
On the Theory of a Novel High-Order
Time-Marching Algorithm Based on Picard

Iteration

Arash Ghasemi
Kidambi Sreenivas

National Center for Computational Engineering,

University of Tennessee at Chattanooga
701 E. M.L. King Blvd. Chattanooga, TN 37403, USA

First Edition

1

0

-1

1

r

Stability
Region

−
b

a

r̄

+∞

r = CFL × λmax

r̄

orig

a+b

a−b

r
0

=
1

+
b a

r0

|r̄| ≤
1

A mathematician is a person who can find analogies between theorems;
a better mathematician is one who can see analogies between proofs and

the best mathematician can notice analogies between theories. One can
imagine that the ultimate mathematician is one who can see analogies

between analogies.

Stefan Banach (1892-1945)

1

Prologue

In 1893 French mathematician Émile Picard proposed a comprehensive proof for
the existence and uniqueness of a solution to y′(t) = f(t, y(t)) y(t0) = y0 in t ∈

[t0−ε, t0+ε]1. He used iterative integral equation yn+1(t) = y0+
∫ t

t0
f(s, yn(s)) ds in his

theorem. Later in 1922, Stefan Banach introduced his famous fixed-point theorem2

which states the criteria in which the general sequence yn+1 = F (yn) converges
to a fixed point in a metric space. Obviously Picard Iteration (yn+1(t) = y0 +
∫ t

t0
f(s, yn(s)) ds), Newton iteration (yn+1 = yn − f(yn)/f

′(yn)) and Mann Iteration

(yn+1(t) = y0 + αnyn(t) +
∫ t

t0
f(s, yn(s)) ds) are special cases of Banach fixed-point

theorem for F (�) = y0 +
∫ t

t0
f(s,�)ds, F (�) = � − f(�)/f ′(�), F (�) = y0 +

αn� +
∫ t

t0
f(s,�)ds respectively. Therefore they are generally classified as fixed

point iterations and their convergence is usually evaluated using Banach fixed point

theorem.
In this work, we focus on the numerical representation3 of the analytical iterations

mentioned before to find the criteria in which a discretized (numerical) counterpart
of fixed-point iteration (mainly Picard iteration) converges to a numerical fixed-
point4. In other word, for the integral equation yn+1(t) = y0 +

∫ t

t0
f(s, yn(s)) ds, we

replace the analytical integration operator
∫
with a matrix operator S containing pth-

order numerical approximation (quadrature), yielding the matrix equation yn+1 =

y0 + ∆t S f(yn) + O (∆tp) where ∆t = t − 0 = t. This particular matrix algebraic
iteration is studied in the finest detail in Sec.(1.1). This study leads to Theorem (1)

where the stability and convergence of such iteration is related to a new parameter
which we call it the stability number r = cλ∆t where λ is the eigen-value of the

integration operator S and c is the rate of change of function df/dy(y(t0)) (eq. (1.19)).
We will show in Sec.(2.1) that the stability number is expressed in the form of
generalized CFL number r = λ CFL when Picard iteration is extended to the case of

1Sur lapplication des mthodes dapproximations successives ltude de certaines quations diffrentielles ordinaires,
Journal de mathmatiques pures et appliques 4 e srie, tome 9 (1893), p. 217-272

2Banach, S. ”Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales.” Fund. Math.
3(1922), 133-181

3Because the analytical Picard iteration is studied and applied in the discretized form we call these family of
numerical methods Discrete Picard Iteration (DPI).

4The numerical fixed point is actually the fixed point obtained using analytical (exact) operator plus a tolerance
which we call it truncation error which depends on the order of accuracy of the discretized integration operator(See eq.
(1.39) showing a numerical fixed point containing truncation error.)

general partial differential equation5. Thus one of the important result of this paper
is that:

The convergence of Picard iteration to the fixed point doesn’t depend on the
criteria given in Banach fixed point theorem when iteration is done numeri-

cally. Instead it depends on more limiting conditions including the generalized
CFL number in the way that is described in Theorem (2)- Sec.(2.1). Also, the

rearrangement operator developed in this paper in Sec.(2.1) and used in The-
orem (2) makes this theorem so general that can be applied to scalar/vector

ODE and/or PDE in the same time with the same formulation.

In addition, a convergence analysis is performed in Sec.(1.1.1) for basic Discrete
Picard Iteration which reveals another important result as follows:

The Discrete Picard Iteration is exponentially convergent. The base is the
stability number and the exponent is the number of iterations. (see eq.(1.46))

Some preliminary implementation of original DPI6 are brought in Sec.(1.3) and
Sec.(2.2) for ODEs and PDEs respectively which prove the feasibility of application

of DPI in numerical solution of differential equations. In these numerical solutions, a
fairly large CFL number is chosen although the DPI scheme used in these examples
is explicit. Thus we conclude another important result:

The explicit DPI is conditionally stable with CFL limit given by

CFL ≤
1

λmax

Where λmax is the maximum eigen-value of S. The ratio of 1
λmax

goes up to

59 (see fig.(1.2.2)) for the integration operators that we designed in Sec.(1.2).
Thus explicit DPI remains stable up to CFL ≈ 59. This is an improvement

compared to traditional explicit schemes where CFL ≤ 1.
To overcome stability limit of explicit DPI, we investigate some alternative ap-

proaches to the original Discrete Picard iteration. In particular, in Sec.(3.2.1) we
modify the original DPI to obtain a new implicit scheme. The developed scheme has

the following interesting properties:

5See eq.(TheoremII)
6The original DPI is defined as the discretization of analytical Picard Iteration yn+1(t) = y0 +

∫ t

t0
f(s, yn(s)) ds in

the explicit form of yn+1 = y0 +∆t S f(yn) +O (∆tp) without any modification like changing to implicit form as we
do in Sec.(3.2.1).

2

• It is always more convergent than original DPI.

• It is stable for arbitrarily large and small CFL numbers. However it has
a instability hole at asymptote r = λmax × CFL = 1 + b/a (see cover

figure) which can be avoided by changing user-defined coefficients a and
b during numerical solution.

• For a = 1 and b = 0 it becomes Newton iteration with faster convergence.

• For a = 0 and b = 1 it becomes Explicit Picard Iteration with slower con-

vergence. Between these two values, it is a blend of Picard and Newton
Iteration thus it is possible to avoid divergence problem usually encoun-

tered in Newton iteration by changing coefficients a and b during solution.

• If applied to time dependent differential equations, implicit DPI is theo-
retically arbitrary order accurate in time and changing the time accuracy

doesn’t change the formulation. This is while other implicit methods are
usually limited to second-order accuracy in time or improving the accu-

racy requires reconsidering the formulation.

As an unusual result of this paper, in Sec.(3.4.1) the following postulate is proven,

The Discrete Picard Iteration doesn’t have dissipation error in time when
applied to time-dependent ODEs and PDEs if the residual is computed exactly
and Jacobian of nonlinear terms remains negative as t → ∞.

Also the numerical solution for a linear scalar ODE (Sec.(3.4.1)), nonlinear ODE.
(Sec.(3.4.2)), system of linear ODEs.(Sec.(3.4.3)) and a three-dimensional convection

PDE (Sec.(4.3.2)) proves this spectacular property in practice.
In the final chapters, we apply the developed DPI method to multidimensional

Partial Differential Equations. In Chapter (4) the Rearrangement Operator is ex-
tended to arbitrarily rearrange multidimensional discrete spaces in the desired direc-

tions. Using this robust tool, the discrete form of spatial operator (like Divergence
and Laplacian) are obtained in discrete space in the easiest form. These matured
concepts are then used to discretize a general PDE with arbitrary boundary/initial

conditions using DPI.
For the first time a generic numerical closed-form solution for arbitrary linear
conservative PDE ∂u

∂t
+
∑

i

∑

j
∂i

∂xi
j

Fij = G is proposed in Sec.(4.3).

A special case, i.e. spectral solution of three-dimensional scalar linear convection

with periodic BCs is presented in this chapter.

3

In Chapter (5) we concentrate on a general class of conservative form of time-
evolutionary PDEs know as Conservation Laws. These have numerous applications

in science and engineering and include phenomena related to Fluid Dynamics, Elec-
tromagnetic Wave Propagation, Financial Modeling, Thermal Science, Elasticity and

Plasticity, and etc. Two popular spatial discretization approaches namely Finite-
Volume method and Finite Element methods are coupled with DPI scheme and a

general formulation and algorithm of solution is brought therein for practitioners.
This editions of the report might have typesetting and/or minor notational errors

like indices and duplications. All suggestions regarding any improvement to this

documentation are acknowledged.

4

Contents

1 Introduction and Preliminary Concepts 8
1.1 The Convergence of Discrete Picard Iterations for Ordinary Differen-

tial Equations . 11
1.1.1 Convergence Mechanism . 16

1.2 Integration Operator Design . 18

1.3 Numerical Simulations for ODEs . 23

2 The Discrete Picard Iteration Method for Partial Differential Equa-

tions 27
2.1 The Rearrangement Operator . 27

2.1.1 Special cases of Super Theorem II 36
2.2 Numerical Tests for Partial Differential Equations 38

2.2.1 One-dimensional Linear Propagation 38

3 Alternative Discrete Picard Iterations 41

3.1 DPI with averaging of previously stored solutions 41
3.1.1 Applications: DPI with extrapolating previously stored solutions 44

3.2 DPI with implicit averaging . 45

3.2.1 Application of DPI with implicit averaging 47
3.3 Comparison of Implicit Picard and Newton Iterations 52

3.4 Numerical Solution of ODEs using implicit DPI 55
3.4.1 Time dependent Linear Scalar ODE 55

The first set of experiments using s0 = 0 57
The second experiment using s0 = 0.5 58
The performance analysis . 60

Conclusions and Observations from the linear case eq.(3.49) . 61
3.4.2 Nonlinear ODEs . 64

3.4.3 Linear System of Ordinary Differential Equations 67

1

4 Applying implicit DPI to multi-dimensional PDEs in Structured
Formulation 73

4.1 Rearrangement operators for multidimensional structured discrete space-
time . 74

4.1.1 Sample Application: Multidimensional Differentiation 78
4.2 Discretization of Spatial Operators 92

4.3 General Structured Formulation . 94
4.3.1 Directly discretizing Υ . 94

Numerical Closed-Form solution of General Linear conservative

PDES . 97
4.3.2 Test case I: Multidimensional Periodic Convection 98

4.3.3 Test case II: Nonlinear Wave Propagation 110

5 General Unstructured Formulation and Conservation Laws 112

5.1 Finite Volume Formulation . 112

2

List of Figures

1.0.1 The schematics of variable spacing grid used for temporal discretiza-
tion of the integration operator. As shown, the initial vector of nodal

values u0 (the straight line at the bottom) converges to the unique
solution u∞ as n → ∞. 9

1.1.1 The number of Picard iterations required for convergence to machine

zero. 18
1.2.1 The result of

∫ t

0 ξdxi = t2/2 obtained by using integration operator

(1.62) for nS = 7 and Left) α = 1.01. Right) α = 1.1. 21
1.2.2 The ratio of 1

λmax
= CFL

CFL0
for integration operator S for various sizes of

the operator and stretching strength α. 23
1.3.1 The comparison between Discrete Picard Iteration method and Euler

stepping for solving linear ODE (1.64). 24

1.3.2 Continued- The comparison between Discrete Picard Iteration method
and Euler stepping for solving linear ODE (1.64). 25

2.1.1 The rearrangement operator for Nnodes = nS and nz = 2nS 29
2.2.1 One-Dimensional advection. 38

2.2.2 One-Dimensional advection. (Continued) 39

3.1.1 The modified stability number r̄ versus the original number r for DPI

with explicit averaging. 43
3.1.2 The linear extrapolation between successive iterations. 44
3.2.1 The modified stability number r̄ versus the original number r for DPI

with implicit averaging. Left) close up for 0 ≤ r ≤ 1. Right) The para-
metric plot for all stability numbers 0 ≤ r ≤ +∞. The original sta-

bility number is r = c∆tλmax for ODEs (Theorem I, eq.(TheoremI))
and r = CFLλmax for PDEs (Theorem II). 46

3.2.2 The number of iterations nedded for convergence (p=52 in Table ())
for DPI with implicit averaging. 47

3

3.4.1 Case s0 = 0: Numerical solution of linear eq.(3.50) using three refrence
methods, Explicit DPI (black points), implicit DPI (blue line) and

ode45 from Matlab ODE suite(red line). In this simulation, a = 0.8,
b = 0.2, eDPI = 1.e − 6, u0 = 3, c = −1.0, a1 = 1.0, a2 = 10000

and nS = 700. The last solution (CFL = 10000000) is compared in
fig.(3.4.3) for s0 = 0 and s0 = 0.5. 57

3.4.2 Zigzag Instabilities due s0 = 0 near initial point t1. The region near t1
is twice zoomed to illustrate the instability. In addition, the operator
condition s0 = 0 cause a shift in the obtained solution compared to

ode45 RK solution. As time increases, the zigzag instability vanishes.
We have also zoomed an area of the solution in the middle of the figure.

Note that ode45 Runge-Kutta algorithm exhibits a highly oscillatory
behavior in this region. (bottom right). 58

3.4.3 A comparison between s0 = 0 and s0 = 0.5 conditions for CFL =
10,000,000. 59

3.4.4 Visualization of timing presented in Table (3.2). 61
3.4.5 Conceptual block diagram of general family of explicit time-marching

schemes. The corresponding block diagram for implicit time marching

schemes is obtained by replacing the arrows with two ended arrows. . 62
3.4.6 Conceptual block diagram of general family of DPI schemes. The

corresponding block diagram for implicit DPI is obtained by replacing
the arrows with two ended arrows. 63

3.4.7 The comparison between ode45 and implicit DPI for nonlinear ODE
(3.52). The integration operator size is nS = 700. 65

3.4.8 The accuracy of implicit DPI for nonlinear case when giant time

steps are taken. The physical-scale independency of the algorithm is
clearly visible. 66

3.4.9 The accuracy of implicit DPI when giant time steps are taken for sys-
tem of linear ODEs. The physical-scale independency of the algorithm

is clearly visible. For a scalar ODE refer to fig.(3.4.8). (TOP Threes)
u1, u2, u3 corresponding to CFL = 1. (BOTTOM Threes) u1, u2, u3

corresponding to CFL = 10. 69
3.4.10Continued from fig.(3.4.9). (TOP Threes) u1, u2, u3 corresponding to

CFL = 1000. (BOTTOM Threes) u1, u2, u3 corresponding to CFL =

100000. 70

4

3.4.11Continued from fig.(3.4.10). (TOP Threes) u1, u2, u3 corresponding to
CFL = 1000000. (BOTTOM Threes) u1, u2, u3 corresponding to CFL

= 10000000. 71

4.1.1 The graphical representation of the general vector field u over z-

dimensional structured discrete space-time. 75
4.1.2 Left) The convergence of fourth-order 1D differentiationmatrix eq.(4.12)

versus Right) Spectral collocation eq.(4.13) for different number of
points in the first direction N1.(after Trefethen (2001)) 82

4.1.3 Numerical differentiation using fourth-order matrix operator (4.12).

N1 = 10. 85
4.1.4 Numerical differentiation using spectral matrix operator (4.13). N1 =

10. 85
4.1.5 The numerical derivative ∂u

∂x
+ ∂u

∂y
for three dimensional scalar field

u(x, y, t) = sin(xy)t obtained using eq.(4.19). TOP: Two iso-surface,
top is analytical derivative while bottom is the numerical. BOTTOM:

three-dimensional contours, solid is analytical- dashed is numerical.
Please note that only 4 points are used to discretize the field in the
time direction. 91

4.3.1 Top) Solution contours after fifty periods. Bottom) The grid used to
obtain the solution. 108

4.3.2 Solution profiles after twenty periods t=20, Top) problem solved in
(Wang (2009)) with initial Gaussian wave and with different meth-

ods including second-order BDF2 and CN2 and fourth-order implicit
RK4. Bottom) Current solution with sinusoidal initial condition using

second order DPI. 109
4.3.3 Solution profiles after fifty periods t=50, Top) problem solved in (Wang

(2009)) with initial Gaussian wave and with different methods includ-

ing second-order BDF2 and CN2 and fourth-order implicit RK4. Bot-
tom) Current solution with sinusoidal initial condition using second

order DPI. 110
4.3.4 Solution of three-dimensional Burgers equation for Left) CFL = .4

and Right) CFL = four millions. 111

5

List of Tables

1.1 The values of P and b according to IEEE 754-2008. 17

3.1 The properties of Implicit Discrete Picard Iteration algorithm (3.15)

for the linear case of general ODE-PDE. 55
3.2 Timing obtained for different methods by MATLAB tic-toc timer. All

values are in the Seconds. Run Program () in Appendix () in your

machine to get timing in your machine. 60
3.3 The performance analysis of implicit DPI when applied to linear sys-

tem (3.54). Timing is obtained using Matlab tic-toc function which
utilizes system clock. 72

6

Listings

4.1 The general rearrangement operator from initial direction 1 to direc-
tion 1 < x ≤ z. 77

4.2 m-code for first-order upwind scheme 82
4.3 m-code for fourth-order and spectral differentiation matrix 83
4.4 m-code for generating comparison between fourth-order and spectral

differentiating given in figs. (4.1.3) and (4.1.4). 86
4.5 The numerical implementation of eq.(4.19). 88

4.6 This function implements implicit DPI for generic space-time z-dimensional
equations in nested column format (4.55). Since it is applicable to both

ODEs and PDEs in the same time, we used the name ode-implicit-DPI
without any difference. This program uses residual and Jacobian of
the residual obtained using Listings (4.7) and (4.8) respectively. Also

for time integration operator S it uses Listing (4.9). 100
4.7 The residual in eq.(4.53) calculated using numerically discretized Di-

vergence operator. Note that boundary conditions vector is zero since
the condition of periodicity is already implemented in differentiation

matrix eq.(4.13). Also since c = −1 in the main program, this residual
is compatible with eq.(4.53) for c = 1 (left to right going wave). . . . 103

4.8 The Jacobian obtained in operator-wise approach. 103
4.9 This function returns the second-order integration matrix based on

Newton-Cotes formula. 103

4.10 The main program. Computes solution to (4.53) using implicit DPI
given in Listing (4.6) and Euler explicit method and exports the results

to Tecplot format. 104

7

Chapter 1

Introduction and Preliminary Concepts

Let us consider the general time-evolution equation,

∂u

∂t
= R (u, t) , (1.1)

Where R (u, t) is the generalized residuals which means that it depends on the

time as well as ‘u’ and any partial derivative of the ‘u’ which is discretized over a
multidimensional space to gives only time evolution for each spatial position. Here

we consider (1.1) in the integral form below.

u = u0 +

∫ t0+∆t

t0

R (u (ξ) , ξ) dξ, (1.2)

Where u = [u0, u] and t = [t0, t0 + ∆t]. The Picard-Lindelof theorem (Coddington

& Norman (1955)) shows the uniqueness of the solution to (1.2). This is also known
as Picard’s existence theorem or CauchyLipschitz theorem (Coddington & Norman

(1955)). However, the iterative approach used in the proof of theorem, known as
Picard iteration, is much more interesting from the practical point of view as will

be discussed in this work. The Picard iteration can be described as below. Suppose
that un is an initial guess to the solution (1.2) and assume that R(u, t) is continuous
over t and u and Lipschitz continuous over t. Then the following iteration,

un+1 = u0 +

∫ t0+∆t

t0

R (un (ξ) , ξ) dξ, (1.3)

Converges to a unique solution for analytical function u. Here we move forward

to find an equivalent theorem for the numerical form of (1.3).
Let us discretize arbitrary function g (t) over ti on a non-uniform stencil with nS

nodes in it. The temporal stencil with the corresponding discretized solution is
shown in fig.(1.0.1).

8

Figure 1.0.1: The schematics of variable spacing grid used for temporal discretization of the integration
operator. As shown, the initial vector of nodal values u0 (the straight line at the bottom) converges
to the unique solution u

∞
as n → ∞.

Evidently the numerical initial function of g(ti), represented by g̃(ti), can be com-
puted by a numerical quadrature scheme over [t1, tnS

]. Let say,

g̃(ti) = ∆t
i∑

j=1

sjg(tj) +O (∆tp) , (1.4)

is the quadrature scheme with weight sj. The order of truncation error p depends
on the number of nodes and the type of quadrature(Quarteroni et al. (2000)). We

note that (1.4) can be written in the matrix form,

g̃ = ∆t S g +O (∆tp) , (1.5)

Where g̃ = [g̃(t1) g̃(t2) . . . g̃(tnS
)]T is the vector of numerical initial function and

S =










s0
s1 s2
s1 s2 s3
...

...
... . . .

s1 s2 s3 · · · snS










, s0 = 0. (1.6)

9

is the lower triangular matrix of quadrature weights. Note that s0 must be necessarily
zero to ensure g̃(t1) =

∫ t1
t1
g(ξ)dξ = 0. A recent study shows that (1.6) is not

necessarily restricted to lower triangular form (Ghasemi (2010)). As an example,
consider the special case of (1.4) where the grid spacing is fixed and the scheme is

first order p = 1.

g̃(ti) = ∆t
i∑

j=1

g(tj) +O (∆t) , (1.7)

Obviously this is the Riemann series. When written in the matrix form (1.5)








g̃(t1)

g̃(t2)
...

g̃(tnS
)







= ∆t










0
0 1
0 1 1
...

...
... . . .

0 1 1 · · · 1










+O (∆t) (1.8)

Therefore the integration operator for Riemann series can be obtained as follows.

SRiemann =










0
0 1
0 1 1
...

...
... . . .

0 1 1 · · · 1










(1.9)

Similarly for Newton-Cotes operator we obtain

SNC =












0

.5 .5

.5 1 .5

.5 1 1 .5
...

...
...

... . . .

.5 1 1 · · · 1 .5












(1.10)

We use (1.5) to discretize the recursive integral equation (1.3) as follows.

un+1 = u0 +∆t SRn +O (∆tp)

Rn = f (un, t) , (1.11)

10

Equation (1.11) is an iterative matrix equation. For example, using Riemann oper-
ator (1.9), (1.11) is fully expanded as below.








u1

u2
...

unS








n+1
︸ ︷︷ ︸

un+1

=








u1

u2
...

unS








0︸ ︷︷ ︸
u0

+∆t










0 0 · · · 0 0
0 1 0 · · · 0
0 1 1 0 0
...

...
... . . . 0

0 1 1 1 1










︸ ︷︷ ︸

S








R1

R2
...

RnS








n︸ ︷︷ ︸

Rn

+








O (∆tp)

O (∆tp)
...

O (∆tp)















R1

R2
...

RnS








n

=








f (u1, t1)
f (u2, t2)

...

f (unS, tnS)








n︸ ︷︷ ︸

f(un,t)

(1.12)

1.1 The Convergence of Discrete Picard Iterations for Ordi-

nary Differential Equations

To study the exsistence of any solution to (1.11), we consider the short interval
[u1, unS

]× [t1, tnS
] such that the residual can be expanded using Taylor series,

Rn =

(

f (u1, t1) +
∂f

∂t

∣
∣
∣
∣
(u1,t1)

(t− t1)

)

e+
∂f

∂u

∣
∣
∣
∣
(u1,t1)

(un − u0) (1.13)

Where e = [1 1 1 . . . 1]T is a column vector with length nS. Equation (1.13) is

rearranged to give
Rn = c0 + cun (1.14)

Where

c =
∂f

∂u

∣
∣
∣
∣
(u1,t1)

(1.15)

and

c0 =

(

f (u1, t1) +
∂f

∂t

∣
∣
∣
∣
(u1,t1)

(t− t1)

)

e−
∂f

∂u

∣
∣
∣
∣
(u1,t1)

u0 (1.16)

Substituting (1.14) into (1.11) we have,

un+1 = u0 +∆t S (c0 + cun) +O (∆tp) (1.17)

11

Or in the simplified form

un+1 = u0 + (c∆t S)un +∆t S c0 +O (∆tp) (1.18)

Which is defined in this paper as the discrete Picard Iteration. In the following

we study the convergence of (1.18) in detail. A similar but limited theorem can be
found in (Ghasemi (2010)).

