 

Position Vector – Each point P  in a continuum space can be identified by a position vector 

 kxr r  that points from an arbitrary origin O  to the point  kP x .   

Tangent and Reciprocal Base Vectors – The components of an arbitrary vector A  bound to 

the point P  are defined by projection onto local base vectors at P .  The set of base vectors ke  

tangent to coordinate lines passing through the point is defined by 

k
k

x






r
e ;  

k k

k
kd d x d x

x


 



r
r e  

A set of reciprocal base vectors 
k

e  is defined as follows: 

 
2 31

1 2 3




 

e e
e

e e e
,     

 
3 12

1 2 3




 

e e
e

e e e
,     

 
1 23

1 2 3




 

e e
e

e e e
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This definition ensures that the reciprocal base vectors have the following two properties: 

1) Each reciprocal base vector is perpendicular to each of the two tangent base vectors that 

have different indices.  Thus,  
1

e  is perpendicular to 2e  and 3e  

2
e  is perpendicular to 1e  and 3e  

3
e  is perpendicular to 1e  and 2e  

2) The dot product of tangent and reciprocal base vectors having the same index is unity.  

Thus, 
1

1 1 e e ;      
2

2 1 e e ;      
3

3 1 e e  

The length of the reciprocal base vectors is thus given by 

 
1

cos ,

k

k
k k

e
e e e

     (no summation on k) 

Contravariant and Covariant Vector Components - The vector A  can be expressed either in 

terms of tangent base vectors je  and contravariant components 
jA  or in terms of reciprocal 

base vectors 
k

e  and covariant components kA  as follows: 

j k
j kA A A e e  

These vector components can be calculated from the vector and base vectors as follows: 

k kA  A e ,     k kA  A e  

The contravariant components 
jA  represent parallel projections onto the tangent base vectors 

je , and the covariant components kA  represent perpendicular projections onto the reciprocal 

base vectors 
k

e . 

If needed, normalized or unit base vectors can be defined by  

ˆ
k

k

k


e

e
e

    ˆ
k

k

k


e
e

e
     (no summation on k) 

If a unit-vector basis is used, then the vector can be expressed in normalized contravariant 

components ˆ jA or covariant components ˆ
kA  as follows: 

ˆ ˆˆ ˆj k
j kA A A e e , where ˆ ˆk kA  A e  and ˆ ˆk kA  A e . 

Note that this notation for normalized unit vectors is not standard, although it is unambiguous in 

the current context. 
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Change of Vector Basis by Local Coordinate Transformation – If a given point 

 1 2 3, ,P x x x  is located by a new (primed) coordinate system as  1 2 3, ,P x x x   , then the 

tangent base vectors at point P for the primed system are given by 
k

k
x


 



r
e , evaluated at 

point P .  The tangent base vectors transform as the inverse of the coordinate transformation 
1

' j k

k j
j k k

x x

xx


  

   
   

e e e   

The contravariant vector components transform as  

'
'

j

k

j kx
A A

x





  

The ' /j kx x   terms represent the projections of the tangent base vectors of the original x-

system onto the tangent base vectors of the new x’-system.  The coordinate differentials 

transform as 

'
'

j
j k

k

x
dx dx

x





 

Derivatives transform as the inverse transformation 

   k

j j k

x

x x x

   


   
 

The covariant vector components transform as the inverse transformation 

'
' j

k

j k

x
A A

x





 

The / 'k jx x   terms represent the components of the reciprocal base vectors perpendicular to 

the original x-axes, expressed in the new x’-system.  The reciprocal base vectors transform as 

1

'

'

j

j k

k
j k kx x

x x


  

   
   

e e e   

Distance and the Metric Tensor – Consider the vector d r  connecting two points that are an 

infinitesimal distance d s  apart.  Since d r  is a vector, it can be expressed as 

j k
j kd d x d x r e e  

k kd x d r e ,     k kd x d r e  
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The distance d s  is determined by 
2d s d d r r , which gives  

     2

j k kj k
j

j k j k k j
j k j k j k

g g

d s d d d x d x d x d x d x d x

  

       r r e e e e e e  

This suggests the definition of metric tensors such that  

j k j kg  e e  

j k j kg  e e  

kk
j j e e  

and thus distance d s  is given by 

2 j k j k j
j k j k kd s d d g d x d x g d x d x d x d x    r r  

Special Case of Orthogonal Coordinates – If the coordinates are orthogonal, then the base 

vectors are perpendicular to each other, so that 

0 ifj k j kg j k   e e  

The metric tensors are thus diagonal matrices, and distance d s  is given by 

     2 2 2 2
1 1 2 2 3 3d s h d x h d x h d x    

where  

,k k k kh g  e       (no summation on k) 

