Effect of Sub-Occipital Instrument-Assisted Soft Tissue Mobilization on Visuomotor Reaction Time

Lindsay M. Cope, MS, ATC, Joshua L. Ivens, MS, ATC, Marisa A. Colston, PhD, ATC, Gary B. Wilkerson, EdD, ATC, John G. Louis, LMT

BACKGROUND AND PURPOSE

• Reaction time (RT) is an important aspect of sport performance and may be critical for injury avoidance.
 - A baseball batter has approximately 200 ms to react to a fastball as it leaves a pitcher's hand.1
 - An average of only 40 ms differentiated athletes who sustained non-contact ACL injury from matched controls.2

• Simple visuomotor RT represents the amount of time that elapses between a single stimulus and a motor response.

• Choice visuomotor RT requires more time for cognitive processing of complex visual input for a correct response.3

• Cerebral blood flow,4 as well as somatosensory input from joints and muscles, may accelerate Choice RT.

• Sub-occipital muscle tension decreases blood flow within the vertebral arteries.5

• The purposes of this study were to assess any changes in visuomotor RT attributable to instrument-assisted soft tissue mobilization of the sub-occipital muscles or an effect attributable to gender among athletes.

PARTICIPANT CHARACTERISTICS AND PROCEDURES

• Participants were 55 college students (23 males, 32 females) randomly assigned to experimental or control group.
 - Control group: n=27 (16 females; 11 males)
 - Experimental group: n=28 (16 females; 12 males)

• Dynamic D2 system (Dynavision International, West Chester, OH) used to assess visuomotor RT (Figure 1).

• All participants completed a 30-s familiarization trial for each of 4 RT test modes:
 - Mode A (Proactive Simple RT): Targets remain illuminated (red) until hit; tachistoscope (T-scope) inactive
 - Mode B (Reactive Simple RT): Targets illuminated for 1 s only (red); T-scope inactive
 - Mode C (Reactive Choice RT): Targets illuminated (green or red) for 1 s; goal to hit green only; T-scope active

• Mode D (Peripheral Reactive Simple RT): Targets in outer 3 rings illuminated (red) for 1 s; T-scope active

• Test trials (30 s each for all 4 modes) completed within 40 min:
 - Trial 1 (baseline), Trial 2 (10-min interval), Trial 3 (15-min interval), Trial 4 (15-min interval)

• Experimental group: 10-min MT procedure between Trial 1 and Trial 2

• Procedure utilized 7-lb MT instrument (AcuForce+ 7.0, Magister Corp., Chattanooga, TN)

• Concentrated mechanical stimuli applied to trigger points from occiput to superior margin of scapulae (Figure 2D)

• Direct pressure over trigger points; 12-s hold; distal progression in ½-in increments

• Procedure repeated along linear path that was ½-in lateral to initial progression

• Control group participants rested for 10-min interval between Trial 1 and Trial 2

• Repeated measures ANOVA used to evaluate significance of interaction (group x trial) and main effects (p<.05)

• No-interaction effect or significant difference found between experimental and control groups for any trial or mode:
 - MT did not have a significant effect on visuomotor RT

• Significant differences between trials evident for all 4 test modes, indicated performance improvements.

• Analysis of athletes demonstrated gender differences for 3 of the 4 test modes (Figures 3-6):

 - Mode A: no gender x trial interaction (p=.463); no significant gender difference across trials (p=.773)
 - Mode B: significant gender x trial interaction (p=.046); males faster than females for all trials (p=.017)
 - Mode C: significant gender x trial interaction (p=.299); significant gender difference; males faster than females (p=.005)
 - Mode D: significant gender x trial interaction (p=.049); males faster than females for all trials (p=.017)

• Females generally demonstrated greater trial-to-trial improvements in RT for all modes compared to males.

REFERENCES