Theorem I - Discrete Picard Iteration Convergence Theorem for Ordi-
nary Differential Equations

Suppose that f(u, t) in (1.11) is continuous over u = [u1, unS] over t = [t1, t1 + ∆t]
and Lipschitz continuous over t and the Jacobian ∂f/∂u exists and is bounded over

t. Also assume that the discretization of the integration operator S is consistent, i.e.
p ≥ 1. Then for the given operator S, the discrete Picard Iteration (1.18) converges
to a unique solution if and only if,

‖ri‖ ≤ 1 (1.19)

for all ri where ri = c∆tλi and λi is the eigen-value of S.
Proof

We prove this theorem by using mathematical induction and elementary inequality

theorems. We start with the first iteration of (1.18). For n = 0 we obtain,

u1 = u0 + (c∆t S)u0 +∆t S c0 +O (∆tp)

= (I+ (c∆t S))u0 +∆t S c0 +O (∆tp) (1.20)

Where I is the identity matrix. For n = 1, we will have,

u2 = u0 + (c∆t S)u1 +∆t S c0 +O (∆tp)

=
(

I+ (c∆t S) + (c∆t S)2
)

u0 +
(

∆t S + c(∆t S)2
)

c0

+ (I+ c∆t S)O (∆tp) (1.21)

Following the same procedure, for arbitrary n we obtain,

un =

(

I+
n∑

i=1

(c∆t S)i
)

uo +
n∑

i=1

(c∆t S)i
c0
c

+

(

I+
n−1∑

i=1

(c∆t S)i
)

O (∆tp) (1.22)

12

Using eigen-value decomposition

S = L−1ΛL, (1.23)

Equation (1.22) is written as the following.

un =

(

I+
n∑

i=1

(
c∆t L−1ΛL

)i

)

uo +
n∑

i=1

(
c∆t L−1ΛL

)ic0
c

+

(

I+

n−1∑

i=1

(
c∆t L−1ΛL

)i

)

O (∆tp) (1.24)

Which is further simplified to

un =

(

I+ L−1
n∑

i=1

(c∆tΛ)iL

)

uo + L−1
n∑

i=1

(c∆tΛ)iL
c0
c

+

(

I+ L−1
n−1∑

i=1

(c∆tΛ)iL

)

O (∆tp) (1.25)

Choosing the following matrix variable

r = c∆tΛ (1.26)

Equation (1.25) is rewritten as follows,

un =

(

I+ L−1

(
n∑

i=1

ri

)

L

)

uo + L−1

(
n∑

i=1

ri

)

L
c0
c

+

(

I+ L−1

(
n−1∑

i=1

ri

)

L

)

O (∆tp) (1.27)

We notice from elementary algebra that the geometric series
∑n

i=1 r
i has the partial

sum
n∑

i=1

ri = r (rn − I) (r− I)−1 (1.28)

Substituting (1.28) into (1.27) we obtain a closed form solution for un as below.

un =
(

I+ L−1r (rn − I) (r− I)−1
L

)

uo + L−1r (rn − I) (r− I)−1
L
c0
c

+
(

I+ L−1r
(
rn−1 − I

)
(r− I)−1

L

)

O (∆tp) (1.29)

13

Since p ≥ 1 then the truncation error vanishes as time interval ∆t becomes smaller.
In particular, from (1.29) we have.

lim
∆t→ǫ

un =
(

I+ L−1r (rn − I) (r− I)−1
L

)

uo

+ L−1r (rn − I) (r− I)−1
L
c0
c
+K0 (ǫ) , (1.30)

Where the upper bound for truncation errorK0 (ǫ) =
(

I+ L−1r (rn − I) (r− I)−1
L

)

O (ǫp)

vanishes for p ≥ 1 as ǫ → 0. Therefore, from (1.30) it is evident that un is bounded
if and only if ‖ri‖ ≤ 1 and c0 is bounded. That means we must have

‖ri = cλi∆t‖ ≤ 1 (1.31)

To show c0 is bounded we note from (1.16) that

|c0| ≤ |f (u1, t1)|+

∣
∣
∣
∣
∣

∂f

∂t

∣
∣
∣
∣
(u1,t1)

∣
∣
∣
∣
∣
∆t+

∣
∣
∣
∣
∣

∂f

∂u

∣
∣
∣
∣
(u1,t1)

u0

∣
∣
∣
∣
∣

(1.32)

Now we need to find a bound for time derivative term in the RHS of (1.32). Since
f(u, t) is Lipschitz continuous over time, then by definition, there exist a K such

that,
Df (f (u, t1) , f (u, t2)) ≤ KDt (t1, t2) (1.33)

For all t1 and t2 in the interval t. For |t2 − t1| ≤ ǫ the distance operator D in
Lipschitz condition (1.33) converges to the differential operator. Therefore we obtain
the following,

lim
t2→t1

Df (f (u, t1) , f (u, t2))

Dt (t1, t2)
≤ K

→

∣
∣
∣
∣

∂f

∂t
(u, t)

∣
∣
∣
∣
≤ K (1.34)

That means the time derivative of f is bounded for all t ∈ [t1, tnS] and u ∈ [u1, unS].

Therefore (1.34) is valid for point (t1, u1), i.e.,
∣
∣
∣
∂f
∂t
(u1, t1)

∣
∣
∣ ≤ K. Since f is continuous

over [t1, tnS]× [u1, unS], then it is bounded. Therefore we obtain another bound for f

itself as follows.
|f (u1, t1)| ≤ K ′ (1.35)

14

Also, since Jacobian ∂f/∂u exists over t, we will have
∣
∣
∣
∣
∣

∂f

∂u

∣
∣
∣
∣
(u1,t1)

u0

∣
∣
∣
∣
∣
≤ K ′′ (1.36)

Substituting (1.35) and (1.34) and (1.36) into (1.32) we obtain

|c0| ≤ K ′ +∆t K +K ′′ (1.37)

So far we showed that un in (1.29) remains bounded over infinitesimal ∆t for arbi-
trarily large n if and only if (1.31) is satisfied. We need to show that un converges

to a unique function as n → ∞. Using (1.28), for sufficiently large n, (1.29) can be
written as the following.

lim
n→∞

un =
(

I + L−1r(I− r)−1
L

)

uo + L−1r(I− r)−1
L
c0
c

+
(

I + L−1r(I− r)−1
L

)

O (∆tp) (1.38)

We assume that un converges to ūn which is not unique. We show that this is a false
assumption. Since ūn is a solution to (1.18) then it can be cast down to (1.38) as

follows.

ūn =
(

I+ L−1r(I− r)−1
L

)

uo + L−1r(I− r)−1
L
c0
c

+
(

I+ L−1r(I− r)−1
L

)

Ō (∆tp) (1.39)

Note that u0 and c0 only depend on the initial values (according to 1.16) so they are
same for any solution to (1.18) as shown in (1.39). However, we note that r = c∆tΛ

depends on integrator S. Therefore we conclude that for different operators the
solution is different. From the assumptions of the theorem, S is unique and hence r

doesn’t change between un and ūn in (1.39) and (1.38). The truncation error might
be different due to different time interval used. We represented the new truncation

error with Ō (∆tp) in (1.39). Subtracting (1.38) from (1.39), we obtain,

lim
∆t→0

ūn − un =
(

I+ L−1r(I− r)−1
L

) (
Ō (∆tp)−O (∆tp)

)
= 0. (1.40)

That means un is unique for ∆t → 0 and the proof is complete. N

Corollary I-I For Riemann operator (1.9), we have λmax = 1. Therefore, the
maximum allowable time step is obtained using Theorem I,

15

∆t ≤

(
1

λmaxc
=

1

c

)

(1.41)

Corollary I-II For Newton-Cotes operator (1.10), we have λmax = 1/2. Therefore,

∆t ≤
2

c
(1.42)

Comparing (1.41) and (1.42), we observe that the ratio of maximum allowable

time-steps of Newton-Cotes operator to the maximum time step of Riemann opera-
tor is 2. Therefore the former is twice more efficient that the latter.

Conclusions from corollaries (I-I) and (I-II)
We noticed that decrease in the maximum eigen-value of the operator resulted in

increase in allowable time step. Therefore we might think about designing integration
operators that have small eigen-values. This is the motivation for Sec. (1.2).

1.1.1 Convergence Mechanism

In this section we drive an interesting lemma which describes the convergence of
discrete Picard iterations in the linear case.

Lemma I- the discrete Picard iteration is exponentially convergent with
exponent r.

Proof:

We need to find an expression for total error. Subtracting the converged solution
(1.38) from (1.29) we will have,

δn = un − un→∞ = L−1
(

r (rn − I) (r− I)−1 − r(I− r)−1
)

Luo

+ L−1
(

r (rn − I) (r− I)−1 − r(I− r)−1
)

L
c0
c

+ L−1
(

r
(
rn−1 − I

)
(r− I)−1 − r(I− r)−1

)

︸ ︷︷ ︸

rn(r−I)
−1

LO (∆tp) (1.43)

Where δn is the total error of iteration n. Defining new variables En = Lδn,
U0 = Lu0, C0 = Lc0, and O = LO, eq.(1.43) can be written as,

En = rn+1(r− I)−1

(

U0 +
C0

c

)

+ rn(r− I)−1O (∆tp) , (1.44)

16

For the first iteration we have E0 = r(r− I)−1 (U0 +
C0

c

)
+(r− I)−1O (∆tp). There-

fore from (1.44) we have,
En = rnE0 (1.45)

Since ‖ri‖ ≤ 1 then (1.45) is exponentially convergent and proof is complete. N

Assume that the error ratio En/E0 reaches to machine zero. Then form (1.45),
we will have

En

E0
= rn =

b−P

2
(1.46)

Where b is called based or radix and P is the number of fractional digits(Goldberg

(1991)). These values are shown in Table (1.1.1) for various decimal number repre-
sentation.

IEEE 754-2008 Common name C++ data type b P Machine epsilon
binary16 half precision NA 2 10 4.88e-04
binary32 single precision float 2 23 5.96e-08
binary64 double precision double 2 52 1.11e-16
binary128 quad(ruple) precision long double 2 112 9.63e-35

Table 1.1: The values of P and b according to IEEE 754-2008.

We can easily obtain the number of Picard iterations required for convergence on

a binary machine (b = 2) using eq.(1.46).

N =

[
(P + 1)

logR2

]

(1.47)

Where R = r−1 = diag (1/ (cλi∆t)) contains Ni which is the number of iterations

required for the solution at the ith node, i.e., u (xi) to converge to machine zero.
According to (1.47), since N is a descending function of R, it maximizes when R

minimizes. On the other hand, R = r−1 minimizes when r maximizes. Therefore the
number of Picard iterations required so that all u (xi) converges to machine zero is

N =

[

(P + 1)

− log
max(r)
2

]

=

[

(P + 1)

− log
(cλmax∆t)
2

]

(1.48)

For double precision accuracy P = 53 (1). Therefore,

N =

[

53

− log
max(r)
2

]

(1.49)

17

The variation of number of iterations versus Ri = 1/ri (eq.(1.47)) is shown in
fig.(1.1.1) for different data types. As we see, the number of iterations increases

as data type becomes more elaborated and/or Ri decreases. This observation proves
the important fact that if Ri decreases or equivalently ri increases. then accord-

ing to Theorem I-eq.(1.31) for fixed c and λi, the time step increaes and hence for
higher time steps, the number of Picard iterations increases. In the other words, the

efficiency of the discrete Picard iterations decreases for higher time steps.

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

R
i
=1/(cλ

i
 ∆ t)

N
 (

N
um

be
r

of
 P

ic
ar

d
Ite

ra
tio

ns
)

Variation of the Theoretical Convergence Versus Machine Accuracy (IEEE 754−2008)

Half Percision
Single Percision
Double Percision
Quad Percision

Figure 1.1.1: The number of Picard iterations required for convergence to machine zero.

1.2 Integration Operator Design

In the collary I-II of Theorem I, we observed that when the maximum eigen values of
the integrator operator decrease, the maximum allowable time step increases signifi-

cantly. This interesting property makes numerical solution to be highly efficient by
using larger time steps. Here is the question: “Can we design an integrator operator

18

which has a very small eigen-value while is high-order accurate?”.
To answer this question, let us consider fig.(1.0.1) for the second time. To find a

quadrature scheme for the composite grid spacing shown in fig.(1.0.1) we use the
following high-order interpolant.

g(t) =
[
1 t t2 · · · tN−1

]










a0
a1
a2
...

aN−1










(1.50)

Where the coefficients ai are to be determined. If we evaluate (1.50) for all times ti
we obtain,








g1
g1
...
gN







=








1 t1 t21 · · · tN−1
1

1 t2 t22 · · · tN−1
2

...
...

...
1 tN t2N · · · tN−1

N

















a0
a1
a2
...

aN−1










(1.51)

In general, we can define the stretching function 0 ≤ b ≤ 1 such that the time ti can

be written in the term of interval width ∆t = h as the following.

t = bh (1.52)

We note that (1.52) is evaluated in discrete points ti shown in fig.(1.0.1) as following

ti = bih, b1 = 0, (i = 1 . . .N) (1.53)

Where b1 is always zero. Obviously, for bi = (i− 1) / (N − 1) we obtain the uniform

spacing. In this work we use the following polynomial stretching function to minimize
the eigen values of the integration operator.

bi =

(
i− 1

N − 1

)α

(1.54)

Where α is the stretching strength. Using (1.53), eq.(1.51) is written as,

19








g1
g1
...
gN








︸ ︷︷ ︸
g

=








1 b1 b21 · · · bN−1
1

1 b2 b22 · · · bN−1
2

...
...

...
1 bN b2N · · · bN−1

N








︸ ︷︷ ︸

B










1
h

h2

. . .

hN−1










︸ ︷︷ ︸

H










a0
a1
a2
...

aN−1










︸ ︷︷ ︸
a

(1.55)

The above equation can be solved to find the coefficients of the interpolation
function.

a = H−1B−1g (1.56)

The analytical integration of (1.50) leads to

g̃(t) =

∫

g(t) =
[
t 1

2t
2 1

3t
3 · · · 1

N
tN
]










a0
a1
a2
...

aN−1










(1.57)

Evaluating (1.57) at unequally spaced points (1.53) gives us,

g̃(ti) =
[
bih

1
2
b2ih

2 1
3
b3ih

3 · · · 1
N
bNi h

N
]










a0
a1
a2
...

aN−1










(1.58)

Or in the matrix form below.

g̃(ti) =
[
bi

1
2b

2
i

1
3b

3
i · · · 1

N
bNi
]

︸ ︷︷ ︸

v(i)










h

h2

h3

. . .

hN










︸ ︷︷ ︸

hH










a0
a1
a2
...

aN−1










︸ ︷︷ ︸
a

= h v(i) H a (1.59)

20

We note that v(i) is a row vector whose length is equal to the number of nodes used
to evaluate the quadrature. If we evaluate (1.59) for all nodes i = 1..nS, we obtain

the matrix form of quadrature scheme for complete integration over ∆t. In other
words









g̃(t1)
g̃(t2)

g̃(t3)
...

g̃(tnS
)










︸ ︷︷ ︸

g̃

=










0
b2

1
2b

2
2

b3
1
2
b23

1
3
b33

...
...

... . . .

bnS

1
2b

2
nS

1
3b

3
nS

· · · 1
nS
bnS
nS










︸ ︷︷ ︸

V










h
h2

h3

. . .

hnS










︸ ︷︷ ︸

hH










a0
a1
a2
...

a(nS−1)










︸ ︷︷ ︸
a

= h V H a (1.60)

Substituting the vector ‘a’ from (1.56) into (1.60), we will obtain the final form
of high-order variable spacing quadrature scheme

g̃ = h V H a = h V H
(
H−1B−1g

)
= h V B−1 g (1.61)

Comparing (1.61) with (1.5) we find that V B−1 is the integration operator.

S = VB−1 (1.62)

A comparison between analytical integration and the one obtained by integration
operator is presented in fig.(1.2.1). While the numerical integration obtained by

applying integration operator (1.62) is in excellent agreement with analytical solution
for lower values of stretching strength α, it differs significantly as α increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

t2 /2

Resolution of integration operator for n
S
= 7 and α = 1.01

Exact
Numerical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

t2 /2

Resolution of integration operator for n
S
= 7 and α = 1.1

Exact

Numerical

Figure 1.2.1: The result of
∫ t

0
ξdxi = t2/2 obtained by using integration operator (1.62) for nS = 7

and Left) α = 1.01. Right) α = 1.1.

21

According to theorem (I), the maximum allowable time step is equal to the inverse
of cλmax.

∆tallowable =
1

cλmax
, (1.63)

Therefore the maximum eigen-value of the operator plays vital rule in stability
of the Picard method. To analyze the maximum eigen-value of S, we changed the

values of stretching strength α and the number of nodes in the integration operator
to numerically calculate the maximum eigen-value. The result is plotted in fig.(1.2.2)

where the ratio of maximum values of λRiemann/λnew = 1/λnew is plotted versus
stretching strength for different sizes of integration operator. We will prove in the-
orem (II) that this ratio is equal to CFLPicard/CFLEuler or simply CFL/CFL0

for general partial differential equations. Interestingly, this ratio goes to near 60
for stretching α ≃ 1.2 without solving implicit system of equations. In the case

of ODEs, this ratio resembles the size of time step that we can take so that the
numerical integration remains stable compared to explicit Euler stepping.

22

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

10

20

30

40

50

60

n
S
 = 4

n
S
 = 5

n
S
 = 6

n
S
 = 7

n
S
 = 8

n
S
 = 9

n
S
 = 10

n
S
 = 11

n
S
 = 12

n
S
 = 13

n
S
 = 14

n
S
 = 15

n
S
 = 16

n
S
 = 17

n
S
 = 18

α

C
F
L

C
F
L
0

The CFL−ratio variation versus α and n
S
 for polynomial stretching function

Figure 1.2.2: The ratio of 1

λmax
= CFL

CFL0
for integration operator S for various sizes of the operator and

stretching strength α.

1.3 Numerical Simulations for ODEs

In this section we implement the Discrete Picard Iteration method in the time-
marching format to find the numerical solution of the simplest linear ordinary differ-

ential equation,

du

dt
= −cu,

u (0) = 1 (1.64)

with analytical solution
u (t) = exp (−c t) (1.65)

23

The explicit Euler time-stepping solution of (1.64) is stable for (Quarteroni et al.
(2000))

∆tmax =
2

c
, (1.66)

Therefore we expect that Euler stepping should be stable unless c ∆tmax = CFLODE
is greater than two.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

Euler explicit − CFL = 0.1

Analytical
Numerical

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

Discrete Picard Iteration − CFL = 0.1

Analytical
Numerical

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

Euler explicit − CFL = 1.0

Analytical
Numerical

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

Discrete Picard Iteration − CFL = 1.0

Analytical

Numerical

Figure 1.3.1: The comparison between Discrete Picard Iteration method and Euler stepping for solving
linear ODE (1.64).

This behavior, is observed in numerical experiment shown in fig.(1.3.1-Left col-

umn) where for boundary value CFL = 2., it exhibits oscillatory solution and for
CFL > 2. the solution diverges. In addition, note that the Euler explicit method
is highly dissipative, even for small CFL numbers. Now we solve the same problem

using a time-marching variant of discrete Picard iteration (1.11). The ODE marching
algorithm is described as below.

24

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

u

Euler explicit − CFL = 2.0

Analytical
Numerical

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

Discrete Picard Iteration − CFL = 2.0

Analytical
Numerical

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20
x 10

59

t

u

Euler explicit − CFL = 5.0

Analytical
Numerical

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

Discrete Picard Iteration − CFL = 5.0

Analytical
Numerical

10
1

10
−10

10
−5

10
0

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

95

t

u

Euler explicit − CFL = 10.0

Analytical
Numerical

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

u

Discrete Picard Iteration − CFL = 10.0

Analytical
Numerical

0 50 100
0

0.5

1

t

Figure 1.3.2: Continued- The comparison between Discrete Picard Iteration method and Euler step-
ping for solving linear ODE (1.64).

1. begin program

2. given stretching strength α and operator size ns, calculate S.

25

3. set ui to initial condition ui = u(t0).

(a) main loop

(b) initialize u0 with initial value ui.

(c) Select the maximum allowable ∆t according to (1.63).

i. while |un+1 − un| ≥ threshold

ii. solve (1.11)

iii. end while

(d) store the last solution of u(t) at unS
.

(e) replace the initial value ui with , i.e., ui = unS
.

(f) end main loop

4. end program

The results of executing the above algorithm are covered in (1.3.1-right). As

shown, while DPI is non-dissipative for CFL ≤ 2, it remains accurate and stable for
CFL ≥ 2 where the dissipation error dominates in CFL = 10.

26

Chapter 2

The Discrete Picard Iteration Method for
Partial Differential Equations

2.1 The Rearrangement Operator

Before extending the discrete Picard iteration to multidimensional partial differential
equations, we need to define a new operator to rearrange data in the spatial and

temporal orders whenever needed. Suppose that the spatial space is a z-dimensional
continuous space which is discretized using Nnodes number of nodes. Each nodes

contains the solution at time ti. Therefore the following space-time vector contains
solution for all nodes at discrete times t1 through tnS.

[u] =




































u1

u2
...

uNnodes








t1






u1

u2
...

uNnodes








t2
...








u1

u2
...

uNnodes








tnS





























(2.1)

We used the notation [u] since vector u is nested to form a tensor. Now suppose
that we want to find the spatial derivative u at all time steps. For simplicity, assume

27

that a one dimensional space R1 with nodes 1 to Nnodes arranged in equal spacing is
given. Using a first order upwind difference operator we will have,

Dxu =
1

∆x










0

−1 1
−1 1

.

−1 1










︸ ︷︷ ︸

D








u1

u2
...

uNnodes








(2.2)

to find the spatial derivative of [u] in all time steps, we simply put block Dx on the

main diagonal of a new tensor, say

[D]x [u] = (2.3)

1
∆x
































0

−1 1
−1 1

.

−1 1










. . .









0
−1 1

−1 1
.

−1 1


























































u1

u2
...

uNnodes








t1
...








u1

u2
...

uNnodes








tnS




















But what happens if we want to find [D]t [u]? Off course we should find a way to
first rearrange them in the order of temporal increasement instead of node increase-

28

ment. The rearrangement operator does this thing.



































u1(t1)
u1(t2)

...
u1(tnS

)















u2(t1)

u2(t2)
...

u2(tnS
)








...







uNnodes
(t1)

uNnodes
(t2)

...
uNnodes

(tnS
)



































=



































[
1

]

[
1

]

. . .
[
1

]















[
1

]

[
1

]

. . .
[

1
]








...







[
1
]

[
1
]

. . .
[

1
]



































︸ ︷︷ ︸

[Ω21]




































u1

u2
...

uNnodes








t1






u1

u2
...

uNnodes








t2
...








u1

u2
...

uNnodes








tnS





























(2.4)

Figure 2.1.1: The rearrangement operator for Nnodes = nS and nz = 2nS .