The unit vectors are given by 

ˆ
k

k
kh


e

e      (no summation on k) 

and since 
kk

j j e e  

we have 

ˆ ˆ
k k k

k k
k

h
h

  
e

e e e       (no summation on k) 

Length and Angle between Two Vectors - The length of a vector is given by 

j k j k j
j k j k kg A A g A A A A  A  
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The angle between two vectors is given by  

 cos

j k
j k

j k j k
j k j k

g A B

g A A g B B



 

A B

A B
 

k
k

k k
k k

A B

A A B B
  

j k
j k

j k j k
j k j k

g A B

g A A g B B
  

Raising and Lowering Indices using the Metric Tensor - The metric tensor can be used to 

convert between contravariant and covariant components of vectors and tensors as follows: 

Covariant components are obtained using 

k
j j kA g A  

Contravariant components are obtained using the inverse of j kg , which is just 
j kg , as follows: 

 
1k j k

j k j jA g A g A


   

Derivatives of Vectors, Christoffel Symbols – Consider the derivative of a vector with respect 

to a single coordinate: 

 
1 1 1 1

1
j

j
j

j j
A A

A
x x x x

  
  

   

e eA
e   

The first of the last two terms are just the tangent derivatives of each vector component 

1/jA x  , times the tangent base vector 1e .  The second term is zero for Cartesian coordinates 

because each of the base vectors je  is constant (independent of spatial position), but for general 

non-Cartesian systems, je  varies with each coordinate direction.  Since each vector component 

jA  has to be summed with the tangent derivatives of each base vector je , this term has 

components in all three directions.  Obviously, general non-Cartesian coordinates adds 

considerable complexity to the calculation of derivatives of vectors. 

Since the derivative of each basis vector is itself a vector with components in all three directions, 

a new symbol called a Christoffel symbol 
i
j k  is introduced to express this additional sum 

(using the i index) across base vectors.  The Christoffel-symbol notation is given by 
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k

j i
ij k

x


 



e
e   

Once the Christoffel symbol “components” are defined, then the summing process needed to 

construct the derivative of a vector can be expressed in compact notation. It is noted that the 

Christoffel symbols are nothing more than weighting factors representing the three tangent 

projections of the derivatives of each of the three base vectors in each of the three coordinate 

directions.  Hence, there are twenty-seven Christoffel-symbol values to be defined because there 

are three summing weights for each of the nine components of / k
j x e . 

Evaluation of Christoffel Symbols – It is noted (without derivation) that the Christoffel 

symbols can be rewritten as 

k

ji i
j k

x


  



e
e  

and evaluated from knowledge of the metric tensor as follows: 

1

2 k l

j l k l j ki l i
j k j

g g g
g

xx x

   
    

   

 

Covariant Derivatives – As explained above, the derivative of a vector (as evaluated with 

Christoffel symbols) includes the effect of changes in both the vector components and in the 

magnitude and direction of the base vectors used to define the vector components.  Consider the 

following derivative of a vector written using Christoffel symbols: 

j i

k k k k

j j
j j

j ji k

A A
A A

x x x x

   
     

     

eA
e e   

As indicated above, the Christoffel symbols allow the derivative to be written with the base 

vectors “factored out” of the terms containing the contravariant vector components.  The quantity 

in parenthesis is called the “covariant” derivative, which includes changes in both the vector 

components and the base vectors.  It has been given a special notation that places a semicolon (;) 

before the index of the independent variable in the derivative, so that 

;

i

k k

j
j j

i k

A
A A

x


  


 

The analogous formula for differentiating the covariant vector components is given by 

;

j

j k ik

i
j k

A
A A

x


  

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The process of covariant differentiation can be applied to higher-order tensors using formulas 

analogous to those above. 

Combining Cartesian Local Base Vectors with General Coordinates – It was shown in 

Section 8 that the complexity of Christoffel symbols can be avoided in computational methods 

by the simple device of using Cartesian base vectors to define vector and tensor components but 

defining derivatives and position in a general curvilinear coordinate system, obtained by a 

transformation from Cartesian to curvilinear coordinates.  Since the Cartesian base vectors are 

constant, the Christoffel symbols all vanish in this formulation, which greatly reduces the 

computational complexity. 

Gradient Operator – Finally, the gradient operator is given by 

 
   

k k

k j k
j g

x x

   
   

 
e e  

 