Or in compact notation,

[u]2 = [Ω]21[u]1 (2.5)

Which rearranges the right-hand side nested vector [u]1 (rhs of (2.4)) which is orig-
inally in nodal order (order 1) to a nested vector [u]2 (lhs of (2.4)) which is in the

order of time increasement (order 2). Obviously the rearrangement operators are

29

orthogonal, i.e.

[u]2 = [Ω]21[u]1
[Ω]12×⇒ [Ω]12[u]2 = [Ω]12[Ω]21[u]1 = [u]1

⇒ [Ω]12[Ω]21 = I (2.6)

Therefore we find the following important lemma which will be used in the proof of
theorem II.

Lemma II - A rearrangement operator doesn’t affect eigen values of its operand.

i.e.,

eig ([Ω]12A[Ω]21) = eig (A) (2.7)

for arbitrary A.

Proof:

Suppose that eigen-values of [Ω]12A[Ω]21 are desired. In other words,

([Ω]12A[Ω]21) [x] = λ [x] (2.8)

Changing the variable [x̄] = [Ω]21 [x] leads to

[Ω]12A [x̄] = λ [x] (2.9)

Multiplying both sides of (2.9) with [Ω]21 we will have

([Ω]21[Ω]12)A [x̄] = λ [Ω]21 [x]︸ ︷︷ ︸

[x̄]

(2.10)

Using orthogonality property (2.6), eq. (2.10) is written as below

A [x̄] = λ [x̄] (2.11)

Equation (2.11) proves that any λ that is the eigen-value of [Ω]12A[Ω]21 according

to (2.8) is also the eigen-value of A and the proof is complete. N

Now we are ready to study the convergences of discrete Picard iteration method
for general class of time-dependent partial differential equations.

30

Theorem II (The Super Theorem) - Discrete Picard Convergence The-
orem for Time-Dependent Partial Differential Equations

Suppose that the time-dependent function f is expressed in the term of dependent
variable u and its partial derivatives in z-dimensional space Rz =

∏z
i=1Ri such that

∂u

∂t
= f (x) ,

x = (u, t, β1, β2, . . . , βH)

β1 =
∂u

∂x1
, β2 =

∂2u

∂x2
1

, . . .

βj1 =
∂u

∂x2
, βj1+1 =

∂2u

∂x2
2

, . . .

...

βj =
∂q (u)

∂x1
ωj1∂x2

ωj2 . . . ∂xz
ωjz

(

q =
z∑

k=1

ωjk

)

, (2.12)

where f is continuous and differentiable over x = [x0,x] and is Lipschitz contin-
uous over t and assume that the discretization of the integration operator S (1.6) is

consistent, i.e. p ≥ 1. Also assume that βj is discretized in Rz such that,

βj =
∂q (u)

∏z
k=1 ∂xk

ωjk

=
1

∏z
k=1∆xk

ωjk

Stencil∑

l

γljul +O
(
∆x1

Pj1,∆x2
Pj2, . . . ,∆xz

Pjz
)

(2.13)

Where Pj1...z ≥ 1 for consistency. Then for the given operator S, the discrete Picard

Iteration converges to a unique solution if and only if,

∥
∥
∥λi(

∂f

∂u
(x0)∆t+ CFLi)

∥
∥
∥ ≤ 1 (2.14)

For all i where λi is the ith eigen-value of S and CFLi is the local generalized

CourantFriedrichsLewy number defined as

CFLi = ∆t
H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
λΓji (2.15)

31

and λΓji is the i
th eigen-value of spatial discretization operator Γj = γlj matrix in

(2.13).
Proof:

Since f is continuous and differentiable over x, we can expand f near x0 using Taylor
series,

f = f (x0) +
∂f

∂u
(x0) u+

∂f

∂t
(x0) t+

H∑

j=1

∂f

∂βj
(x0)βj, (2.16)

Substituting βj from (2.13) into (2.16) we will have,

f = f (x0) +
∂f

∂u
(x0) u+

∂f

∂t
(x0) t+

H∑

j=1

∂f (x0)

∂βj

∂q (u)
∏z

k=1 ∂xk
ωjk

(2.17)

Now substituting the discretization of βj from (2.13) into (2.17),

∂u

∂t
= f = f (x0) +

∂f

∂u
(x0)u+

∂f

∂t
(x0) t+

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk

∑

l

γljul

+
H∑

j=1

∂f (x0)

∂βj
O
(
∆x1

Pj1 ,∆x2
Pj2 , . . . ,∆xz

Pjz
)

(2.18)

We note that (2.18) is valid for all nodes in z-dimensional space Rz. Therefore if
we repeat (2.18) for all nodes and combine the results in vector form we will have,

∂u

∂t
= f (x0) e+

∂f

∂u
(x0)u+

∂f

∂t
(x0) te+

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[Γ]ju

+
H∑

j=1

∂f (x0)

∂βj
O
(
∆x1

Pj1 ,∆x2
Pj2, . . . ,∆xz

Pjz
)
e (2.19)

Where u = [u1 u2 . . . uNnodes
]T contains the nodal value of solution for all nodes at

time t. Equation (2.19) may be rearranged as the following,

∂u

∂t
=

(

f (x0) +
∂f

∂t
(x0) t

)

e

︸ ︷︷ ︸

c′
0

+




∂f

∂u
(x0) [I] +

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[Γ]j



u

+
H∑

j=1

∂f (x0)

∂βj
O
(
∆x1

Pj1 ,∆x2
Pj2 , . . . ,∆xz

Pjz
)
e (2.20)

32

or

∂u

∂t
= c′0 +




∂f

∂u
(x0) [I] +

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[Γ]j



u

+

H∑

j=1

∂f (x0)

∂βj
O
(
∆x1

Pj1,∆x2
Pj2, . . . ,∆xz

Pjz
)
e (2.21)

We note that since [Γ]j is not diagonal in general, then (2.21) should be diagonal-
ized first. Before doing eigen-value decomposition we note the following interesting

property of matrix summation. Assume the we define

[
Γ̄
]
=

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[Γ]j (2.22)

To rewrite the RHS of (2.21) as the following1

∂u

∂t
= c′0 +

(
∂f

∂u
(x0) [I] +

[
Γ̄
]
)

u

+

H∑

j=1

∂f (x0)

∂βj
O
(
∆x1

Pj1,∆x2
Pj2, . . . ,∆xz

Pjz
)
e (2.23)

So to diagonalize (2.21) we need to find the eigen-value decomposition of
[
Γ̄
]
.

Assume that the eigen-matrix of
[
Γ̄
]
is [ΛΓ̄]. Then for any left eigen-vector [L] we

have

[L]
[
Γ̄
]
= [ΛΓ̄] [L] (2.24)

Substituting for
[
Γ̄
]
from (2.22) we will have,

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[L] [Γ]j = [ΛΓ̄] [L] (2.25)

or
H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[ΛΓ]j [L] = [ΛΓ̄] [L] (2.26)

1It is helpful to note that
[
Γ̄
]
in (2.22) is actually the discretized form of residuals f(x) in (2.12) for only linear

case. We use this definition in the following sections when we want to study the stability and convergence of implicit
form of DPI.

33

where [ΛΓ]j is the eigen-matrix of [Γ]j. From (2.26) it is evident that

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[ΛΓ]j = [ΛΓ̄] (2.27)

Now, by multiplying both sides of (2.23) with the left eigen vector [L]Γ̄ and sub-
stituting (2.27) and using new variable ū = [L]u we obtain,

∂ū

∂t
= [L]c′0︸ ︷︷ ︸

c0

+




∂f

∂u
(x0) [I] +

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
[ΛΓ]j





︸ ︷︷ ︸

[c]

ū

+

H∑

j=1

∂f (x0)

∂βj
O
(
∆x1

Pj1,∆x2
Pj2, . . . ,∆xz

Pjz
)
[L]e
︸︷︷︸

ē

(2.28)

or

∂ū

∂t
= c0 + [c] ū+

H∑

j=1

∂f (x0)

∂βj
O
(
∆x1

Pj1,∆x2
Pj2 , . . . ,∆xz

Pjz
)
ē (2.29)

We note that (2.29) is valid for all nodes in the spatial domain at time t. Therefore

(2.29) should be repeated for discrete times ti = {t1, t2, . . . , tnS
} and the resulting

system of equations should be packed using space-time data structure represented in

(2.1). The result is presented as follows

∂ [ū]

∂t
= [c0] + diag ([c]) [ū] +

H∑

j=1

diag

(
∂f (x0)

∂βj

)

O
(
∆x1

Pj1,∆x2
Pj2, . . . ,∆xz

Pjz
)
ē

(2.30)
Now we use rearrangement operator combined to integration operator [Ω]12S[Ω]21

to discretize ∂
∂t

in (2.30) as the following

[ū]n+1 = [ū]0 +∆t[Ω]12diag (S) [Ω]21 [c0] + (∆t[Ω]12diag (S) [Ω]21diag ([c])) [ū]n

+
H∑

j=1

∆t[Ω]12diag (S) [Ω]21diag

(
∂f (x0)

∂βj
ē

)

O
(
∆x1

Pj1,∆x2
Pj2 , . . . ,∆xz

Pjz
)

+ O (∆tp) e, (2.31)

Equation (2.31) is analogous to (1.18) except the truncation error O

(

∆x1

Pj1 ,∆x2

Pj2 , . . . ,∆xz
Pjz

)

and eigen value matrix diag ([c]) due to spatial discretization does not appear in the

34

ODE iteration (1.18). We also note that using the assumption of Lipschitz continuity
we can show (as we did in theorem I) that [c0] in (2.31) is bounded for arbitrary

iteration n. Also the assumption of consistency of temporal and spatial discretization
given in theorem leads to p = Pj1 = Pj2 = . . . = Pjz ≥ 1 which shows that spatial and

temporal truncation errors in (2.31) vanish as spatial and temporal spacing become
infinitesimal. Therefore by using the same geometric series approach of Theorem I,

it is evident that the generic discrete Picard iteration for PDE (2.31) converges if
and only if the eigen values of the coefficient matrix of [ū]n in (2.31) are less that
unity, i.e.,

∥
∥
∥∆t eig([Ω]12diag (S) [Ω]21diag ([c]))

∥
∥
∥ ≤ 1 (2.32)

To find the eigen-values, we note that any eigen matrix of the coefficient matrix
satisfies the following equation,

([Ω]12diag (S) [Ω]21diag ([c])) [x] = [Θ] [x] , (2.33)

Where [Θ] is the eigen-matrix of [Ω]12diag (S) [Ω]21diag ([c]). Substituting new vari-
able

[x̄] = diag ([c]) [x] , (2.34)

into (2.33) we will have

[Ω]12diag (S) [Ω]21 [x̄] = [Θ] [x] , (2.35)

Since diag ([c]) is a diagonalized matrix of diagonal matrix [c] in (2.28) then

[x] = diag
([
c−1
])

[x̄] , (2.36)

Substituting (2.36) into (2.35),

[Ω]12diag (S) [Ω]21 [x̄] = [Θ] diag
([
c−1
])

[x̄] , (2.37)

Or

eig
(

[Ω]12diag (S) [Ω]21

)

= [Θ] diag
([
c−1
])

, (2.38)

Equation (2.38) proves that the diagonal matrix [Θ] diag
([
c−1
])

is the eigen-
matrix of [Ω]12diag (S) [Ω]21. Since rearrangement operator [Ω] doesn’t change the
eigen-values of its operand (Lemma II), we can rewrite (2.38) as

eig
(

[Ω]12diag (S) [Ω]21

)

= eig
(

diag (S)
)

= [Θ] diag
([
c−1
])

, (2.39)

35

Since the integration operator S is diagonalized, the eigen values are same as (1.23)
but repeated. Hence

eig
(

diag (S)
)

= diag
(

eig (S)
)

= [Θ] diag
([
c−1
])

, (2.40)

Substituting (1.23) into (2.40) we obtain

diag
(

eig (S)
)

= diag (Λ) = [Θ] diag
([
c−1
])

, (2.41)

Which gives us the unknow eigen-matrix [Θ],

[Θ] = diag (Λ) diag ([c]) , (2.42)

Substituting (2.42) into convergence condition (2.32) we will have,

∥
∥
∥∆t diag (Λ) diag ([c])

∥
∥
∥ ≤ 1 (2.43)

We note that entries on the diagonal matrix diag ([c]) are given in (2.28) as ci =

∂f
∂u
(x0) +

∑H
j=1

∂f(x0)
∂βj

∏z

k=1 ∆xk
ωjkλΓi. Substituting into (2.43) we will have

∥
∥
∥∆t λi(

∂f

∂u
(x0) +

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
λΓji)

∥
∥
∥ ≤ 1 (2.44)

Since ∆t
∑H

j=1

∂f(x0)
∂βj

∏z

k=1 ∆xk
ωjk λΓji is analogous to one dimensional CFL number CFL =

c∆t/∆x, we defined it as the generalized CFLi number for temporal node “i”. Note
that this definition of CFL number consistently switches to the traditional definition

of CFL number for one, two and three dimensional space. Substituting CFLi into
(2.44) we obtain

∥
∥
∥λi(

∂f

∂u
(x0)∆t+ CFLi)

∥
∥
∥ ≤ 1 (2.45)

And the proof is complete. N

2.1.1 Special cases of Super Theorem II

Theorem II is a super theorem containing all possible forms for a differential equation.

Here we study special cases which are literally important. The first special case is
the case of ODEs where all derivative groups βj = 0 in (2.12). Therefore we have
∂f
∂u
(x0) = 0 and hence CFL = 0 according to (2.15). Therefore the convergence

36

condition (2.14) reduces to Theorem I. The second special case is the one-dimensional
linear propagation (convection)

∂u

∂t
+ c

∂u

∂x
= 0,

u (x, t = 0) = uinit
u (x = 0, t) = uinit (x = 0, t) . (2.46)

Where x = x1 is one-dimensional space. Assume that first-order upwind operator
(2.2) is used for spatial discretization. Therefore λΓji = 1 in (2.15). According

to theorem II, for this case we have f = −cβ1. Also since the equation is one-
dimensional we have ωjk = 0 except for k = j = 1 which is ω11 = 1 therefore the

CFL condition (2.15) reduces to

CFL = ∆t
H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
λΓji = ∆t

∂f(x0)
∂β1

∏1
k=1∆xk

ω1k
λΓ1i = ∆t

(−c)

∆x1
(2.47)

Substituting (2.47) into Theorem II- (2.14), we will have

∥
∥
∥λi(

∂f

∂u
(x0)∆t+ CFL)

∥
∥
∥ ≤ 1

→
∥
∥
∥λi(0×∆t+∆t

(−c)

∆x1
)
∥
∥
∥ ≤ 1

→
∣
∣
∣∆t

c

∆x1

∣
∣
∣ ≤

1

λi

(2.48)

Which is the local stability condtion for node ‘i’. Therefore the global stability
condition is obtained as

∣
∣
∣CFL = ∆t

c

∆x1

∣
∣
∣ ≤

1

λmax
(2.49)

Now if we use the Riemann operator (1.9) for integration, then λmax = 1 in (2.49)
and we define CFL0 as

∣
∣
∣CFL0 = ∆t

c

∆x1

∣
∣
∣ ≤ 1 (2.50)

The value of CFL0 is equivalent to CFL number of numerical solution to (2.46)
which is obtained by applying first-order upwind differencing for spatial derivatives

37

and Euler explicit stepping for temporal derivatives. Therefore CFL0 is chosen as a
refrence point in this work. We note that the ratio of maximum CFL obtained by

Discrete Picard Iteration (2.49) to the maximum refrence CFl number (2.50) is
(

CFL

CFL0

)

max
=

1

λmax
(2.51)

Which was presented before in fig.(1.2.2). Interestingly, this ratio goes up to 60

for the developed integration operators.

2.2 Numerical Tests for Partial Differential Equations

2.2.1 One-dimensional Linear Propagation

We solve equation (2.46) using first-order and second-order (upwind) finite difference
scheme for discretization of spatial derivatives and Euler explicit method for time

marching.

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

10

t

u

CFL = 0.5

Initial value

Second−Order Space−Explicit Euler

Discrete Picard Iteration

First−Order(upwind)− Explicit Euler

Exact

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

10

t

u

CFL = 1.0

Initial value
Second−Order Space−Explicit Euler
Discrete Picard Iteration
First−Order(upwind)− Explicit Euler
Exact

Figure 2.2.1: One-Dimensional advection.

The results are compared with the discrete Picard iteration obtained by using
stretching strenght α = 1.01 and nS = 7. The initial function uinit = x sin(x) is

selected for eq.(2.46). The wave speed c = 0.0001 for fifty nodes in the spatial grid
are used in all solutions. The exact solution is obtained using a spectral method
(Trefethen (2001)).

38

0 1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4

6

8

t

u

CFL = 1.5

Initial value
Second−Order Space−Explicit Euler
Discrete Picard Iteration
First−Order(upwind)− Explicit Euler
Exact

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

t

u

CFL = 3.0

Initial value
Discrete Picard Iteration
Exact

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

t

u

CFL = 6.0

Initial value

Discrete Picard Iteration

Exact

Figure 2.2.2: One-Dimensional advection. (Continued)

39

As shown in figs.(2.2.1-2.2.2), the fisrt-order and second order methods with Euler
explicit lead to unacceptable dissipation error for CFL = 0.5. Also these method are

unstable at CFL > 1. The discrete Picard iteration is very accurate for CFL < 1.
The stability and accuracy of DPI method is clrealy shown in fig.(2.2.2-bottom) for

CFL = 6.0.

40

Chapter 3

Alternative Discrete Picard Iterations

In an attempt to increase the convergence and/or stability region of DPI, we continue
our quest to examine different alternative forms of Picard iterations. Without loosing

the generality even for general PDE (2.12), let us rewrite the jth entry of iterative
equation (1.27) in a more straight form by neglecting all constants

un = u0 + rjun−1 (3.1)

According to theorem (I), we have noticed that additional constants in (1.27) have

no effect on the stability of Picard iterations and they are only important to evaluate
the truncation error and final solution. Therefore we omitted everything that doesn’t

have any effect on the stability and hence (1.27) is reduced to (3.1).
Equation (3.1) is the local stability equation for the jth node in the solution vector u.

To achieve a global stability equation we simply consider that maximum eigen-value,

un = u0 + run−1 (3.2)

where r = c∆tλmax is the stability number (according to Theorem (I)). Now we
replace the previous solution un−1 in the original Picard iteration (1.18) by various

alternatives to examine different stability characteristics and possibly new interesting
properties.

Let us discuss the first form which is more intuitive.

3.1 DPI with averaging of previously stored solutions

If we replace the previous solution un−1 in the rhs of (3.2) with the weighted average

of the two last solutions we obtain the sequence,

un = u0 + r
(aun−1 + bun−2)

(a+ b)
,

41

u0 = 0, u1 = w0, (3.3)

which is solved with the given initial conditions leading to the following non-dimensional
closed form solution,

un

w0
=

1

1− r
+

(

r(a+ 2 b)−
√

r (ra2 + 4 ba+ 4 b2)
)

2 (1− r)
√

r (ra2 + 4 ba+ 4 b2)
rn1

−

(

r(a+ 2 b) +
√

r (ra2 + 4 ba+ 4 b2)
)

2 (1− r)
√

r (ra2 + 4 ba+ 4 b2)
rn2

r1 =
−2rb

ra+
√

r (ra2 + 4 ba+ 4 b2)

r2 =
−2rb

ra−
√

r (ra2 + 4 ba+ 4 b2)

(3.4)

We readily note that the stability number of the original Picard iteration (1.18),

i.e. r = c ∆t max (eig (S)) is now changed to two stability numbers r1 and r2 in
(3.4) which are functions of the original stability number r. For this reason we call

them the modified stability number r̄. The stability condition for (3.4) states that
|r1,2| ≤ 1. In other words

∣
∣
∣
∣
∣
r̄ =

−2rb

ra±
√

r (ra2 + 4 ba+ 4 b2)

∣
∣
∣
∣
∣
≤ 1 (3.5)

In figure(3.1.1) the modified stability number is plotted for different values of a and

b in the region of the convergence (between 0 and 1). Outside of this region, at least
one of the modified stability numbers |r̄1,2| is greater than one thus (3.3) is divergent.

42

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

|r1|
|r2|

r̄

r = c∆tλmax

a =
99

100
, b =

1

100

rorig

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

|r1|
|r2|

r̄

r = c∆tλmax

a =
1

100
, b =

99

100

rorig

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

|r1|
|r2|

r̄

r = c∆tλmax

a =
1

2
, b =

1

2

rorig

Figure 3.1.1: The modified stability number r̄ versus the original number r for DPI with explicit
averaging.

According to Lemma (I), the Discrete Picard Iteration converges faster when the
stability number r is smaller. Therefore, the favorite modification to the original

scheme is the one which leads to smaller modified stability number. As shown in
fig.(3.1.1), |r̄2| is always greater than the original stability number rorig while |r̄1| is

varying between r̄ = |r̄2| and r̄ = 0. That means for arbitrary values r, a and b, the

sequence corresponding to r̄ = |r̄1| (on the rhs of (3.4)) might converge faster than

43

original Picard iteration because |r1| might be smaller (as in the plot for a = 1/2
and b = 1/2 and r = 0.9) but meanwhile, the sequence corresponding to r̄ = |r̄2|

will converge slower because |r2| is always greater than rorig and hences we conclude

that the total sequence (3.4) will converge slower than the original Picard iteration.

So we leave this section with the conclusion that the averaging of the previously
stored solutions (explicit averaging) has no effect on improving the stability and/or

accuracy of the method and it degrades the convergence.

3.1.1 Applications: DPI with extrapolating previously stored solutions

Now we consider an application of explicit averaging DPI method eq.(3.3). Assume
that the solution un−1 in (3.2) is obtained by linear extrapolation of the previously

stored solutions at iterations n−1 and n−2. The extrapolation between to successive
iterations is shown fig.(3.1.2) for the next solution ‘u’ at iteration ‘x’.

Figure 3.1.2: The linear extrapolation between successive iterations.

For x = n, we find the following expression for un.

un = 2un−1 − un−2 (3.6)

Substituting into the rhs of (3.2) for un−1 we obtain,

un = u0 + r (2un−1 − un−2) (3.7)

We note that (3.7) is a special case of (3.3) for a=2 and b = -1. Therefore
from Sec. (3.1) we conclude that the extrapolation will not improve stability and/or
convergence of the original Picard iterations.

44

3.2 DPI with implicit averaging

In the previous section, we observed that averaging strategy between previously
stored solutions was not successful in improving the convergence of DPI. However in

this section we consider the possibility of averaging between current solution and
previously stored ones. This is the implicit form of averaging because the solution

at each iteration depends on itself and a history of previously stored solutions. We
replace un−1 in rhs (3.2) with (aun + bun−1) / (a+ b) yielding

un = u0 + r
(bun−1 + aun)

(a+ b)

u1 = w0 (3.8)

Actually, a combination of implicit-explicit solution can be observed in (3.8) since
for a = 1 and b = 0 we have a purely implicit scheme and for a = 0 and b = 1 we

have a purely explicit scheme which is the original Picard iterations. The following
is the closed-form solution of sequence (3.8).

un

w0
=

a(r − 1)
(

rb
(1−r)a+b

)n

− b
((

rb
(1−r)a+b

)n

− 1
)

b (1− r)
(3.9)

From (3.9) we readily find the modified stability number is

r̄ =
rb

(1− r)a+ b
(3.10)

Figure (3.2.1) contains a detailed discussion of modified stability number (3.10) for
a wide range of r. As shown, for 0 ≤ r ≤ 1, increasing the value of a decreases r̄ thus
increases the convergence (by reducing the number of required iterations according

to Lemma (I)- eq.(1.47)). Since a is the coefficient of un, we conclude that increasing
a is actually increasing the implicit nature of (3.8) and thus the more implicit (3.8)

is solved, the more convergent the solution is. By increasing the implicit nature, i.e.
a → 1, b → 0, the modified stability number converges to zero r̄ → 0 and hence we

find a golden case that the solution converges at the first iteration (because (3.8) is
no longer iterative). For purely explicit case a = 0, b = 1 we retrieve the original

Picard iterations which is the 45 degrees straight line. Therefore for all values of a
and b over 0 ≤ r ≤ 1, the implicit scheme is between the golden iteration and the
Picard iteration.

45

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

|r|a=.01 b=.99

|r|a=.5 b=.5

|r|a=.99 b=.01

r̄

r = CFL × λmax

rorig

1

0

-1

1

r

Stability
Region

−
b

a

r̄

+∞

r = CFL × λmax

r̄

orig

a+b

a−b

r
0

=
1

+
b a

r0

|r̄| ≤
1

Figure 3.2.1: The modified stability number r̄ versus the original number r for DPI with implicit
averaging. Left) close up for 0 ≤ r ≤ 1. Right) The parametric plot for all stability numbers
0 ≤ r ≤ +∞. The original stability number is r = c∆tλmax for ODEs (Theorem I, eq.(TheoremI))
and r = CFLλmax for PDEs (Theorem II).

To find the regions of stability of implicit DPI, we prepared a parametric plot of
(3.10) in fig.(3.2.1)-right. As shown, for arbitrary values of a and b, the implicit DPI

(the solid line) escapes from the stability region at r = 1. But it miraculously renters
to the stability region at r = (a+ b) / (a− b) and remains stable unconditionally af-

ter that. That means for the case of general time dependent (time evolution) Partial
Differential Equation (2.12) where r = CFLλmax, the implicit DPI proposed in (3.8)

remains stable for arbitrarily large CFL without needing to modify the integration
operator as we did in Sec.(1.2) for the explicit DPI.
The implicit DPI has a vertical asymptote (vertical solid line) at the middle of insta-

bility region, i.e., r0 = 1 + b/a, and an horizontal asymptote r̄0 = −b/a (horizontal
dotted dashed line) which is the value of the modified stability number (3.10) for suf-

ficiently large CFL number. The stability number of original Picard Iterations is also
brought in fig.(3.2.1)-right (the oblique dashed line). As shown, it is unconditionally

unstable for r > 1 and also it is always greater than or equal to the implicit DPI.
That means in the region of stability, the original explicit DPI is less convergent (in

the sense of number of required according to eq.(1.47)) than the implicit version.

46

5

10

2

5

10
2

2

5

10
3

2

5

10
4

N
um

be
r

of
It

er
at

io
ns

2 5 10 2 5 10
2

2 5 10
3

a = 0.550
a = 0.700
a = 0.850
a = 1.000

r = CFL × λmax

Figure 3.2.2: The number of iterations nedded for convergence (p=52 in Table ()) for DPI with
implicit averaging.

A more descriptive account of convergence of implicit DPI is brought in fig.(3.2.2)
where eq.(1.47) is evaluated with r̄ given in (3.10) instead of r. As a → 1 and b → 0,

the number of iteration required for convergences to machine zero (defined by p = 52
in Table(1.1.1)) reduces to less than 5. (see the dashed red line)

It should be noted that using implicit DPI is one way to accelerate the convergence.
Since we deal with nonlinear series in the DPI method, another potential approach

to improve the convergence is to use Series Convergence Acceleration Methods like
Aitken’s methodSidi (2003) to directly accelerate the convergence of series in DPI
method instead of reducing modified stability number. In addition, this approach

might be combined with the implicit acceleration to result in a super convergent,
highly efficient scheme with simultaneous application in ODEs and PDEs. This is

left as a future development.

3.2.1 Application of DPI with implicit averaging

In Sec.(3.2) we discussed a family of implicit DPI sequence (eq.(3.8)) which is uncon-

ditionally stable for less than unity or sufficiently large CFL number. In this section

47

we consider an application of this sequence in solving ODEs and/or PDEs.
Consider the general ODE/PDE form of explicit residual based eq.(1.11),

un+1 = u0 +∆t[Ω]12 S [Ω]21Rn +O (∆tp,∆x1
p1,∆x2

p2, . . .)

Rn = f

(

un,
∂

∂x1
(un) ,

∂2

∂x2
1

(un) , . . . ,
∂

∂x2
(un) ,

∂2

∂x2
2

(un) , . . . , t

)

, (3.11)

where the nested column vector residual Rn is initially in the x1 arrangement1 and

we used the rearrangement operator [Ω]21 defined in (2.5) to rearrange it in the time
direction (or direction 2) when integration in time is taken and then the result of in-
tegration are taken back to the original x1 direction using the inverse rearrangement

operator [Ω]12 = [Ω]−1
21 . Since [Ω]21 = [Ω]12 = I for the case of ordinary differential

equations, eq.(3.11) consistently changes to (1.11). We note that (3.11) is the nonlin-

ear Picard iterations for general residuals Rn coming from the rhs of PDEs/ODEs.
While formulation (3.11) is valid for both structured and unstructured grids, in the

next section (Sec. 4.1), we will devise particular rearrangement operators suitable to
handle PDEs in structured grids. However when it comes to algorithm development

in general case, we always start from (3.11).
Following the weighted averaging method (eq.(3.8)), the first equation of (3.11) can
be written in the following implicit form

un+1 = u0 +∆t[Ω]12 S [Ω]21
a′Rn+1 + b′Rn

a′ + b′
+O (∆tp,∆x1

p1,∆x2
p2, . . .) (3.12)

Note that we still need the residuals at iteration n+1. For conservation laws, we use
the linearization concept of Briley & McDonald (1977) or Beam & Warming (1978)

who adapt it to construct implicit scheme between two time steps t and t+∆t. We
apply the same method to make implicit schemes between two iterations n and n+1.

The residuals linearization is given as follows2

Rn+1 = Rn +

[
∂Rn

∂u

]

(un+1 − un) (3.13)

where
[
∂Rn

∂u

]
is a diagonal matrix containing the Jacobian of the residual vector for

each point in each iteration n. One of the important results of this paper is that

since the linearization is done in the iteration space (not in temporal space) the total

1node arrangement as shown in eq.(2.1)
2We should note that since R ≡ R (u, t) (recall eq.(1.1)), then Rn+1 = Rn+

[
∂Rn

∂u

]
(un+1 − un)+

[
∂Rn

∂t

]
(tn+1 − tn).

Since we don’t have reconfigurable (variable) temporal grid in each iteration (refer to fig.(1.0.1), we fix node location
ri during all iterations), then (tn+1 − tn) = 0 is generally zero and residual linearization (3.13) is correct.

48

order of accuracy of the scheme remains unchanged independent of linearization.
Substituting (3.13) into (3.12) leads

un+1 = u0+∆t[Ω]12S[Ω]21

(

Rn +
a′

a′ + b′

[
∂Rn

∂u

]

(un+1 − un)

)

+O (∆tp,∆x1
p1,∆x2

p2, . . .)

(3.14)

or in the more convenient form below

(

I −
a′∆t

a′ + b′
[Ω]12 S [Ω]21

[
∂Rn

∂u

])

un+1 = (3.15)

u0 + ∆t[Ω]12 S [Ω]21

(

Rn −
a′

a′ + b′

[
∂Rn

∂u

]

un

)

+O (∆tp,∆x1
p1,∆x2

p2, . . .)

which establishes the fundamental scheme of nonlinear implicit Discrete Picard
Iterations which is arbitrary order accurate in time (depending on the order of accu-

racy of S which can be increase arbitrarily). A quick glimpse at eq.(3.15) says that
the coefficient of un+1 is a nS × nS matrix where nS is the size of the integration op-

erator S. So this time, we should solve a system of linear equations in each iteration.

To study the stability and convergence characteristics of implicit DPI, we need to
consider the linear case for residual Rn as follows,

Rn =
[
Γ̄
]
un (3.16)

Where
[
Γ̄
]
is defined in (2.22). We had noticed (3.16) before in Theorem (II)

and the footnote therein. The important point is that
[
Γ̄
]
is not diagonal in general

because the discretization in space depends on the each nodes and surrounding nodes
which are off-diagonals. So before stability and convergence analysis we diagonalized

the semi-discrete form (3.11) by following the same approach as we did in Theorem
II. That means the residual (3.16) can be diagonalized as below

R̄n = diag (λΓ̄i) ūn (3.17)

where R̄ = [L]R and ū = [L]u and
[
Γ̄
]
= [L]−1diag (λΓ̄i) [L] is the eigen-value

decomposition of
[
Γ̄
]
. In this case the solution vector u in implicit DPI (3.15) is

replaced with ū. Equation (3.17) gives us the Jacobian immediately

∂R̄n

∂ū
= diag (λΓ̄i) (3.18)

49

Substituting (3.17) and (3.18) into (3.15) and replacing u with eigen-vector trans-
ferred ū and omitting the order of accuracy3we will obtain

(

I−
a′∆t

a′ + b′
[Ω]12 S [Ω]21diag (λΓ̄i)

)

ūn+1 = ū0 (3.19)

+∆t[Ω]12 S [Ω]21

(

diag (λΓ̄i) ūn −
a′

a′ + b′
diag (λΓ̄i) ūn

)

= ū0 + ∆t[Ω]12 S [Ω]21

(
b′

a′ + b′
diag (λΓ̄i) ūn

)

or simply,

ūn+1−
a′∆t

a′ + b′

(

[Ω]12 S [Ω]21diag (λΓ̄i)
)

ūn+1 = ū0+
b′∆t

a′ + b′

(

[Ω]12 S [Ω]21diag (λΓ̄i)
)

ūn

(3.20)
As discussed in Lemma (II), the rearrangement operator does not change the eigen-
value of its operand. Thus exactly similar to derivation of eq.(2.42), the eigen-value

of the total operator inside the big parenthesis, i.e.[Ω]12 S [Ω]21diag (λΓ̄i) in (3.20),
can be written as

eig ([Ω]12 S [Ω]21diag (λΓ̄i)) = [Λ] diag (λΓ̄i) = diag (λi) diag (λΓ̄i) = diag (λiλΓ̄i)
(3.21)

where λi is the ith eigen-value of the integration operator S as discussed in Theorem
(I). Therefore if the left eigen-vector of [Ω]12 S [Ω]21diag (λΓ̄i) is [W] then the eigen-
value decomposition of the total operator is given below (using (3.21))

[Ω]12 S [Ω]21diag (λΓ̄i) = [W]−1diag (λiλΓ̄i) [W] (3.22)

It is more convenient and meaningful if we rewrite λΓ̄i in (3.22) using the definition
of generalized CFL number (eq.(2.15)). Thus

λΓ̄i =

H∑

j=1

∂f(x0)
∂βj

∏z
k=1∆xk

ωjk
λΓji =

CFLi

∆t
(3.23)

Substituting (3.23) into (3.22), we obtain

[Ω]12 S [Ω]21diag (λΓ̄i) = [W]−1diag

(
λiCFLi

∆t

)

[W] (3.24)

3Since we showed in eq.(3.15) that the order of accuracy remains arbitrary independent of linearization, for the soul
purpose of stability analysis we are free to omit it because it doesn’t have any effect on stability/convergence as we
discussed in Theorem I. Since it a constant value during Picard iterations, it can be counted together with the initial
value ū0.

50

Replacing the total operator [Ω]12 S [Ω]21diag (λΓ̄i) in (3.20) with (3.24) we will have

ūn+1−
a′∆t

a′ + b′
[W]−1diag

(
λiCFLi

∆t

)

[W] ūn+1 = ū0+
b′∆t

a′ + b′
[W]−1diag

(
λiCFLi

∆t

)

[W] ūn

(3.25)

Multiplying both sides of (3.25) with [W] we will have

[W] ūn+1−
a′∆t

a′ + b′
diag

(
λiCFLi

∆t

)

[W] ūn+1 = [W] ū0+
b′∆t

a′ + b′
diag

(
λiCFLi

∆t

)

[W] ūn

(3.26)

We define the following eigen-vector transferred variable

¯̄u = [W] ū (3.27)

Substituting (3.27) into (3.26) we obtain the following decoupled (diagonalized) sys-
tem of equations

¯̄un+1 −
a′∆t

a′ + b′
diag

(
λiCFLi

∆t

)

¯̄un+1 = ¯̄u0 +
b′∆t

a′ + b′
diag

(
λiCFLi

∆t

)

¯̄un (3.28)

or (

I− diag

(
a′λiCFLi

a′ + b′

))

¯̄un+1 = ¯̄u0 + diag

(
b′λiCFLi

a′ + b′

)

¯̄un (3.29)

Rearranging (3.29) leads us to

¯̄un+1 = ¯̄u0 + diag

(
a′λiCFLi

a′ + b′

)

¯̄un+1 + diag

(
b′λiCFLi

a′ + b′

)

¯̄un (3.30)

Evidently, for entry “i” of the diagonal system (3.30) we have

¯̄ui(n+1) = ¯̄ui0 + λiCFLi

a′ ¯̄ui(n+1) + b′¯̄ui(n)

a′ + b′
(3.31)

From Theorem (I) we remember that ri = λic for linear ODE and more compre-

hensively, from Theorem (II) we recall that ri = λiCFLi = λic/∆x is the stability
number for linear PDE which consistently switches to ODE when there is no spatial

discretization ∆x. Therefore we replace λiCFLi in (3.31) with stability number ri
leading to the final result for general implicit DPI scheme,

¯̄ui(n+1) = ¯̄ui0 + ri
a′ ¯̄ui(n+1) + b′¯̄ui(n)

a′ + b′
(3.32)

51

Evidently this equation is exactly identical to the implicit DPI sequence (3.8)
discussed in Sec.(3.2) for a′ = a and b′ = b. Therefore the analysis presented in that

section is valid for the implicit DPI scheme for ODEs and PDEs.
Summarizing the stability of implicit DPI (3.15) it can be said that the scheme is

stable for r = λmaxCFL between 0 and 1 and between (a′ + b′) / (a′ − b′) and infinity
(please refer to fig.(3.2.1)). Therefore implicit scheme is unconditionally convergent

in this region. However we should bear in mind that in practical implementation, we
should use a condition to prevent the solver to use stability number between unity
and (a′ + b′) / (a′ − b′) where the implicit DPI is unconditionally divergent. Figure

(ref) shows that this gap is very narrow for large value of a′ which we use in practical
implementation.

Summarizing the convergence of implicit DPI, for 0 ≤ r ≤ 1, implicit DPI converges
faster for arbitrary constants a′ and b′ than any explicit DPI. For b′ → 1 and a′ → 0

implicit DPI convergence is equal to explicit DPI while for a′ → 1 and b′ → 0 it
converges at the very first iterations! For CFL → ∞ or equivalently r → ∞, implicit

DPI converges to asymptote −b′/a′. So the rate of convergence can be adjusted by
modifying this ratio. For b′ → 0 the implicit DPI leads to golden scheme which
converges at the first iteration for CFL→ ∞. We also conclude that:

while implicit DPI (3.15) removes the stability limitation of explicit DPI
(1.11), it also improves the convergence of the original DPI. This is while

both schemes are arbitrary-order accurate in time and the order of ac-
curacy can be adjusted by replacing the integration operator S with a

high-order integrator in eq.(3.15) without reformulation of the scheme
and changing the code.

3.3 Comparison of Implicit Picard and Newton Iterations

The Newton Iteration is probably the most popular method for solving a system of
nonlinear equations and is easily extended to system of nonlinear PDEs and ODEs

as wellBriley & McDonald (2001). In this section we derive the modified stability
number of Newton iteration method and we compare the result with explicit and
implicit DPI.

Let us consider the residual-based eq.(1.1) again where this time the derivative is dis-
cretized instead of the integral form of the equation. Substituting the time derivative

with a first order forward differencing we will obtain,

∆u

∆t
=

un+1 − un

∆t
= R (un) , (3.33)

52

Which is the first-order explicit scheme. Assuming implicit relation we have

un+1 − un

∆t
= R (un+1) , (3.34)

Rewriting (3.34) in the form of

F =
un+1 − un

∆t
−R (un+1) = 0, (3.35)

If we repeat (3.35) for all “n” in the time until a terminal value call it “nS”, we can
combine the result into the following matrix form,

F (u1, u2, . . . , un) = F (u) =










u1 − u0
u2

∆t
− u1

∆t
−R(u2)

u3

∆t
− u2

∆t
−R(u3)
...

unS

∆t
− unS−1

∆t
−R(unS)










= 0 (3.36)

Now (3.36) is actually a system of nonlinear equations which can be solved using

Newton iterations as follows. For nonlinear vector F (u) = 0 in (3.36) we can write

F (u) = F (u0) +
∂F (u)

∂u
∆u = 0 (3.37)

or in the iterative form

F (un) +
∂F (u)

∂un

(un+1 − un) = 0 (3.38)

which is solved for the next iteration

un+1 = un −
∂F (u)

∂un

−1

F (un) (3.39)

Here we are only interested in the stability and convergence properties of (3.39).
Therefore we consider the case where the residual in (3.33) is linear, say R(u) = cu

which comprehends all linear ODEs and PDEs. With this assumption, the target
function F (u) in (3.36) is written

F (u) =










u1 − u0
u2

∆t
− u1

∆t
− cu2

u3

∆t
− u2

∆t
− cu3

...
unS

∆t
− unS−1

∆t
− cunS










=








−u0

∆t
1
∆t

− c
−1
∆t

1
∆t

− c
. . .
−1
∆t

1
∆t

− c








︸ ︷︷ ︸

Ψ








u2

u3
...

unS







= Ψu

(3.40)

53

Substituting (3.40) into (3.39) we will have

un+1 = un −
∂F (u)

∂un

−1

Ψun (3.41)

And for the Jacobian in Newton root-finding equation (3.41) we can write (using
(3.40)),

∂F (u)

∂u
= Ψ (3.42)

Substituting (3.42) into (3.41) we obtain

un+1 = un −Ψ−1Ψun = 0 (3.43)

which reveals that the Newton iteration for a general system of Linear PDE/ODE
converges at the first iteration. This is very interesting convergence property. From

Sec. (3.2) we recall that implicit DPI also had the same convergence behavior when
a → 1 and b → 0. So we might suspect that there should be a relation between

Newton iteration (3.39) and implicit DPI proposed in (3.15).
To find a clue to the relation we start by reconsidering the explicit DPI given in

(3.11). If we replace index ’n+1’ with ’n’ and considering implicit form (both side
evaluated at ’n’) we will have,

un = u0 +∆t[Ω]12 S [Ω]21Rn +O (∆tp,∆x1
p1,∆x2

p2, . . .) (3.44)

Instead of using Briley-McDonald linearization in the iteration space, this time we

use Newton method. Constructing the target function F we obtain,

Fn = u0 − un +∆t[Ω]12 S [Ω]21Rn +O (∆tp,∆x1
p1,∆x2

p2, . . .) (3.45)

which should be zero according to the Newton root-finding algorithm. Substituting
into (3.39) we will obtain,

un+1 = un −
u0 − un +∆t[Ω]12 S [Ω]21Rn +O (∆tp,∆x1

p1,∆x2
p2, . . .)

−I+∆t[Ω]12 S [Ω]21
[
∂Rn

∂u

] (3.46)

Multiplying both sides of (3.46) with
(
I−∆t[Ω]12 S [Ω]21

[
∂Rn

∂u

])
we will have

(

I−∆t[Ω]12 S [Ω]21

[
∂Rn

∂u

])

un+1 =

(

I−∆t[Ω]12 S [Ω]21

[
∂Rn

∂u

])

un

+u0 − un +∆t[Ω]12 S [Ω]21Rn +O (∆tp,∆x1
p1,∆x2

p2, . . .) (3.47)

54

Simplifying the rhs of (3.47) we obtain,
(

I−∆t[Ω]12 S [Ω]21

[
∂Rn

∂u

])

un+1 = u0 + (3.48)

∆t[Ω]12 S [Ω]21

(

Rn −

[
∂Rn

∂u

]

un

)

+O (∆tp,∆x1
p1,∆x2

p2, . . .)

which is a special case of (3.15) for a = 1 and b = 0. Therefore we can use Newton
method to derive a special case of implicit DPI which was obtained before using

linearization in the iteration space. One thing that we conclude here is that the
convergence of implicit DPI is equivalent to Newton iteration for large coefficient

a in (3.15). For small a the convergence degrades but we can move the instability
gap to wherever we want to prevent instability which occurs in Newton’s iteration
algorithms.

3.4 Numerical Solution of ODEs using implicit DPI

The numerical characteristics of the implicit DPI scheme are tempting. They are
summarized below

Property Proof
arbitrary order accurate in time. 4 eq.(3.15)
unconditionally stable at large CFL number eq.(3.10) and fig.(3.2.1)

user-defined rate of convergence even at CFL → ∞
proof in fig.(3.2.2) obtained from eq.(1.47)
for the modified stability number given in eq.(3.10)

It is not linearized between two time steps so it
captures all physical scales for arbitrary large CFL

eq.(3.13)

Table 3.1: The properties of Implicit Discrete Picard Iteration algorithm (3.15) for the linear case of
general ODE-PDE.

Now we must perform implementation/evaluation procedures required to investi-
gate the validity of the theory.

3.4.1 Time dependent Linear Scalar ODE

We start by the simplest ordinary differential equation,

d

dt
u (t) = cu− 2c+ a1 sin

(
t

a2

)

,

u (0) = u0 (3.49)

55

For negative c, eq.(3.49) is excellent target for stability and accuracy analysis of
numerical schemes because it has a converging value u∞

5 so the equation is not phys-

ically unstable which is usually confused with the concept of numerical instability in
numerical solutions and also it has a amplitude-frequency adjustable sinusoidal ex-

citer which is suitable to increase the frequency spectrum and then asses the accuracy
of the method. The linear ODE (3.49) has the following analytical solution,

u (t) = ect
(

u0 +
−2 c2a2

2 − 2 + a2 a1
c2a2 2 + 1

)

−
−2 c2a2

2 − 2 + a1 a2 cos
(

t
a2

)

+ a1 ca2
2 sin

(
t
a2

)

c2a2 2 + 1
(3.50)

Evidently for decaying solution c < 0 and no source term a1 = 0, we achieve a

steady state solution, i.e. u (∞) = 2. For nonzero values of a1, the final solution is
a stationary sinusoidal profile.

Numerical solution of (3.49) presented in this section is done using a1 = 1., a2 =
10000, c = −1 and u0 = 3. For the implicit scheme (3.15), the stabilizer constants

a′ = 0.8 and b′ = 0.2 are used. The convergence of DPI is controlled by defining a
tolerance variable eDPI which is the final truncation error that we assume instead of
the machine zero. That means, for successive solutions un+1 and un we define

‖un+1 − un‖ ≤ eDPI , (3.51)

where un+1 is obtained by solving (3.15) at each iteration. For efficiency consid-
erations, we usually limit eDPI to 10−6 instead of machine zero defined in eq.(1.46).

Numerical experiments are done using DPI explicit (1.11), DPI implicit (3.15) and
MATLAB ode45 (Shampine & Reichelt (1997)6) solvers.
In all experiments, the integration operator S is Newton-Cotes second-order accurate

with the size nS = 700. However we use two different values for the first entry of
the operator (s0 in eq.(1.6)). In the first set of experiments, we use s0 = 0 and in

the second set we use s0 = 0.5. We will show that although s0 = 0 condition exactly
impose initial condition at u(t1) = u0, it cause nonlinear instabilities when implicit

scheme are invoked for large CFL number. Even for the linear case it cause zigzag
instabilities and major shift in solution. The choice s0 = 0.5 is nonlinearly stable

and remains stable for arbitrarily large CFL number and it doesn’t lead to unsta-
ble/shifted solution. We will discuss this topic in detail in the following sections.

5The solution is convergent therefore the divergent behavior can be easily observed in the early iterations without
special runtime requirements. As an example, the Euler explicit method is not stable for c∆t = CFL > 2 Quarteroni
et al. (2000).

6The 2010 implementation.

56

The first set of experiments using s0 = 0

We first use s0 = 0 for the integration operator. As shown in (3.4.1), for small
CFL numbers all solutions lead to the same result. For CFL = 1000 and higher the
explicit DPI does not converge. As CFL increases, the ratio of wave-length per node

increases. It is exciting to see that for CFL = 1000000, the implicit DPI has excellent
agreement with ode45 while the former uses 700 points (4.34 sec.) and the latter

uses 1205301 points (2.92e+02 sec.)! At CFL = 10000000, the difference between
ode45 and implicit DPI becomes apparent especially the dissipation error is easily

observable. This is mainly because condition s0 = 0 that cause inconsistency. In
fig.(3.4.2) we explored this feature in detail for CFL = 100000. As shown, the zigzag

instability is very strong near the initial point t = 0. For larger t the zigzag wave
vanishes but it displaces the solution significantly. This can be seen in the zoomed
area on the right where blue circle lines are apparently displaced from the accurate

RK mean value solution. It is also important to look at the solution obtained by
ode45 showing that this RK scheme has microscopic oscillations everywhere in time.

0 0.02 0.04 0.06 0.08 0.1

2.95
3

3.05
3.1

t

u

CFL = 0.1,r=7.153076e−05

0 0.1 0.2 0.3 0.4
2.6

2.8

3

t

u

CFL = 0.3,r=2.145923e−04

0 0.2 0.4 0.6 0.8
2

2.5

3

t

u

CFL = 0.7,r=5.007153e−04

0 0.2 0.4 0.6 0.8 1
2

2.5

3

t

u

CFL = 1.0,r=7.153076e−04

0 2 4 6 8 10
2

2.5

3

t

u

CFL = 10.0,r=7.153076e−03

0 20 40 60 80 100
2

2.5

3

t

u

CFL = 100.0,r=7.153076e−02

0 200 400 600 800 1000
2

2.5

3

t

u

CFL = 1000.0,r=7.153076e−01

0 2000 4000 6000 8000 10000
1

2

3

t

u

CFL = 10000.0,r=7.153076e+00

0 2 4 6 8 10

x 10
4

0

2

4

t

u

CFL = 100000.0,r=7.153076e+01

0 2 4 6 8 10

x 10
5

0

2

4

t

u

CFL = 1000000.0,r=7.153076e+02

0 2 4 6 8 10

x 10
6

0

2

4

t

u

CFL = 10000000.0,r=7.153076e+03

4.2 4.4 4.6 4.8 5

x 10
6

1

2

3

t

u

Zoomed View

Figure 3.4.1: Case s0 = 0: Numerical solution of linear eq.(3.50) using three refrence methods,
Explicit DPI (black points), implicit DPI (blue line) and ode45 from Matlab ODE suite(red line).
In this simulation, a = 0.8, b = 0.2, eDPI = 1.e − 6, u0 = 3, c = −1.0, a1 = 1.0, a2 = 10000 and
nS = 700. The last solution (CFL = 10000000) is compared in fig.(3.4.3) for s0 = 0 and s0 = 0.5.

The zigzag instability problem is completely solved when we used s0 = 0.5. As

57

shown in fig.(3.4.2), the solution obtained by s0 = 0.5 (black quads) is accurate near
t = 0 and it is also accurate at larger t (for example in the zoomed region near the

extrema).

0 1 2 3 4 5 6 7 8 9 10
x 10

4

0.5

1

1.5

2

2.5

3

3.5

t

u

CFL = 100000.0,r=7.153076e+01

0 500 1000 1500

1.9

2

2.1

2.2

2.3

7.808 7.81 7.812 7.814
x 10

4

2.99

2.995

3

3.005

ode45 − 120545 Points

DPI implicit 700 Points
DPI implicit 700 Points− s

0
 = 0.5

Figure 3.4.2: Zigzag Instabilities due s0 = 0 near initial point t1. The region near t1 is twice zoomed
to illustrate the instability. In addition, the operator condition s0 = 0 cause a shift in the obtained
solution compared to ode45 RK solution. As time increases, the zigzag instability vanishes. We
have also zoomed an area of the solution in the middle of the figure. Note that ode45 Runge-Kutta
algorithm exhibits a highly oscillatory behavior in this region. (bottom right).

The second experiment using s0 = 0.5

In fig.(3.4.3) we did the last solution (CFL = 10,000,000) with both s0 = 0 and

s0 = 0.5. As shown the condition s0 = 0.5 completely resolves the problem and
results almost have negligible dissipation/dispersion error (black quad lines). We

also performed the numerical solution with a refined operator nS = 2000. As shown,
the refined solution (diamond lines) doesn’t affect the accuracy.

58

0 1 2 3 4 5 6 7 8 9 10
x 10

6

0.5

1

1.5

2

2.5

3

3.5

t

u

ode45 12052829 points
DPI implicit 700 Points
DPI implicit 2000 Points
DPI implicit 2000 Points− s

0
=0.5

DPI implicit 700 Points− s
0
=0.5

4.4 4.45 4.5 4.55 4.6 4.65 4.7

x 10
6

1.8

2

2.2

2.4

2.6

2.8

3

F
igu

re
3.4.3:

A
com

p
arison

b
etw

een
s
0
=

0
an

d
s
0
=

0.5
con

d
ition

s
for

C
F
L
=

10,000,000.

59

The performance analysis

To do a performance analysis, we derived the computation time using system clock
and results are compared in Table(3.2). Please run the code () in appendix () to
validate the result on your machine.7. The results are also visualized in fig.(3.4.4)

for better understanding. As shown, for small CFL numbers, explicit DPI is more
efficient than implicit one while ode45 is the most efficient scheme. The reason

that explicit DPI is more efficient than implicit version is that there is no matrix
inversion in the explicit algorithm. At CFL ≈ 13, the explicit and implicit DPI

reaches to equality8. This is while ode45 is more efficient than both in this range of
CFL number. At CFL ≈ 11500 we reach to an equality point for ode45 and Implicit

DPI. 9 For large CFL numbers CFL → ∞, the time required for implicit method to
converges remains constant because the size of integrator operator is kept constant.
From the computational performance point of view, at CFL = 10,000,000, the implicit

DPI solution is obtained in 4.036114 Sec. while ode45 finish in 1.412809e+04 Sec.
or 3.92 hours! This is a excellent result to show that the method is scalable in the

sense of speed-accuracy trade-off. Also,for CFL = 10,000,000, implicit DPI is 3500.42
times more efficient than ode45 according to the Performance Ratio.

CFL Explicit DPI Implicit DPI ode45 Performance Ratio10

0.1 1.643400e-01 1.360939e+00 3.821070e-01 2.81e-01
0.3 2.236190e-01 1.642657e+00 4.430200e-02 2.70e-02
0.7 2.922300e-01 1.902119e+00 7.128000e-03 3.75e-03
1 3.482880e-01 2.157056e+00 7.039000e-03 3.26e-03
10 1.222615e+00 3.510419e+00 7.373000e-03 2.10e-03
100 9.059893e+00 4.020598e+00 1.940200e-02 4.82e-03
1000 NA 4.037519e+00 1.643580e-01 4.07e-02
10,000 NA 4.024909e+00 1.652751e+00 4.11e-01
100,000 NA 4.055230e+00 1.779778e+01 4.39
1000,000 NA 4.335284e+00 2.922660e+02 67.42
10,000,000 NA 4.036114e+00 1.412809e+04 3500.42

Table 3.2: Timing obtained for different methods by MATLAB tic-toc timer. All values are in the
Seconds. Run Program () in Appendix () in your machine to get timing in your machine.

7We note that since the timing is machine-dependent, we improvised the non-dimensional number Performance

Ratio which is the ratio of elapsed time of ode45 to the elapsed time required for DPI implicit to solve the same CFL
number. Thus the timing results will be different on different machines but the Performance Ratio (Table(3.2)) is
universal meaning that it is almost the same on arbitrary hardware.

8This logically means the time required for Picard iterations with higher stability number r (more iterations) in
explicit DPI is equal to the time required for matrix inversion and Picard iterations with smaller stability number (less
iterations) in implicit DPI.

9The time required for matrix inversion and Picard Iterations in implicit DPI is equal to the computation time
required for ode45 to march with very small time-steps due to stability.

60

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−4

10
−2

10
0

10
2

10
4

10
6

CFL

T
im

e
in

 s
ec

on
ds

Explicit DPI
Implicit DPI
ode45

Figure 3.4.4: Visualization of timing presented in Table (3.2).

Conclusions and Observations from the linear case eq.(3.49)

The numerical solution presented in this section validates the second and the fourth

statements of implicit DPI properties postulated in table (3.4). It shows that the
implicit DPI remains unconditionally stable at large CFL. Also it proves that all

physical scales are captured in CFL = 10,000,000 because the dispersion and dissi-
pation errors are almost zero (see black quads in fig.(3.4.3)) through the entire time
and there is no increasing attenuating (dissipation) over the time. This spectacular

result is a giant motivation for application of the method in high-resolution sim-
ulations (like Turbulence and Aeroacoustics) because the numerical method is not

dependent on grid scale (CFL number) nor it dependents on physical scales!!! This
might be contradictory with classical numerical analysis at the first glance but let us

consider the logical reason behind the curtain.
We start by considering the conceptual block diagram of general explicit time

marching algorithms in fig.(3.4.5). This include Runge-Kutta schemes, Euler ex-

plicit, error-corrector schemes and etc. As shown the solution at the next step is
computed merely based on the solution provided in the previous step leading to for-

mation of numerical amplification coefficient “A” that changes the amplitude of the
solution depending on the range of temporal integration and the order of accuracy

of the scheme. This is practically unacceptable in Turbulence/Aeroacoustics as seen
my many experiments [][][][][][] because the high-frequency spectrum arising from a

turbulent flow will eventually (as depicted in the figure) loose all spectral information
and the final solution is not worthwhile of any physical correlation. For the implicit
schemes, we have exactly the same block diagram except the arrows are replaced

with double sided ones. In this case, we will have a amplification (dissipation)
error arising from linearization of residual between points. Therefore, the

61

same analysis regarding the dissipation error applies to the implicit time-marching
schemes as well.

Figure 3.4.5: Conceptual block diagram of general family of explicit time-marching schemes. The
corresponding block diagram for implicit time marching schemes is obtained by replacing the arrows
with two ended arrows.

Now we pay attention to the block diagram of Picard iteration algorithm in

fig(3.4.6). As shown, the arrows direction changes to the direction of the iteration
space (vertical) where an initial rough solution is fed into the initial iteration at the

bottom and it evolves until it eventually converges to the final solution at the top. As
shown, this time another amplification factor “A′” appears because of the fact that
solution at each iteration depends on the previous iterations. But we should note

that according to the convergences theorem (I) and since the amplification appears
in the iteration space (not time), “A′” converges to unity at the final iteration so it

doesn’t dissipate and degrade the final solution. This trend is graphically illustrated
using small artistic plots of high-frequency signal that evolves from a very crude

initial approximation (at the first iteration) to a error free rich spectrum solution
at iteration N . Therefore between two time steps (see horizontal directions in the

figure), there is no linearization and amplification/dissipation factor. We summarize
these conclusions in the following postulate:
Postulate I: The non-dissipative property of implicit DPI schemes

For a time dependent PDE in the most general case (2.12), assume that

• The Jacobian of residual f is always negative, i.e., for j = 1 . . .H, we have
∂f(x0)
∂βj

≤ M < 011 where M is a negative upper bound for all x0.
12

11for definition of f please refer to Theorem II on page 31.
12This means that for the given ICs/BCs, (2.12) doesn’t have limit cycle and all nonlinear effects vanish after a

particular time scale determined by upper bound M. Note that ∂f(x0)
∂βj

with variable sign (positive and negative)

creates a self-inductive chaotic source. Please refer to Van der Pol oscillator for more information.

62

• the residual f (x) is calculated accurately so that the spatial discretization error
is negligible.

Then the Implicit Discrete Picard Iteration defined in eq.(3.15) converges without
amplification factor (dissipation error). In this case DPI is independent of both grid

scale (CFL number) and physical scale (time step).

Figure 3.4.6: Conceptual block diagram of general family of DPI schemes. The corresponding block
diagram for implicit DPI is obtained by replacing the arrows with two ended arrows.

Let us analyze the conditions given in postulate (I) in more details. It states

that ∂f(x0)
∂βj

≤ M < 0 because otherwise, the operator
[
Γ̄
]
(defined in (2.22)) will

have a time varying eigen-structure which some of the eigen-values may fall in

the instability region r = (1, (a+ b) / (a− b)) of DPI method. Furthermore, the
convergence of DPI for nonlinear PDE (2.12) is proven in Theorem II (page (31))
using linearization of residual f over a small time-step ∆t whereas for large time

steps the DPI series may or may not converge in general. However if we assume that

63

f is nonlinear but ∂f(x0)
∂βj

≤ M < 0 , and M < 0, then it is easy to show (using basic

inequalities) that the partial summation used in DPI always converges for arbitrary

time step.13

In addition, Postulate (I) requires that f (x) or residuals must be calculated ac-

curately because otherwise, from a conceptual point of view, the speed of waves are
calculated incorrectly resulting in an initial shift in numerical solution and hence for

large time steps, the numerical solution will have a major shift error14 resulting from
summation of all small shifts over the long period of time.

Postulate (I) is shared between the second and the fourth statement of table(3.4).

To further validate this crucial postulate, we bring additional examples and numerical
test cases in following sections.

3.4.2 Nonlinear ODEs

In this section, we consistently modify eq.(3.49) to make it an appropriate model to
study nonlinear equations. If we replace constant c with −u 15 we readily obtain

d

dt
u (t) = R(u, t) = −u2 + 2u+ a1 sin

(
t

a2

)

,

u (0) = u0 (3.52)

which is a nonlinear ordinary differential equation. The analytical Jacobian of

(3.52) is simply given as

∂R

∂u
= −2u+ 2 (3.53)

which is negative according to postulate (I) to make the system physically stable

without any nonlinear effect as t → ∞. Equation (3.52) is solved using the same
set of constants used in Sec.(3.4.1) for linear eq.(3.49). In this case we use s0 = 0.5

and ”∆t” like previous test case is based on linear constant c as ∆t = CFL/|c|.
First to validate that Implicit DPI (the partial sum) converges for nonlinear case we

choose an operator with size nS = 700 and CFL = 100,000. The numerical solution
is done suing ode45 and implicit DPI. As shown in fig.(3.4.7), the implicit DPI is
in excellent agreement with ode45. It resolved the minimum point in the middle of

the figure accurately. It is important to notice that the oscillatory behavior of ode45

13the proof is easy and is left to the reader.
14dispersion error
15This is done exactly analogous to linear and nonlinear Burgurs equation for PDEs.

64

exhibited in the previous section is again repeated here for nonlinear case. We have
zoomed two regions on the left and right. In all cases the implicit DPI has excellent

agreement with the ode45 method.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

u

CFL = 100000.0,r=7.153076e+01

ode45− 244089 points, time = 3.753846e+01 (s)
DPI implicit− 700 points, time = 4.813622e+00 (s)

0.95

1

1.05

2.195

2.2

2.205

2.21

2.215

2.22

2.41

2.412

2.414

2.416

2.418

Figure 3.4.7: The comparison between ode45 and implicit DPI for nonlinear ODE (3.52). The inte-
gration operator size is nS = 700.

To validate the conclusions and observations regarding the physical-scale indepen-

dency of implicit DPI (given in Postulate I) for nonlinear case which was previously
validated for linear ODE, here we perform a series of numerical solutions by selecting

giant time step and reducing the number of points in time to show that the implicit
DPI remain accurate regardless of the time step (physical scale).

The results are plotted in fig.(3.4.8). As shown, solution obtained only with four

points in time (at the bottom) is exactly on the curve and is equal to the result
obtained by 400 points in time (shown at the top). Interestingly the computation

time of implicit DPI is 1.26e-2 (s) while the same result is obtained in 3.8e1 (s) using
ode45.

65

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

u
n

S
 = 400

ode45− 244089 points, time = 3.806982e+01 (s)
DPI implicit− 400 points, time = 1.243672e+00 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

u

n
S
 = 100

ode45− 244089 points, time = 3.813887e+01 (s)
DPI implicit− 100 points, time = 2.437480e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

u

n
S
 = 50

ode45− 244089 points, time = 3.750005e+01 (s)
DPI implicit− 50 points, time = 1.350080e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

u

n
S
 = 10

ode45− 244089 points, time = 3.777548e+01 (s)
DPI implicit− 10 points, time = 1.811300e−02 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

u

n
S
 = 4

ode45− 244089 points, time = 3.799116e+01 (s)
DPI implicit− 4 points, time = 1.259200e−02 (s)

Figure 3.4.8: The accuracy of implicit DPI for nonlinear case when giant time steps are taken. The
physical-scale independency of the algorithm is clearly visible.

66

3.4.3 Linear System of Ordinary Differential Equations

Practical applications usually involve solving system of differential equations that
are stiff, high-frequency and strongly coupled. We are going to pose a system of
ODEs which mimics the same properties. In this section we solve a linear system of

ordinary differential equations to investigate the validity of Postulate (I) described in
page 62 in the previous section for DPI method. Here we chose the following system

d

dt
u1(t) = −u1(t) + 2u2(t) + u3(t) + a1 cos

(
t

a2

)

d

dt
u2(t) = −3u1(t)− 40000u2(t)− u3(t) + a1 sin

(
t

a2

)

d

dt
u3(t) = −0.51u1(t)− 4u3(t) + 4a1

∣
∣
∣
∣
sin

(
t

a2

)∣
∣
∣
∣

(3.54)

or in the space-state form below

d

dt
u = R (t) = Au+ b (3.55)

where

u =





u1(t)

u2(t)
u3(t)



 , A =





−1 2 1

−3 −4000 −1
−0.51 0 −4



 , b = a1








cos
(

t
a2

)

sin
(

t
a2

)

4
∣
∣
∣sin

(
t
a2

)∣
∣
∣








(3.56)

and the Jacobian is easily obtained by differentiating residuals in (3.55) with respect
to u as follows

d

du
R (t) = A (3.57)

Eigen-value decomposition of the coefficient matrix A shows that all eigen-values are

negative, i.e.

Λ =





-3999.99849956057 0 0
0 -1.18241605588794 0

0 0 -3.81908438355077



 (3.58)

thus the system (3.55) is physically stable which means that after a time constant
we can easily observe numerical instability (if exists). In addition, we should note

that the magnitude of one of the eigen-values is considerably larger than others which
means that the system of differential equations (3.54) is stiff. Also, the system of

67

equations (3.55) has an adjustable frequency wave-generator source term b which is
an extension to the form presented in scalar ODE (3.49). Here we apply the implicit

DPI of eq.(3.15) exactly similar to the form which was applied to scalar ODE (3.49)

except all entries in integration operator S, Jacobian matrix ∂R(t)
∂t

, residual matrix

R and solution vector u are replaced with block matrices of size 3× 1 or 3× 3. For
example for integration matrix which was originally proposed in (1.6) for scalar case,
if all entries are multiplied by sub-block identity matrices with the size equal to the

number of equations (here 3× 3) we will have

S =


























s0





1
1

1





s1





1

1
1



 s2





1

1
1





s1





1

1
1



 s2





1

1
1



 s3





1

1
1





...
...

... . . .

s1





1

1
1



 s2





1

1
1



 s3





1

1
1



 · · · snS





1

1
1






























(3.59)

which is integration operator for system of linear ODEs (3.54) consistent with implicit

DPI formulation (3.15). Similarly, for solution vector u we one can write

u =








u |t1
u |t2
...

u |tnS







→ u =

























u1

u2

u3





t1



u1

u2

u3





t2
...





u1

u2

u3





tnS





















(3.60)

where on the left is a solution vector containing the values of scalar u at various times
while on the right, the solution vector contains the values of vector u = [u1, u2, u3]

T

68

at various times. The scalar-to-vector transformation can be implemented easily in
programming using sub-block substitution or using Kronecker matrix product as will

be discussed in Chapter (4).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

t

u

u[1]

ode45− 95 points, time = 3.408950e−01 (s)
DPI implicit− 50 points, time = 1.132430e−01 (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

t

u

u[2]

ode45− 95 points, time = 3.408950e−01 (s)
DPI implicit− 50 points, time = 1.132430e−01 (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

t

u

u[3]

ode45− 95 points, time = 3.408950e−01 (s)
DPI implicit− 50 points, time = 1.132430e−01 (s)

0 1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

t

u

u[1]

ode45− 119 points, time = 3.338430e−01 (s)
DPI implicit− 50 points, time = 1.171940e−01 (s)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

t

u

u[2]

ode45− 119 points, time = 3.338430e−01 (s)
DPI implicit− 50 points, time = 1.171940e−01 (s)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

t

u

u[3]

ode45− 119 points, time = 3.338430e−01 (s)
DPI implicit− 50 points, time = 1.171940e−01 (s)

Figure 3.4.9: The accuracy of implicit DPI when giant time steps are taken for system of linear
ODEs. The physical-scale independency of the algorithm is clearly visible. For a scalar ODE refer
to fig.(3.4.8). (TOP Threes) u1, u2, u3 corresponding to CFL = 1. (BOTTOM Threes) u1, u2, u3

corresponding to CFL = 10.

69

Here we use numerical values a′ = 0.8, b′ = 0.2, eDPI = 1.e−6, a1 = 1.0, a2 = 10000
and nS = 50. Hereafter we use s0 = 0.5 unless it is stated explicitly. The results are

shown in figs(3.4.9), (3.4.10) and (3.4.11) for a range of CFL numbers.

0 100 200 300 400 500 600 700 800 900 1000
0.8

0.9

1

1.1

1.2

t

u

u[1]

ode45− 136 points, time = 3.422170e−01 (s)
DPI implicit− 50 points, time = 1.081020e−01 (s)

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

t

u

u[2]

ode45− 136 points, time = 3.422170e−01 (s)
DPI implicit− 50 points, time = 1.081020e−01 (s)

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

t

u

u[3]

ode45− 136 points, time = 3.422170e−01 (s)
DPI implicit− 50 points, time = 1.081020e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

−0.5

0

0.5

1

1.5

t

u

u[1]

ode45− 236 points, time = 3.458670e−01 (s)
DPI implicit− 50 points, time = 1.170130e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−0.5

0

0.5

1

t

u

u[2]

ode45− 236 points, time = 3.458670e−01 (s)
DPI implicit− 50 points, time = 1.170130e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−0.5

0

0.5

1

t

u

u[3]

ode45− 236 points, time = 3.458670e−01 (s)
DPI implicit− 50 points, time = 1.170130e−01 (s)

Figure 3.4.10: Continued from fig.(3.4.9). (TOP Threes) u1, u2, u3 corresponding to CFL = 1000.
(BOTTOM Threes) u1, u2, u3 corresponding to CFL = 100000.

70

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

1.5

t

u

u[1]

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−0.5

0

0.5

1

t

u

u[2]

ode45− 1175 points, time = 6.476690e−01 (s)
DPI implicit− 50 points, time = 1.107790e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−0.5

0

0.5

1

t

u

u[3]

0 1 2 3 4 5 6 7 8 9 10

x 10
7

−1

−0.5

0

0.5

1

1.5

t

u

u[1]

ode45− 104062 points, time = 3.300277e+01 (s)
DPI implicit− 50 points, time = 1.038290e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
7

−0.5

0

0.5

1

t

u

u[2]

ode45− 104062 points, time = 3.300277e+01 (s)
DPI implicit− 50 points, time = 1.038290e−01 (s)

0 1 2 3 4 5 6 7 8 9 10

x 10
7

−0.5

0

0.5

1

t

u

u[3]

ode45− 104062 points, time = 3.300277e+01 (s)
DPI implicit− 50 points, time = 1.038290e−01 (s)

2.23 2.24 2.25 2.26 2.27 2.28

x 10
7

0.6

0.8

1

1.2

t

Figure 3.4.11: Continued from fig.(3.4.10). (TOP Threes) u1, u2, u3 corresponding to CFL = 1000000.
(BOTTOM Threes) u1, u2, u3 corresponding to CFL = 10000000.

According to fig.(3.4.9), for CFL = 1 and CFL = 10, the implicit DPI is in good

agreement with ode45 except near initial value which has a deviation from ode45.
This was discussed earlier. For CFL = 1000 and CFL = 100000, (fig.(3.4.10)) we
also reach to the same conclusion. As shown, sharp gradients are captured accurately

near cusp points. In fig.(3.4.11) we again see interesting results. The solution is so

71

CFL DPI implicit ODE 45 Performance Ratio
10 1.17E-01 3.34E-01 2.85
1000 1.08E-01 3.42E-01 3.17
100000 1.17E-01 3.46E-01 2.96
1000000 1.11E-01 6.48E-01 5.85
10000000 1.04E-01 3.30E+01 317.86

Table 3.3: The performance analysis of implicit DPI when applied to linear system (3.54). Timing is
obtained using Matlab tic-toc function which utilizes system clock.

high-frequency in the given time interval that we had to zoom particular regions to
show the accuracy of DPI.

As shown, for CFL equal to ten millions, the DPI solution (blue circles) seem to
be scattered. However, when zoomed enough, we see that they are exactly on the

ode45 curve. This is surprising because according to Table (3.4.3), although ode45
algorithm leads to the same result for CFL = 10,000,000, it is 317.86 times more

expensive than Implicit DPI.

72

Chapter 4

Applying implicit DPI to
multi-dimensional PDEs in Structured
Formulation

In chapter (3) we developed the implicit form of DPI (originally developed in Chapter
(1) in the explicit form) where we applied it to ordinary differential equations. The

results validated the superior efficiency and accuracy of this approach. Particularly,
it was pointed out in Postulate (I) that (under some conditions that usually exist)

the implicit DPI method removes dissipation error from time-dependent solution of
differential equations making the numerical method independent of physical scales.

In this chapter we proceed to apply the implicit DPI Iteration algorithm (3.15) to the
system of PDEs in structured space-time in exactly similar way that we did before.

In Sec.(4.1) of this chapter, we first extend the rearrangement operator (introduced

in Sec.(2.1)-eq.(2.4)) to multidimensional structured discrete space-time. For
unstructured discrete space-time the original operator (2.4) is more appropriate and

will be considered in depth in the next chapter. After extending the rearrangement
operator, we will be able to consistently discretize any spatial operator in a structured

multidimensional space using basic one-dimensional operators. For example a multi-
dimensional Divergence operator will be easily constructed using one-dimensional
differencing for first derivative and a couple of rearrangements as will be discussed

in detail in Sec. (4.2). Then we attack a general conservative PDE in Sec.(4.3)
using the spatial discretization obtained in Sec. (4.2) and implicit DPI formulation

proposed in eq.(3.15). As a result a numerical closed form solution is obtained for
general class of linear Partial Differential Equations with arbitrary initial/boundary

conditions for the first time. This is actually a particular case of nonlinear implicit
DPI solution when the Jacobians are constant. The ultimate generality obtained in

this approach is tested for some special cases of multi-dimensional convection and
results are compared with theoretical values.

73

4.1 Rearrangement operators for multidimensional structured

discrete space-time

A multidimensional structured space-time is usually defined as a discrete space-time

with constant number of points in all dimensions. For continuous vector field

~u = u (1 . . . y, x1, x2, . . . , xz−1, t) (4.1)

defined on a z-dimensional continuous space-time with ‘y’ number of vector compo-
nents, we can always represent it in structured form

u = u (1 . . . y, 1 . . .N1, 1 . . .N2, . . . , 1 . . .Nz) (4.2)

where the set of constants N1,N2,. . .,Nz are the number of points in each dimension
and z is the number of space-time dimensions. Evidently this is a structured repre-
sentation of a discrete space because it includes both values and connectivity map

together. For example for a three dimensional space-time (two-dimensional space),
the value of the third vector component at point (x=1,y=1,t=3) in space-time is

u3 (1, 1, 3) = u (3, 1, 1, 3) and also we can extract all surrounding points without any
additional information. This is while for unstructured discrete space, we represent

spatial nodal information based on the node number which is a global value (as we
did in eq.(2.1)) and we still need additional matrix maps for nodes connecting to a

particular node in space.
Equation (4.2) is actually a multidimensional tensor which can be programmed

easily using multi-dimensional array u[y][N1][N2]...[Nz]. Instead of doing that, we

prefer to represent space-time tensor u in a nested column format to make sure
that the formulation for multidimensional structured PDEs is perfectly consistent

with eq.(3.15) where we used a column vector. Also, using nested column approach
makes it easy to develop appropriate rearrangement operators which are vital tools

in obtaining generic discrete operators like Divergence and Laplacian.
We represent the multidimensional tensor u[y][N1][N2]...[Nz] (eq.(4.2)) in a col-

umn such that inner dimensions are nested by outer dimensions successively. That

means we first write the most inner dimension, i.e. u[1...y][1][1]...[1] in a vertical
column. This is done while all other dimensions are freezed to 1. Then the same

procedure is repeated for u[1...y][2][1]...[1] until the second dimension reaches to N1,
i.e. u[1...y][N1][1]...[1]. We collect these columns one after another in vertical form.

In this case it is easy to observe that the sub-columns formed by inner indices 1...y
are nested by the big outer column formed by changing the outer indices 1...N1. This

procedure is repeated until all indices are varied over their ranges. The result is a

74

giant single column containing all sub columns corresponding to inner dimensions.
It should be note this giant column has the dimension of (y ×N1 ×N2 . . .×Nz, 1).

Figure 4.1.1: The graphical representation of the general vector field u over z-dimensional structured
discrete space-time.

To facilitate the understanding of nested column format which might be confusing

at first, we brought it in fig.(4.1.1) where on the left is the data view of z-dimensional

75

vector field u in nested column format and on the right is the grid view of the same
concept. A shown, for the first point in the bottom corner, the value of vector field at

that point say [u111...1, u211...1, . . . , uy11...1]
T appears. This is the first sub-column on

the top of data view on the left. Moving in the N1 direction1, we obtain the value of

the vector field at the second point, i.e. [u121...1, u221...1, . . . , uy21...1]
T. Note that the

second index which belongs to N1 direction is incremented. We continue moving in

N1 direction until we meet the final value [u1N11...1, u2N11...1, . . . , uyN11...1]
T. The set of

vectors (points) obtained so far form a one-dimensional discrete space (line) which is

highlighted using dotted green lines on the grid view on the right. The corresponding
column vector on data view on the left is also highlighted using the same line. For the

next point we must take a new point [u112...1, u212...1, . . . , uy12...1]
T in the N2 direction

(as the start point) and repeat the same procedure in the N1 direction until we

reach to the final value [u1N12...1, u2N12...1, . . . , uyN12...1]
T. Actually, this is another one-

dimensional discrete space (line). Doing so we collect all one-dimensional discrete

spaces (lines) in N1×N2 dimension. This is graphically visualized using a dotted red
line on the grid view (right) and corresponding column vector is also shown similarly

on the data view (left). Thus the column enclosed in red line on the left is a (N1×N2,
1) column vector which represents a two-dimensional discrete space (plane) similar

to two-dimensional matrix u[N1][N2] but arranged vertically. Continuing the same
procedure we move over planes in vertical direction N3 to form volumes and we move
over volumes to form hyper-volumes and so on. The general multidimensional space

thus can be uniquely represented using a single column without any ambiguity.
We also note that we always moved in the N1 direction as the primary direction.

This is the direction of initial arrangement by default. However, when doing differen-
tiation or any linear operation that depends on direction, we should rearrange data

in that direction using rearrangement operators. After operation, the data should
be returned back to initial arrangement.

Please note that in Sec.(2.1) where we discussed unstructured discrete space-time
as a basis for Theorem II, we only had two direction 1 and 2 where 1 belonged to
space (nodes) and 2 belonged to the time direction. Therefore we only needed to find

single rearrangement operator Ω21 to rearrange data between these two directions
when integration in time was performed. However, in this section we have direct

control over all spatial and temporal directions. In particular, we are interested
here to take derivative in all spatial-temporal directions simultaneously and sum-up

the result to form numerical Divergence. Therefore we need a set of rearrangement

1which is the direction of principal axis x1.

76

operators Ω21, Ω31, ..., Ωz1 to rearrange data in all possible directions.
To find the the general rearrangement operator2 Ωx1 where 2 ≤ x ≤ z we go back

and take a second look at eq.(2.4). If we replace ones with Iy×y and Nnodes =
∏x−1

i=1 Ni

and Nt = Nx, we can easily find the rearrangement operator for rearranging direction

1 to direction x analogous to the one given in eq.(2.4). Thus if the direction x is the
last dimension in the discrete structured space, i.e. x=z, then Ωx1 is obtained using

the mentioned transformation, otherwise for case x < z, we should put lower dimen-
sional rearrangement operator with size

∏x
i=1Ni on the main diagonal of a

∏z
i=x+1Ni

matrix to find the corresponding higher-dimensional operators. We implemented this

concept using an efficient recursive algorithm in Listing (4.1). Since there are too
many unnecessary zeros in rearrangement operator, we use sparse matrix storage.

Listing 4.1: The general rearrangement operator from initial direction 1 to direction 1 < x ≤ z.

1 %The following generates the [BLOCK] rearrangment operato r in general case
2 function out = OMEGAx1(N,y,x)
3 %N = containes an array of dimension of the space [N1 N2 ... Nz]
4 %so z = length(N);
5 %y = number of equations (variables) assigened to each node
6 %x = the desired dimension to be transferred
7

8 %Computing the number od dimensions of the space
9 z = length(N);

10 if (x == z)
11 prodz 1 = prod(N(1:(z −1)));
12 prodz = prod(N(1:(z)));
13 Omegax1 = sparse(1:prodz,1:prodz,0); %The final dims of the operator
14 j = 0;
15 k = 1;
16 for i = 1:prodz
17 Omegax1(i,j * prodz 1+k) = 1;
18 j = j + 1;
19 if (rem(i,N(z)) == 0)
20 j = 0;
21 k = k + 1;
22 end
23 end
24 out = Omegax1; %returning the operator
25

26 else
27 prodx1 z = prod(N((x+1):z));
28 Omegax1 = cell(prodx1 z,prodx1 z);
29 prodx = prod(N(1:x));
30 Omegax1(:,:) = {sparse(zeros(prodx)) };
31 diag Omegax1 = OMEGAx1(N(1:x),y,x); %recursion
32 for i = 1:prodx1 z
33 Omegax1(i,i) = {diag Omegax1}; %putting on main −diag
34 end

2for x=1 we have Ω11 = I which means that direction 1 is already rearranged in its direction.

77

35 out = cell2mat(Omegax1); %returning the operator
36 end

4.1.1 Sample Application: Multidimensional Differentiation

In page (28) we posed the question ‘How can we compute cross derivative ∂
∂t
u(x, t)

using matrix multiplication Dtu ?’. It was explained in eq.(2.3) in that section that

the multidimensional differentiation matrix in the ‘x = x1’ direction, i.e. Dx is made
of blocks each one corresponding to one-dimensional differentiation matrix. Say

Dx1
=








1
∆x1

[D]N1×N1
1

∆x1
[D]N1×N1

. . .
1

∆x1
[D]N1×N1








= 1
∆x1








[D]

[D]
. . .

[D]








(4.3)

When multiplied by discrete space u which is originally in the x1 direction, it

gives

Dx1
u =








1
∆x1

[D]N1×N1
1

∆x1
[D]N1×N1

. . .
1

∆x1
[D]N1×N1















[u]N1×1

[u]N1×1
...

[u]N1×1








= 1
∆x1








[D]N1×N1
[u]N1×1

[D]N1×N1
[u]N1×1

...

[D]N1×N1
[u]N1×1








(4.4)

which is the derivative of entire field in the x1 direction. However for direction3

t = x2, we need to first rearrange the discrete space into the x2 direction, then take

the derivative using differentiation operator, say Dtu and then transfer the discrete
space back into the original arrangement using the inverse of rearrangement operator

3We often use the subscript ‘t’ instead of xz for the last dimension which accounts for time.

78

Ω12 = Ω21
−1. In other words,

∂

∂t
u(x, t) = Ω12 (DtΩ21u+ b2 +O (∆tp)) , (4.5)

where Dt is formed similar to (4.4) except N1 is replaced with the number of points

in time, i.e. N2 and grid spacing ∆x1 should also be replaced with ∆t. Inside the
parenthesis in eq.(4.5), the solution column u is first rearranged in the time direction

’2’ using operator Ω21 and then the numerical differentiation is performed using Dt.
In doing numerical differentiation, a vector containing boundary conditions appears

(Lomax et al. (2004)) for the second direction (time direction) which we showed it
using b2. Also a truncation error adds to the terms inside parenthesis to complete

numerical replacement of analytical differentiation. The final result is rearranged
back to initial arrangement (direction 1) using Ω12 = Ω21

−1. Equation (4.5) is
a compact representation of analytical-to-discrete transformation of differentiation

which has the advantage that if we want to increase the order of accuracy, we don’t
need to derive a new formula. All we need is to replace Dt with a high-order operator

without changing a single line of the code. Also if we want to change boundary values
we only change one-dimensional vector b2 locally and the rearrangement operator

automatically will take care of everything in multidimensional space. Note that for
periodic boundary conditions, the vector b is zero and the assumption of periodicity
is directly implemented in the differentiation matrix [D]. For example for non-

periodic upwind scheme for the jth block [D] on the main diagonal of multidimensional
differentiation matrix Dx1

we have,

1

∆x1
[D]N1×N1

=
1

∆x1












1
−1 1

−1 1
.

−1 1
−1 1












(4.6)

and for jth sub-block boundary condition vector [b]j we have,

[bj] =
1

∆x1












−bcj
0
0
...
0

0












(4.7)

79

which should be imposed for all dimensions except the first dimension, i.e. j= 2 . . .Nz.
Assembling the one-dimensional sub-blocks (4.6) and (4.7) in multidimensional form

(4.4), we obtain

∂

∂x1
u (x1, x2, . . . , xz) = Dx1u+ b1 +O (∆xp

11) (4.8)

Where Dx1
is multidimensional differentiation matrix in x1 direction obtained by

assembling one-dimensional differentiation matrix (4.6) in the sub-block form pre-
sented in (4.4). The multidimensional boundary condition b1 is also assembled in

similar way using one-dimensional form (4.7) as presented below,

b1 =








[b1]

[b2]
...

[bN2×···Nz
]








(4.9)

Instead of non-periodic 1D form in (4.6), for periodic upwind we can write,

1

∆x1
[D]N1×N1

=
1

∆x1












1 −1

−1 1
−1 1

.

−1 1

−1 1












, b1 = 0, (4.10)

similarly for second-order central differentiation we can write,

1

∆x1
[D]N1×N1

=
1

∆x1










0 1
2

−1
2

−1
2 0 . . .

. . .

. . . 0 1
2

1
2 −1

2 0










, (4.11)

80

or for fourth-order central scheme we have (from Trefethen (2001)),

1

∆x1
[D]N1×N1

=
1

∆x1
















. . . 1
12 −2

3
. . . − 1

12
1
12

. . . 2
3

. . .
. . . 0 . . .
. . . −2

3
. . .

− 1
12

1
12

. . .
2
3 − 1

12
. . .
















, (4.12)

For periodic boundaries we are interested in spectral methods because of their as-

tonishing accuracy and rate of convergence. In particular, we enjoy the following
spectral collocation,

1

∆x1
[D]N1×N1 =




















...
. . . 1

2 cot
3∆x1

2
. . . −1

2
cot 2∆x1

2
. . . 1

2 cot
1∆x1

2

0

−1
2 cot

1∆x1

2
. . .

1
2 cot

2∆x1

2
. . .

−1
2 cot

3∆x1

2
. . .

...




















, (4.13)

Note that we couldn’t bring the grid spacing out of the differentiation matrix. The

advantage of using eq.(4.13) in practice is shown in fig.(4.1.2). We chose a dummy
function u = exp (sin (x)) which has analytical derivative u = cos (x) exp (sin (x)).
We evaluated the numerical derivative using fourth-order matrix (4.12) and spectral

differentiation matrix (4.13). Please note that to reach to the machine zero accuracy,
fourth-order algorithm needs as least 10,000 points while the same result is obtained

using spectral algorithm with only 20 points! This spectacular result clearly demon-
strates superiority of spectral algorithms over conventional high-order algorithms.

For more detail please refer to Trefethen (2001).

81

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

N
1

er
ro

r

Convergence of fourth−order finite differences

N−4

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N
1

er
ro

r

Convergence of spectral differentiation

Figure 4.1.2: Left) The convergence of fourth-order 1D differentiation matrix eq.(4.12) versus Right)
Spectral collocation eq.(4.13) for different number of points in the first direction N1.(after Trefethen
(2001))

Here we bring code listings that we used in our implementation. Listing (4.2)
contains a sub program for calculating upwind differentiation matrix (eq.(4.10)).

Listing (4.3) contains sub program for calculating both fourth-order matrix (4.12)
and spectral collocation matrix (4.13). The type of the output is specified based on

the input switch named “jumper”. We will use this sub program in Sec.(4.3.2) for
multidimensional periodic convection problem.

Listing 4.2: m-code for first-order upwind scheme

1 %This function creates the first −order upwind derivative operator for a
2 %system of fluxes
3 %NOTE c, dx and other constants arising from discretization are used in
4 %the caller routine not here. Here is only the constant body o f the

82

5 %operator.
6 function D = upwind 1st(nD,y)
7

8 d = cell(nD,nD); %Allocating the final operator
9

10 %substituting all sparse cells with zero matrices so that ce ll2mat can work
11 for i = 1:nD
12 for j=1:nD
13 d{i,j } = zeros(y);
14 end
15 end
16

17 d{1,1 } = 1* eye(y);
18 %d{1,2 } = 1* eye(y);
19 for i=2:nD
20 d{i,i −1} = −1* eye(y);
21 d{i,i } = 1. * eye(y);
22 end
23

24 %The output derivative operator is complete now. Convertin g cell to matrix
25 D = cell2mat(d);

Listing 4.3: m-code for fourth-order and spectral differentiation matrix

1 %This function computes the one −dimensional derivative operator for a
2 %system of fluxes using different methods
3 %NOTE: use examine D.m to test various differentiation methods
4 function D = gen 1D diff(nD,y,h,jumper)
5 %inputs
6 %nD the outer −block size of the operator
7 %y the number of equations in the flux (size of inner block)
8 %h spacing
9 %jumper a switch to select appropriate method

10 % jumper = 1 = fourth −order central periodic
11 % jumper = 2 = spectral perodic based on toeplitz matrix
12

13 %output
14 %D the block −differentiation matrix in sparse matrix form
15

16 %the number of points in one −D space is N to be compatible with Spectral ...
methods in Matlab Book

17 N = nD;
18

19 %choosing appropriate differentiation method
20 switch jumper
21 case 1 %fourth −order central periodic
22 %%
23 %The following is copied from "p1.m" of Spectral methods in M atlab Book
24 % Construct sparse fourth −order differentiation matrix:
25 e = ones(N,1);
26 D = sparse(1:N,[2:N 1],2 * e/3,N,N) ...
27 − sparse(1:N,[3:N 1 2],e/12,N,N);
28 D = (D−D')/h;
29 case 2 %spectral perodic based on toeplitz matrix

83

30 %%
31 %The following is copied from "p2.m" of Spectral methods in M atlab Book
32 % Construct sparse fourth −order differentiation matrix:
33

34 % Construct spectral differentiation matrix:
35 column = [0 .5 * (−1).ˆ(1:N −1). * cot((1:N −1) * h/2)];
36 D = toeplitz(column,column([1 N: −1:2]));
37 end
38

39 %Converting D to sub −blocks for y dimension
40 d = cell(nD,nD); %Allocating the final operator
41 %substituting all sparse cells with zero matrices so that ce ll2mat can work
42 for i = 1:nD
43 for j=1:nD
44 d{i,j } = sparse(D(i,j) * eye(y));
45 end
46 end
47 %The output derivative operator is complete now. Convertin g cell to matrix
48 D = cell2mat(d);

In fig.(4.1.2) we demonstrated the fast convergence of spectral schemes to machine

zero based on the number of required spatial nodes. However it is also worthwhile to
examine the spatial resolution of spectral schemes as well. To do this, we evaluate

numerical derivative of the following vector function,

~u (x) =





cos (4x)

sin (4x) + 1
sin(x)



 , (4.14)

We choose the interval x = [0, 2π]. The first two entries of vector ~u in (4.14) are
selected to be high-frequency such that they possess four wave lengths per differen-

tiation interval. The last entry, i.e. sin(x) is the low-frequency component which
has only one wave length per x. We use the program given in Listing (4.3) to

generate fourth-order matrix operator (4.12) using switch ‘jumper=1’ and spectral
matrix (4.13) using switch ’jumper = 2’. The numerical differentiation is performed
with ten nodes (points) in space to assess the resolution of schemes. The analytical

derivatives are shown in fig.(4.1.3) and fig.(4.1.4) with solid line and numerical values
are shown with blue circles. According to fig.(4.1.3), it is evident that fourth-order

scheme performs well in resolving low-frequency component (du3/dx) however it has
substantial error when applied to high-frequency waves (du1/dx and du2/dx). How-

ever, in fig.(4.1.4) with the same number of points in the space, we see that spectral
scheme has excellent resolution for high-frequency components. Figures (4.1.3) and
(4.1.4) are generated using Listing (4.4).

84

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

Analytical d u
1
/dx

Numerical d u
1
/dx

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

Analytical d u
2
/dx

Numerical d u
2
/dx

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

x

Analytical d u
3
/dx

Numerical d u
3
/dx

Figure 4.1.3: Numerical differentiation using fourth-order matrix operator (4.12). N1 = 10.

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

Analytical d u
1
/dx

Numerical d u
1
/dx

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

Analytical d u
2
/dx

Numerical d u
2
/dx

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

x

Analytical d u
3
/dx

Numerical d u
3
/dx

Figure 4.1.4: Numerical differentiation using spectral matrix operator (4.13). N1 = 10.

85

Listing 4.4: m-code for generating comparison between fourth-order and spectral differentiating given
in figs. (4.1.3) and (4.1.4).

1 %examine D : examines the differentiating operator D before using in
2 %real problem
3 clear all;
4 clc
5

6 %constants here
7 L = 2* pi; %the period
8 nD = 10; %nomber of spatial nodes
9 n anal = 100; %number of spatial nodes for analytical solution

10 y = 3; %number of equations
11

12 %the spatial node distribution
13 dx = L/nD;
14 x = −L/2+(1:nD) * dx;
15 XX = −L/2+(1:n anal) * L/n anal;
16

17 %the target functions
18 y1 = cos(4 * x);
19 y2 = sin(4 * x)+1;
20 y3 = sin(x);
21

22 %The analytical differentiation of the target functions
23 dy1 = −4* sin(4 * XX);
24 dy2 = 4 * cos(4 * XX);
25 dy3 = cos(XX);
26

27 %allocating the solution vector in cells
28 U = cell(nD,1);
29

30 %filling −up the solution vector with target functions
31 for i = 1:nD
32 U{i } = [y1(i);
33 y2(i);
34 y3(i)];
35 end
36

37 %creating the differentiation operator
38 D = gen 1D diff(nD,y,dx,2);
39

40 DUdx = D * cell2mat(U);
41 DUdx = mat2cell(DUdx, y * ones(nD,1),1);
42

43 for i = 1:nD
44 temp DU = DUdx{i };
45 Dy1(i) = temp DU(1);
46 Dy2(i) = temp DU(2);
47 Dy3(i) = temp DU(3);
48 end
49

50 figure(1);
51 subplot(y,1,1);
52 plot(XX,dy1, 'k −' ,x,Dy1, 'o');
53 legend('Analytical d u 1/dx' , 'Numerical d u 1/dx');

86

54 subplot(y,1,2);
55 plot(XX,dy2, 'k −' ,x,Dy2, 'o');
56 legend('Analytical d u 2/dx' , 'Numerical d u 2/dx');
57 subplot(y,1,3);
58 plot(XX,dy3, 'k −' ,x,Dy3, 'o');
59 legend('Analytical d u 3/dx' , 'Numerical d u 3/dx');
60 xlabel('x');

To test the validity of (4.5), we study the following numerical example. Consider
three-dimensional scalar field

u (x, y, t) = sin (xy) t (4.15)

defined on (x,y,t) = ([0,1],[0,1],[0,1]). Here the initial (default) direction is x1 = x

and the second direction is x2 = y and the third is x3 = t. We want to find the

numerical equivalent for analytical operator
(

∂
∂x

+ ∂
∂y

)

(�). For differentiation in x1

we simply have

∂

∂x
u(x, y, t) = Dxu+O (∆yp1) (4.16)

For differentiation in ’y’, we note that, according to eq.(4.5),

∂

∂y
u(x, y, t) = Ω12 (DyΩ21u+ b2 +O (∆yp2)) , (4.17)

Adding up the lhs and rhs of (4.16) and (4.17), we can easily obtain

∂

∂x
u(x, y, t)+

∂

∂y
u(x, y, t) = Dxu+O (∆yp1)+Ω12 (DyΩ21u+ b2 +O (∆yp2)) , (4.18)

According to (4.15), u is zero for x=y=t=0. So we choose these faces to contain
boundary points and thus the boundary condition b2 is always zero. Also by removing

the order operator O () from eq.(4.18) we obtain
(

∂

∂x
+

∂

∂y

)

u(x, y, t) = Dxu+Ω12DyΩ21u = (Dx +Ω12DyΩ21)u, (4.19)

In other words,
∂

∂x
+

∂

∂y
= Dx +Ω12DyΩ21 (4.20)

One can readily extend (4.20) to three-dimensional differentiation as,

∂

∂x
+

∂

∂y
+

∂

∂z
= Dx +Ω12DyΩ21 +Ω13DzΩ31, (4.21)

87

or z-dimensional derivative

z∑

j=1

∂

∂xj

=
z∑

j=1

Ω1jDjΩj1,

Ω11 = I (4.22)

where D1 = Dx, D2 = Dy, D3 = Dz and so on.
A Matlab m-code is brought in Listing (4.5) which implements (4.19). It calcu-

lates operator Ω21 using Listing (4.1) and also it uses Listing (4.2) to obtain one-
dimensional first-order upwind matrices required for x and y directions. Note that

this may be done using a spectral differentiation matrix (will be introduced later)
only by calling another external function instead of Listing (4.2). At the core of

implementation we encounter with the following line,

Div = kron(eye(N2*N3),1/dx*D1) +

(OMEGA_21)^(-1)*kron(eye(N1*N3),1/dy*D2)*OMEGA_21;

It actually utilizes Kronecker matrix product to put differentiation block matrices
on the main diagonal of the parent matrix to make a multidimensional matrix op-

erator for differentiation. For example D1 is N1 by N1 matrix. The expression
“kron(eye(N2*N3),1/dx*D1)” puts 1

dx
D1 all over the main diagonal of a parent ma-

trix with size (N2 × N3) by (N2 × N3), so that the size of resulting block matrix is

(N1 ×N2 ×N3) by (N1 ×N2 ×N3).

Listing 4.5: The numerical implementation of eq.(4.19).

1 %This fuction creates and tests numerical divergence for sa mple discrete
2 %space
3 clear all;
4 clc
5 %defining ranges
6 x min = 0; x max = 1; y min = 0; y max = 1; t min = 0; t max = 1;
7 %number of points
8 N1 = 10; N2 = 10; N3 = 4;
9 %number of equations

10 y=1;
11 %spacings
12 dx = (x max − x min)/(N1 −1); dy = (y max − y min)/(N2 −1);
13

14 %creating rearrangement operator for 1 −>2
15 OMEGA21 = OMEGAx1([N1 N2 N3],y,2);
16 %creating one −dimensional upwind operators for differentiating in x and y
17 D1 = upwind 1st(N1,y);
18 D2 = upwind 1st(N2,y);

88

19 % Creating d/dx+d/dy
20 Div = kron(eye(N2 * N3),1/dx * D1) + (OMEGA 21)ˆ(−1) * kron(eye(N1 * N3),1/dy * D2) * OMEGA21;
21

22 %creating a dummy field and shifting it to make boundary cond itions b=0
23 x x=dx+linspace(x min,x max,N1);
24 y y=dy+linspace(y min,y max,N2);
25 t t = linspace(t min,t max,N3);
26

27 %filling the solution vector
28 for l=1:N3
29 for i=1:N1
30 for j=1:N2
31 u(j,1) = sin(x x(i) * y y(j)) * t t(l);
32 end
33 U(i,1) = {u};
34 end
35 UU(l,1) = {cell2mat(U) };
36 end
37 %calculating numerical divergence
38 DivU = Div * cell2mat(UU);
39 %calculating analytical divergence
40 for l=1:N3
41 for i=1:N1
42 for j=1:N2
43 v(j,1) = (y y(j) * cos(x x(i) * y y(j))+x x(i) * cos(x x(i) * y y(j))) * t t(l);
44 end
45 V(i,1) = {v};
46 end
47 VV(l,1) = {cell2mat(V) };
48 end
49

50 divV = cell2mat(VV);
51

52 %exporting to tecplot
53 divV = mat2cell(divV,N1 * N2* ones(N3,1),1);
54 DivU = mat2cell(DivU,N1 * N2* ones(N3,1),1);
55 for i=1:N3
56 divV {i } = mat2cell(divV {i },N1 * ones(N2,1),1);
57 DivU {i } = mat2cell(DivU {i },N1 * ones(N2,1),1);
58 end
59

60 fid = fopen('XY.tec' , 'w');
61 fprintf(fid, 'VARIABLES = "X", "Y", "T","Numerical" \n');
62 fprintf(fid, 'ZONE T="Num", I=%d, J=%d, K=%d F=POINT \n' ,N1,N2,N3);
63

64 for l=1:N3
65 tempU = DivU {l };
66 for j=1:N2
67 %tempV = cell2mat(divV(i));
68 tempUU = tempU{j };
69 for i=1:N1
70 fprintf(fid, '%e %e %e %e\n' ,x x(i),y y(j),t t(l),tempUU(i));
71 end
72 end
73 end
74

89

75 fprintf(fid, 'VARIABLES = "X", "Y", "T","Analytical" \n');
76 fprintf(fid, 'ZONE T="An", I=%d, J=%d, K=%d F=POINT \n' ,N1,N2,N3);
77

78 for l=1:N3
79 tempU = divV {l };
80 for j=1:N2
81 %tempV = cell2mat(divV(i));
82 tempUU = tempU{j };
83 for i=1:N1
84 fprintf(fid, '%e %e %e %e\n' ,x x(i),y y(j),t t(l),tempUU(i));
85 end
86 end
87 end
88

89 fclose(fid);
90 %end of program

The results are shown in fig.(4.1.5). Although very coarse grid (N1 = 10, N2 =

10, N3 = 4) is used and the differentiation matrix is first-order, the result are in good
agreement with analytical differentiation.

90

X

0.2

0.4

0.6

0.8

1
Y

0.2

0.4

0.6

0.8

1

T

0

0.2

0.4

0.6

0.8

1

X

0.2

0.4

0.6

0.8

1
Y

0.2

0.4

0.6

0.8

1

T

0

0.2

0.4

0.6

0.8

1

0.1

0.4
0.5 0.7

0.1

0.
3

0.
2

0.
3

0.5 0.5 0.6

0.1

0.3

0.
6

0.
8

0.50.
5

0.7
0.8 1 1.1

1 1.1

0.2

0.3

0.4

0.
5

0.
7

0.
8

0.3

0.
5

0.2

1.2 1.2

0.8
0.9 1

0.4

0.2

0.70.7 0.90.9
1

0.2
0.3

0.5
0.6

1.
1

1.
3

0.3

0.8

1
1.

1

0.2

0.3

0.6
0.5

1.3

0.1

0.2

0.4

0.1

0.7

0.6
0.7

0.
9

1.
2

1
1.

2

0.1

0.3

0.4

0.6

0.7

0.8

1.2
1.1

0.1

0.2

1.1
1.2

0.4

0.6

1.
3

0.1

11

0.6
0.7

11 1.3
1.2

0.7

0.90.8

1.1
1.2

0.1

0.3

0.1

0.2

0.3

0.5

0.6

0.9
0.8

0.9

1
0.9

1

1.2

1.1

0.8

0.3

1

0.1

0.4

0.2

1

1.2

0.6

0.7

0.5

0.9

1

1.2

1

1.2

0.2

0.3

1.11.1
1.2

0.6

0.3
0.3

0.5

0.9
1

1.3

0.4
0.5

0.8

1.3

1.1

0.9

0.1

0.6

0.8

0.6

1.3

1.1

0.9

1

1.2

1.3

0.5

0.9

0.7

0.6

1.1

1.3

1

1.1

0.5

0.6

0.4

0.7

1.2

1.3

1

1.2

1.3

0.6

1

1.1

0.6
0.6

1

1.2
1.3

0.3

0.5

0.9

1.3
1.2

1.3

0.7

0.8

1.1

0.7

0.9

0.9

1.2

0.9
1

1.2
1.3

0.70.8

1

1.2
1.21.2

0.6

0.
7

0.
80.
8

1.1

0.7
0.8

11

Figure 4.1.5: The numerical derivative ∂u
∂x

+ ∂u
∂y

for three dimensional scalar field u(x, y, t) = sin(xy)t

obtained using eq.(4.19). TOP: Two iso-surface, top is analytical derivative while bottom is the
numerical. BOTTOM: three-dimensional contours, solid is analytical- dashed is numerical. Please
note that only 4 points are used to discretize the field in the time direction.

91

4.2 Discretization of Spatial Operators

The spatial operator in Partial differential equations in conservative form is usually
a combination of Divergence and Laplacian which is called convection-diffusion from

the physical point of view. However, there are plenty of higher-order PDEs in com-
putational science and engineering like equations governing plasticity. Therefore to

include all cases in a single operator in a compact way, we will introduce a generic
linear differentiation operator in this section.

Let us start by considering the analytical operator ‘Divergence’ say,

Div. (~u) = ∇.~u =
∂uj

∂xj

(4.23)

Applying numerical divergence to a discrete space is analogous to applying analytical
divergence to continuous vector field ~u. One can write using (4.5) in consistent format

with (4.22)

[∇]u =
∑

j

Ω1j (DjΩj1u+ bj +O (∆xj
pj))

=
∑

j

(Ω1jDjΩj1)u+
∑

j

Ω1jbj +
∑

j

Ω1jO (∆xj
pj) , (4.24)

Where Dj is the discretization matrix of the first derivative in the ‘jth’ direction
and the column vector bj imposes boundary conditions required at the ‘j’ direction

(eq.(4.5)) and the last term is the truncation error. Note that in the inner parenthe-
sis in (4.24-top), we first computed the differentiation in ‘j’-arrangement and then

the result are taken back to original arrangement (direction 1) by left-multiplying
with rearrangement operator Ω1j as described completely before. The consistency
condition for numerical divergence (4.24) is,

lim
∆xj→0

[∇] = ∇, (4.25)

Therefore, in quickly discretizing equations we usually use [∇]u =
∑

j (Ω1jDjΩj1u+Ω1jbj)
by neglecting the truncation error unless in situations 4 that convergence or the ac-

curacy of the algorithm is sought. Similar expression can be written for Laplacian
operator

Div2.(~u) = ∇2.~u =
∂2uj

∂x2
j

(4.26)

4like Sec.(4.3)

92

just by replacing the first derivative differentiation matrix Dj in (4.24) with the
second derivative D2

j as follows
5,

[
∇2
]
u =

∑

j

Ω1j

(
D2

jΩj1u+ bj +O (∆xj
pj)
)

=
∑

j

Ω1jD
2
jΩj1u+

∑

j

Ω1jbj +
∑

j

Ω1jO (∆xj
pj) , (4.27)

Following the trend of discretization method shown in eqs.(4.24,4.27) and as a

generalization to Divergence and Laplacian, we consider the following arbitrary-order
derivative operator6,

Υ =
∑

i

∑

j

∂i

∂xj

(4.28)

When applied to vector field ~u it gives the combination of Divergence, Laplacian and
higher-order derivatives as follows,

Υ.~u =
∑

i

∑

j

∂i

∂xj

uj (4.29)

Or in the discretized form

[Υ]u =
∑

i

∑

j

Ω1j

(
Di

jΩj1u+ bij +O (∆xj
pij)
)

=
∑

i

∑

j

Ω1jD
i
jΩj1u+

∑

i

∑

j

Ω1jbij

+
∑

i

∑

j

Ω1jO (∆xj
pij) , (4.30)

Where Di
j is the discretization matrix for the i-th derivative of u in the j-th di-

rection and bij is the column vector imposing boundary conditions needed for the
i-th derivative of u in the j-th direction. Note that in special cases where we use
the assumption of periodic direction j, it means that the boundary condition vector

bij is no longer needed since the assumption of periodicity is implemented in the
differentiation operator Di

j itself. In addition for high-order spatial discretization,

the truncation error O (∆xj
pij) in (4.30) is practically zero. Therefore the generic

5The power ‘2’ used is not D2
j 6= Dj ×Dj but it shows that D2

j contains the coefficient of finite difference or spectral
discretization of the second derivative.

6Equation (4.28) reduces to Divergence for i = 1 and to Laplacian for i = 2.

93

operator [Υ] in this situation is abbreviated to

[Υ]u =
∑

i

∑

j

Ω1jD
i
jΩj1u (4.31)

Now we are ready to discretize a generalized conservative PDE using Discrete Picard
Iteration method.

4.3 General Structured Formulation

Let us consider the following ‘z-dimensional’ generalized conservative PDE7,

∂u

∂t
+ΥF = G (4.32)

Where u is the vector of conservative variables and F = [F1|F2| . . . |Fj| . . . |Fz−1] is

the flux tensor and Υ =
∑

i

∑z−1
j

∂i

∂xj
is the generalized derivative operator (defined in

eq.(4.29)) and G is a source term which only depends on solution vector u and time.
Equation (4.32) includes propagation phenomena (Acoustics, Electromagnetics, ...)
for i = 1 and it includes generic convection-diffusion phenomena (like Navier-Stokes

equation) for i = 2. Since we derive DPI scheme using residual-based integral form
of ODEs/PDEs, we first need to write (4.32) in the integral form below.

u = u0 +

∫ t

0

Rdt

R = −ΥF+G, (4.33)

where the residual R appears in the formulation to preserve the consistency with

previous sections. To find the DPI solution of (4.33) we use two different formulations
(1- Directly discretizing Υ. 2- Fully integrated in space-time.) which are presented

in the following sections.

4.3.1 Directly discretizing Υ

In this formulation we replace Υ in residual in eq.(4.33-bottom) with the fully dis-

cretized eq.(4.30) and then the integral equation (4.33-top) is discretized using im-
plicit DPI formulation (3.15). Substituting (4.30) into (4.33-bottom) we obtain

7z-1 spatial dimensions plus one temporal dimension = z dimensions.

94

R = −
∑

i

∑

j

Ω1jD
i
jΩj1Fij −

∑

i

∑

j

Ω1jbij −
∑

i

∑

j

Ω1jO (∆xj
pij) +G, (4.34)

From the implicit DPI formulation (3.15) we note that we still need the Jacobian

matrix. To obtain Jacobian, we simply take the derivative of (4.34) with respect to
u as presented below

∂R

∂u
= −

∑

i

∑

j

Ω1jD
i
jΩj1

∂Fij

∂u
+

∂G

∂u
, (4.35)

Interestingly, we note that there is no truncation error in Jacobian (4.35). Here

we repeat eq.(3.15) with these differences that the truncation error only represents
temporal error and the rearrangement operator in the time direction, i.e. Ωz1 is

reindexed to Ωt1;
(

I −
a′∆t

a′ + b′
Ω1t SΩt1

∂R

∂un

)

un+1 = (4.36)

u0 + ∆tΩ1t SΩt1

(

Rn −
a′

a′ + b′
∂R

∂un

un

)

+∆tΩ1t Si Ωt1Ri +O (∆tp)

Thus for the ‘z-dimensional’ space-time we have ‘z’ rearrangement operators {[Ω]11 =
I, [Ω]21, . . . , [Ω](z−1)1, [Ω]t1} which the first ‘z’ operators rearrange spatial data and

the last operator rearrange data in time. We first substitute ∂R
∂un

and Rn from (4.35)

and (4.34) into the parenthesis on rhs of (4.36), i.e.
(

Rn −
a′

a′+b′
∂R
∂un

un

)

leading to

Rn −
a′

a′ + b′
∂Rn

∂u
un = −

∑

i

∑

j

Ω1jD
i
jΩj1

(

F(n)ij −
a′

a′ + b′
∂Fij

∂un

un

)

−
∑

i

∑

j

Ω1jbij −
∑

i

∑

j

Ω1jO (∆xj
pij)

+ Gn −
a′

a′ + b′
∂Gn

∂un

un, (4.37)

Now, by substituting (4.37) and (4.35) into (4.36) we obtain
(

I −
a′∆t

a′ + b′
Ω1t SΩt1

(

−
∑

i

∑

j

Ω1jD
i
jΩj1

∂Fij

∂un

+
∂G

∂un

))

un+1 = (4.38)

u0 + ∆tΩ1t SΩt1






−
∑

i

∑

j Ω1jD
i
jΩj1(F(n)ij −

a′

a′+b′
∂Fij

∂un
un) -

∑

i

∑

j Ω1jbij −
∑

i

∑

j Ω1jO(∆xj
pij)+

Gn −
a′

a′+b′
∂Gn

∂un
un






+ ∆tΩ1t Si Ωt1Ri +O (∆tp) (4.39)

95

where
Ri = R (u0) (4.40)

Before simplifying (4.38), we define the total operator T as follows

Tij (�) = ∆t (Ω1t SΩt1)
(
Ω1jD

i
jΩj1

)
(�) = ∆t Ω1t SΩtjD

i
jΩj1 (�) (4.41)

We notice that Tij is a total operator which means that it includes differentiation in
space and integration in time simultaneously. Mathematically speaking, according

to rhs-(4.41) the operand (�) is first rearranged in the j direction in space (1 ≤ j ≤
(z−1)) using Ωj1 and then the ith derivative is taken using Di

j operator and then the

result is rearranged in the time direction ’t’ using Ωtj = Ωt1Ω1j and then integration
is performed in the time direction (zth direction) by the integration operator ∆t S

and the final result is rearranged back to the original arrangement ’1’. The analytical
analogous of Tij is ,

Tij (�) =

∫ ∆t

0

∂i

∂xj

(�) , (4.42)

Now, using total operator it is possible to abbreviate (4.38) as below

(

I +
a′

a′ + b′

∑

i

∑

j

Tij

∂Fij

∂un

−
a′∆t

a′ + b′
Ω1t SΩt1

∂G

∂un

)

un+1 = (4.43)

u0 +







−
∑

i

∑

j Tij

(

F(n)ij −
a′

a′+b′
∂Fij

∂un
un

)

−
∑

i

∑

j ∆tΩ1t SΩtjbij −
∑

i

∑

j ∆tΩ1t SΩtjO (∆xj
pij)+

(∆tΩ1t SΩt1)
(

Gn −
a′

a′+b′
∂Gn

∂un
un

)







+ ∆tΩ1t Si Ωt1Ri +O (∆tp) (4.44)

We notice that the total truncation error on rhs on (4.43) is composed of temporal
error and spatial truncation error in directions. We consider the total truncation

error appearing in eq.(4.43) by summing spatial and temporal truncation errors,

T.T.E = −
∑

i

∑

j

∆tΩ1t SΩtjO (∆xj
pij) +O (∆tp)

= O (∆tp,∆x1
p1,∆x2

p2, . . . ,∆xz−1
pz−1) (4.45)

We also define the constant column vector ū0 as

ū0 = u0 −
∑

i

∑

j

∆tΩ1t SΩtjbij +∆tΩ1t Si Ωt1Ri (4.46)

96

Note that ū0 depends only on values which are constant during Picard iteration.
It depends on initial value u0, the initial residuals Ri = R (u0) and the vector of

boundary conditions for all high-order derivatives in all spatial directions, i.e bij

which is merely a source term. Using (4.46) and (4.45), eq.(4.43) can be written as
(

I +
a′

a′ + b′

∑

i

∑

j

Tij

∂Fij

∂un

−
a′∆t

a′ + b′
Ω1t SΩt1

∂G

∂un

)

un+1 = (4.47)

ū0 −
∑

i

∑

j

Tij

(

F(n)ij −
a′

a′ + b′
∂Fij

∂un

un

)

+ (∆tΩ1t SΩt1)

(

Gn −
a′

a′ + b′
∂Gn

∂un

un

)

+O (∆tp,∆x1
p1,∆x2

p2, . . . ,∆xz−1
pz−1)

The above huge nonlinear system of iterative equations constitutes arbitrary order
accurate CFL-independent 8 DPI method for general nonlinear PDE (4.32) with

arbitrary IC/BC. Equation (4.47) is solved for un+1 iteratively until it converges to
the Picard convergence tolerance defined in eq.(3.51) in Sec.(3.4.1).

Numerical Closed-Form solution of General Linear conservative PDES

We notice that for linear flux Fij and linear source term G, we can find a Numerical

Closed-Form Solution for Arbitrary Conservative PDE given in (4.33) with arbitrary
IC/BC represented by column vectors Ri = R (u0) and bij respectively. For linear
flux and source term, we can write

Fij = Wiju

G = Qu (4.48)

and therefore the Jacobians are
∂Fij

∂u
= Wij

∂G

∂u
= Q (4.49)

Substituting (4.48) and (4.49) into (4.47) and choosing a′ = 1 b′ = 0 (fully implicit)

we will have,
(

I +
∑

i

∑

j

TijWij −∆tΩ1t SΩt1Q

)

u =

ū0 +O (∆tp,∆x1
p1,∆x2

p2, . . . ,∆xz−1
pz−1)

8Off course it is CFL-dependent but we can control parameter a′ and b′ to make it CFL independent. For a through
stability analysis please refer to Sec.(3.2).

97

or

u =
(

I+
∑

i

∑

j

TijWij −∆tΩ1t SΩt1Q

)−1

ū0+O (∆tp,∆x1
p1,∆x2

p2, . . . ,∆xz−1
pz−1)

(4.50)
The above result is so general that it deserves to be studied in detail in a separate
report. Here are the observations made regarding the numerical closed-form solution

to arbitrary time-evolutionary PDE with arbitrary IC/BC given in (4.50).

• For a linear PDE, the numerical closed-form solution u is a linear combination

of IC/BC column vector ū0 and truncation error. In fact when we look at (4.50),
we find that the terms inside the big parenthesis are combination of the total

operator Tij, integration operator S and constant Jacobians Wij and Q which
are constant over time interval ∆t. Therefore, u is written as a constant matrix

multiplication of operator matrices (terms inside parentheses) with ū0 plus the
truncation error showing that the dependency is always linear, i.e. Aū0 + b.

• The analytical closed-form solution can be retrieved by taking the limit of ex-

pression (∆t,∆x1,∆x2, . . . ,∆xz−1) → 0. In this case we readily observe that
the analytical solution proposed in (4.50) doesn’t have linear drift due to the

truncation error.

In the next section, we solve special cases of arbitrary nonlinear conservative PDEs

(4.32) by running a single piece of code containing an implementation of eq.(4.47).

4.3.2 Test case I: Multidimensional Periodic Convection

For i = 1, j = 1 . . . 2, G = 0, eq.(4.32) give us three-dimensional convection9

∂u

∂t
+

∂F1

∂x
+

∂F2

∂y
= 0, (4.51)

Choosing a linear flux function

F1 = F2 = cu (4.52)

9This is literally called two-dimensional because the equation has two spatial dimensions. However since we
solve equations using nested column format (4.2) which comprehends all dimensions simultaneously, we call it three-
dimensional.

98

and assuming that the number of equations is one, i.e. y = 1 we will have,

∂u

∂t
+ c

∂u

∂x
+ c

∂u

∂y
= 0,

→
∂u

∂t
= R (x, y) = −c

∂u

∂x
+−c

∂u

∂y
= −c∇.~u, (4.53)

Here we assume that boundary conditions in two space dimensions ‘x’ and ‘y’ are

periodic. Thus vectors b11 and b12 are zero in (4.46). Also Gn and its derivative are
zero in (4.47). Using (4.46) in this case and neglecting truncation error, the generic

implicit DPI (4.47) simplifies to

(

I +
a′

a′ + b′

1∑

i=1

2∑

j=1

Tij

∂Fij

∂un

)

un+1 = (4.54)

u0 +∆tΩ1t Si Ωt1Ri −

1∑

i=1

2∑

j=1

Tij

(

F(n)ij −
a′

a′ + b′
∂Fij

∂un

un

)

We remember from Postulate (I) in page (62) that we need to calculate spatial oper-

ator accurately to achieve the dissipation-free advantage of implicit DPI. Therefore,
we use the fully spectral differentiation matrix presented in eq(4.13). In addition, we
always prefer to solve PDEs and ODEs like (4.54) in a unified residual-based (4.36)

which is based on the original implicit DPI (3.15). Thus by replacing Tij from (4.41)
into (4.54) and rearranging both sides, we can rewrite (4.54) in the residual-based

equation below.

(

I −
a′∆t

a′ + b′
Ω1t SΩt1

∂R

∂un

)

un+1 = (4.55)

u0 + ∆tΩ1t SΩt1

(

Rn −
a′

a′ + b′
∂R

∂un

un

)

+∆tΩ1t Si Ωt1Ri

where

Rn = −c [∇]un = −c (Dx +Ω12DyΩ21)un (4.56)

and

∂R

∂un

= −c [∇] (4.57)

are the numerical residual and numerical Jacobian of residuals respectively. There-

fore to implement the two-dimensional periodic convection using implicit DPI we do
the following steps.

99

1. calculate directional derivative matrices Dx = D1 and Dy = D2 using Listing
(4.3) and appropriate Kronecker product.

2. calculate rearrangement operatorsΩ21 andΩt1 required in eq.(4.56) and eq.(4.55)
using Listing (4.1).

3. calculate numerical divergence matrix [∇] required for both eq.(4.56) and
eq.(4.57) using operators obtained in the previous step.

4. calculate the initial conditions matrices Si Ωt1Ri on rhs of (4.55).

5. initialize the vector of initial values u0 using given ICs conditions in problem.

6. for temporal steps ‘k ’ do

(a) while Picard convergence is not satisfied do

i. iterate over ‘n’ in generic equation (4.55)

(b) end

(c) set the last spatial value un at time t as the initial condition u0 for the next
temporal step.

7. perform post processing and compare the result with the appropriately shifted
analytical solution

We implemented the above algorithm in a very short Matlab m-file given in Listing
(4.6). The code is extremely easy and well-commented. A main program which
evaluates the DPI solution of the three-dimensional problem (4.53) using Listing

(4.6) is brought in Listing (4.10). The main program first calculates appropriate
time step ∆t, wave speed c and other constants. As shown a coarse N1 = 10,

N2 = 10, N3 = Nt = 140 grid is initialized. Then it initializes the filed with a
sinusoidal function u(x, y, t) = sin(x) over one period [x, y] = [0, 2π]. The number

of points in time is 140 points and with chosen CFL = 10 this gives the time step
exactly equal to the similar test case performed in (Wang (2009)). The implicit DPI

solution is marched in time for twenty and fifty complete cycles (periods). The final
solution is compared with the initial waveform which is an analytical sinusoidal wave
with appropriate shift due to number of selected temporal nodes.

Listing 4.6: This function implements implicit DPI for generic space-time z-dimensional equations in
nested column format (4.55). Since it is applicable to both ODEs and PDEs in the same time, we
used the name ode-implicit-DPI without any difference. This program uses residual and Jacobian of

100

the residual obtained using Listings (4.7) and (4.8) respectively. Also for time integration operator S
it uses Listing (4.9).

1 function [out1 out2 out3 out4] = ode implicit dpi(ff,jacob ff,N,y,dx,u0,e pic,a,b)
2 %Solving ODE using implicit Picard Iteration schemes
3 %%%
4 %%%%%%%%%%%%%%%% INPUT %%
5 %ff = @handle to ode function similar to ode45
6 %jacob ff = @handle to jacobian d/du of the ode function ff
7 %N = [N1 N2 ... Nz] number of points in each dimension
8 %y = number of equations in the system of PDE/ODE
9 %dx = [dx1 dx2 ... dxz] the spacing for each dimension

10 %u0 = initial value
11 %e pic = DPI convergence bound
12 %a,b = the stability −convergence constants in the theory
13 %%%%%%%%%%%%%%% OUTPUT %%
14 %out1 = solution over the given time interval
15 %out2 = the time interval
16 %out3 = residuals history matrix RES HIST(:,1) = ITR, RES HIST(:,2) = res.
17 %out4 = computation time (in sec) required for DPI to converg e to e pic
18

19 %global vars to increase efficiency
20 global Div
21 global disc method
22

23 %%%%%%%%%%%%%%Adapting notation with previous code
24 %number of temporal points
25 nS = N(3);
26

27 %∆ t = the physical (actual) time interval that solution is eval uated
28 %on.
29 ∆ t = (1+1/(N(3))) * dx(end);
30

31 %
32 u0 = mat2cell(u0,N(1) * N(2) * ones(N(3),1),1);
33 U0 = u0{1};
34 u0 = cell2mat(u0);
35

36 %constructing integration operator of arbitrary −order accurate
37 disp('Constructing integration operator of arbitrary −order accurate');
38 [S ri] =S Newton Cotes(nS,y); %making the operator
39 %mapping constructed one −D operator to general multi −dimensional space
40 S = kron(sparse(1:(N(1) * N(2)),1:(N(1) * N(2)),1),S);
41 disp('done!');
42 %Precomputing all required operators
43 disp('Constructing OMEGA 21');
44 OMEGA21 = OMEGAx1([N(1) N(2) nS],y,2);
45 disp('Constructing OMEGA 31');
46 OMEGA31 = OMEGAx1([N(1) N(2) nS],y,3);
47 disp('Constructing D1');
48 D1 = gen 1D diff(N(1),y,dx(1),disc method);
49 disp('Constructing D2');
50 D2 = gen 1D diff(N(2),y,dx(2),disc method);
51

52 disp('Assembling Divergence operator');
53 Div = kron(sparse(1:(N(2) * nS),1:(N(2) * nS),1),D1) + ...

101

(OMEGA21) \(kron(sparse(1:(N(1) * nS),1:(N(1) * nS),1),D2) * OMEGA21);
54 disp('Constructing OMEGA S OMEGA');
55 OmegaS Omega = OMEGA31 \(S * OMEGA31);
56

57 %building the time interval
58 tT = ri * ∆ t;
59

60 %Step 1 allocating and initializing the ResBuffer for each r esidual whose
61 %dimension in time is equal to
62 %nS. Since we only have one residual vector we need only one bu ffer.
63 ResBuffer = ff(tT,u0);
64 %allocating solution buffer. Since we have one scalar unkno w, we only need
65 %one buffer.
66 uBuffer = u0;
67

68 %computing S0
69 Res0 = cell(nS,1);
70 for i =1: nS
71 Res0{i,1 } = U0;
72 end
73 Res0 = ff(tT,cell2mat(Res0));
74 S0 = S(1,1) * OMEGA31* Res0;
75

76 %initializing the iteration index
77 ITR = 1;
78

79 DU = uBuffer; %temp init
80 DUn = 0. * DU;
81 tic %begin the timer
82 while (max(norm(DU −DUn)) >e pic)
83

84 %computing the jacobian diagonal matrix dR du
85 dR du = jacob ff(tT, uBuffer);
86

87 %
88 DUn = DU;
89 %SUB STEP I: Distributing residuals all over the buffer
90 %evaluating the residuals
91 ResBuffer = ff(tT,uBuffer);
92 %SUB STEP II: updating the solution buffer using implicit me thod
93 %OmegaS Omega = OMEGA31 \(S * OMEGA31); (go to top of the main loop)
94

95 A tot = sparse(1:(N(1) * N(2) * nS* y),1:(N(1) * N(2) * nS* y),1) − ...
a* ∆ t /(a+b) * OmegaS Omega* dR du;

96 b tot = u0+ ∆ t * OmegaS Omega* (ResBuffer − a/(a+b) * dR du* uBuffer) + ∆ t * ...
OMEGA31 \S0;

97

98 uBuffer temp = A tot \b tot;
99 DU = uBuffer temp − uBuffer;

100 uBuffer = uBuffer temp;
101

102 %Filling residuals history matrix and updating iteration i ndex
103 RES HIST(ITR,1) = ITR;
104 RES HIST(ITR,2) = max(norm(DU −DUn));
105 ITR = ITR + 1;
106 max(norm(DU −DUn)) %printing residuals

102

107 end
108 CompTime = toc;
109

110 out1 = uBuffer; %returning the solution
111 out2 = tT; %returning the time interval
112 out3 = RES HIST; %returning residuals
113 out4 = Comp Time; %returning computaton time.
114 disp('ode impplicit dpi completed');
115

116 %end

Listing 4.7: The residual in eq.(4.53) calculated using numerically discretized Divergence operator.
Note that boundary conditions vector is zero since the condition of periodicity is already implemented
in differentiation matrix eq.(4.13). Also since c = −1 in the main program, this residual is compatible
with eq.(4.53) for c = 1 (left to right going wave).

1 function du = anl model(t,u)
2 %t = the time vector
3 %u = the nested z −dimensional solution column
4 global c
5 global Div
6

7 bc = 0. * u;
8 du = c * Div * (u) + bc;

Listing 4.8: The Jacobian obtained in operator-wise approach.

1 %the Jacobian model
2 function out = anl model jacob(t,u)
3 %the output Jacobian
4 global c
5 global Div
6

7 out = c * Div;

Listing 4.9: This function returns the second-order integration matrix based on Newton-Cotes formula.

1 function [out1 out2] =S Newton Cotes(nS,y)
2

3 %CONSTANTS ARE SPECIFIED HERE.
4 %The number of points in the quadrature scheme
5 S = cell(nS,nS); %The final operator
6 for i = 1:nS
7 for j=1:nS
8 S{i,j } = sparse(zeros(y));
9 end

10 end
11

12 h = 1./(nS);
13 ri = (1:nS) * h;

103

14

15 S{1,1 } = sparse(.5 * eye(y));
16 %S{2,1 } = sparse(1. * eye(y)); S {2,2 } = sparse(.5 * eye(y));
17 for i=2:nS
18 %S{i,1 } = sparse(.5 * eye(y));
19 for j=1:(i −1)
20 S{i,j } = sparse(1. * eye(y));
21 end
22 S{i,i } = sparse(.5 * eye(y));
23 end
24

25 out1 = cell2mat(S) * h;
26 %out1 = cell2mat(S);
27 out2 = ri;

Listing 4.10: The main program. Computes solution to (4.53) using implicit DPI given in Listing
(4.6) and Euler explicit method and exports the results to Tecplot format.

1 %%%%%%%%%%%%%%%%%%%%% MAIN %%%
2 %%
3

4 %Preparing the MATLAB environment.
5 clear all;
6 clc
7

8 %defininf global variables on need
9 global c

10 global disc method
11

12 %CONSTANTS ARE SPECIFIED HERE.
13 %stability −convergence constants
14 a = 1.2;
15 b = .01;
16 e pic = 1.e −6;
17 y=1;
18 c=−1;
19 N = [10 10 140]; %The size of the space −time (N1 N2 N3)
20 disc method = 2; %spectral
21

22 %two−dimensional spatial ranges
23 x min = −pi;
24 x max = pi;
25 y min = −pi;
26 y max = pi;
27

28 %spatial grid spacing
29 dx = (x max − x min)/N(1);
30 dy = (y max − y min)/N(2);
31

32 %creating a dummy field
33 x x= x min + (1:N(1)) * dx;
34 y y= y min + (1:N(2)) * dy;
35

36 for l=1:N(3)

104

37 for j=1:N(2)
38 for i=1:N(1)
39 u(i,1) = sin(x x(i));
40 end
41 U(j,1) = {sparse(u) };
42 end
43 UU(l,1) = {cell2mat(U) };
44 end
45

46 u0 = cell2mat(UU);
47

48 %CFL condition − change this CFL to the one you desire.
49 CFL = 10;
50 %computing the time interval based on CFL condition for conv ection −only.
51 ∆ t = CFL/abs(c) * min(dx,dy);
52

53 %%
54 %Solving ODE using implicit Picard Iteration scheme
55 %%
56 NDPI MARCH = 50; %for fifty periods
57 u0 orig = u0; %saving the original initial condition for future use in
58 %explicit scheme and other verifications
59 for i=1:NDPI MARCH
60 [u DPI implicit time implicit Res implicit Comp Time Implicit] = ...
61 ode implicit dpi(@anl model,@anl model jacob,N, ...
62 y,[dx dy ∆ t],u0,e pic,a,b);
63

64 %%%%%%%%%%%%%%%%%% WINDOWING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65 %capturing the last spatial solution as the next initial con dition
66 u0 = mat2cell(u DPI implicit ,N(1) * N(2) * ones(N(3),1),1);
67 for j = 1:(N(3) −1)
68 u0(j) = u0(N(3));
69 end
70 u0 = cell2mat(u0);
71 max(max(abs(u0))) %printing amplification % if increase the marching
72 %will diverge.
73 end
74

75 u0 = u0 orig; %turning back u0 to its original state.
76

77 %%
78 %Solving ODE using Euler explicit algorithm
79 %%
80 [u explicit Numb explicit Comp Time explicit] = ...
81 pde euler explicit(@anl model,N,y,[dx dy ∆ t],u0,.0001);
82

83 %converting u DPI implicit from sparse form to full form
84 u DPI implicit = full(u DPI implicit);
85 %exporting to tecplot
86 u DPI implicit = mat2cell(u DPI implicit ,N(1) * N(2) * ones(N(3),1),1);
87

88 for i=1:N(3)
89 u DPI implicit {i } = mat2cell(u DPI implicit {i },N(1) * ones(N(2),1),1);
90 end
91

92 fid = fopen('u.tec' , 'w');

105

93 fprintf(fid, 'VARIABLES = "X", "Y", "T","u" \n');
94 fprintf(fid, 'ZONE T="Num", I=%d, J=%d, K=%d F=POINT \n' ,N(1),N(2),N(3));
95

96 for l=1:N(3)
97 tempU = u DPI implicit {l };
98 for j=1:N(2)
99 tempUU = tempU{j };

100 for i=1:N(1)
101 fprintf(fid, '%e %e %e %e\n' ,x x(i),y y(j),time implicit(l),tempUU(i));
102 end
103 end
104 end
105

106 fclose(fid);
107

108 %plotting inline in MATLAB
109 profiles = zeros(N(1),1);
110 for l=[1 N(3)]
111 tempU = u DPI implicit {l };
112 for j=1:1
113 tempUU = tempU{j };
114 profiles(:,l) = tempUU;
115 hold on
116 end
117 end
118 x shifted = x x − (NDPI MARCH−1) * pi/N(3);
119 plot(x shifted,profiles(:,N(3)), 'd');
120 hold on;
121 plot(x shifted,sin(x shifted), '. −');
122 plot(x x,sin(x x), ' −');
123

124 %converting u explicit from sparse form to full form
125 u explicit = full(u explicit);
126

127 %exporting to tecplot
128 u explicit = mat2cell(u explicit,N(1) * N(2) * ones(N(3),1),1);
129

130 for i=1:N(3)
131 u explicit {i } = mat2cell(u explicit {i },N(1) * ones(N(2),1),1);
132 end
133

134 fid = fopen('uexpl.tec' , 'w');
135 fprintf(fid, 'VARIABLES = "X", "Y", "T","uexpl" \n');
136 fprintf(fid, 'ZONE T="explicit", I=%d, J=%d, K=%d F=POINT \n' ,N(1),N(2),N(3));
137

138 for l=1:N(3)
139 tempU = u explicit {l };
140 tempV = u DPI implicit {l };
141 for j=1:N(2)
142 tempUU = tempU{j };
143 for i=1:N(1)
144 fprintf(fid, '%e %e %e %e\n' ,x x(i),y y(j),time implicit(l),tempUU(i));
145 end
146 end
147 end
148 fclose(fid);

106

149

150 %end of MAIN
151 %%

Figure (4.3.1) shows the three-dimensional characteristic lines for solution ob-

tained after fifty periods (t = 50). As shown the lines have 45 degree slope and the
solution retrieves its initial value after 50 periods. The computational grid is also

shown at the bottom.

107

X

-2

-1

0

1

2

3

Y

-2
-1

0
1

2
3

0

1

2

3

4

5

6

T

u

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9

X

-2

-1

0

1

2

3

Y

-2
-1

0
1

2
3

0

1

2

3

4

5

6

T

Figure 4.3.1: Top) Solution contours after fifty periods. Bottom) The grid used to obtain the solution.

The solution profile after t=20 and t=50 are shown in fig.(4.3.2) and (4.3.3) respec-
tively. As shown, the second-order implicit method CN2 and BDF2 have acceptable

resolution at t=20 while at t=50 we see that they have major dispersion and dissi-
pation. The second-order implicit DPI scheme however have excellent accuracy even

108

for fifty periods. As we expect from Postulate (I), there is no dissipation error for
DPI schemes.

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

u(
x,

y,
t)

Space−time (x−y−t) is discretized using N
x
 = 10, N

y
 = 10, N

t
 = 140 equal to CFL=11 in dissertation

DPI (2nd−order) t = 20
initial

Figure 4.3.2: Solution profiles after twenty periods t=20, Top) problem solved in (Wang (2009)) with
initial Gaussian wave and with different methods including second-order BDF2 and CN2 and fourth-
order implicit RK4. Bottom) Current solution with sinusoidal initial condition using second order
DPI.

109

−4 −3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t = 50 , Implicit DPI (2nd−order in time) N
x
= 10, N

y
 = 10, N

t
 = 140

t

u

implicit DPI t=50
Initial Value

Figure 4.3.3: Solution profiles after fifty periods t=50, Top) problem solved in (Wang (2009)) with
initial Gaussian wave and with different methods including second-order BDF2 and CN2 and fourth-
order implicit RK4. Bottom) Current solution with sinusoidal initial condition using second order
DPI.

4.3.3 Test case II: Nonlinear Wave Propagation

In this section, we replace the linear flux vector of (4.58) with nonlinear Burgers
terms

F1 = F2 = cu2 (4.58)

110

Also due to formation of shocks, we need to use upwind scheme. Thus the only
modification that we do to the code listings presented in Sec.(4.3.2) is to replace

the flux function in the residual (Listing (4.7)) and Jacobian of residual (Listing
(4.8)) with the nonlinear polynomial (4.58) and then replacing spectral differentiation

matrix in Listing (4.3) with upwind scheme presented in Listing (4.2). The solution
obtained in this manner is therefore first-order due to the presence of first-order

upwind scheme. The results are presented in fig.(4.3.4) for two different values of
CFL = 0.4 and CFL = 4,000,000. As shown, for small CFL we see the traveling wave
is leaving the domain. It should be noted that only three points in the time direction

is selected and the spatial scheme is first-order upwind. Therefore we don’t expect
that results presented in (4.3.4) demonstrate spectacular accuracy as was shown in

fig.(4.3.2) for spectral schemes. Therefore our goal here is to investigate whether
the partial sum in implicit DPI converges in nonlinear equations or not. Figure

(4.3.4) clearly shows that implicit DPI remains stable for small and large CFLs for
multidimensional nonlinear equations.

Figure 4.3.4: Solution of three-dimensional Burgers equation for Left) CFL = .4 and Right) CFL =
four millions.

111

Chapter 5

General Unstructured Formulation and
Conservation Laws

5.1 Finite Volume Formulation

Let us consider the general time-evolutionary conservative differential equation below

∂u

∂t
+∇.F = 0, (5.1)

where u = [u1, u2, . . . , uy] is the vector of conservative variables and F is the tensor

of fluxes. Using finite-volume method we take volume integral of both sides of (5.1)
over a finite control volume T in space as follows,

∫

T

∂u

∂t
dVT +

∫

T

∇.F dVT = 0, (5.2)

We note that using mean-value theorem
∫

T
∂u
∂t
dVT = ∂ū

∂t
VT where ∂ū

∂t
is the mean

value of time derivative of the solution at centroid of the control volume T . Also ap-

plying Gauss-Divergence theorem
∫

T
∇.F dVT =

∫

ST
F.dST , eq. (5.2) can be written

as

∫

T

∂u

∂t
dVT +

∫

T

∇.F dVT =
∂ū

∂t
VT +

∫

ST

F.dST = 0, (5.3)

Discretizing the surface integral in (5.3) over all faces enclosing the control volume,

we obtain,

Vi

d

dt
(ūi) +

∑

j

F∗
ij (ū) .∆Sij = 0,

i = 1 . . .Nnodes, j = 1 . . .Nedge(i), (5.4)

112

Where ∆Sij is the surface normal vector of the jth face wrapping around volume T

(umbrella formed over jth edge of node ‘i’) and F∗ is a tensor which contains the
reconstruction of fluxes over the faces enclosing the control volume T . The tensor

product F∗
ij (ū) .∆Sij is actually summed over column fluxes in all spatial directions,

i.e. for three-dimensional problems we have

F∗.∆S =
∣
∣f∗x , f

∗
y , f

∗
z

∣
∣ . |∆sx,∆sy,∆sz| = f∗x∆sx + f∗y∆sy + f∗z∆sz =

3∑

k=1

f∗k∆sk (5.5)

The index ’i’ in eq.(5.4) loops over the entire nodes/cells (depending on node-
centered and cell-centered formulation) and the index ’j’ loops over the surrounding

edges/cells of ’i’ entity. The edges connecting to node ‘i’ are usually divided into
two categories of interior edges which connect point ‘i’ to another real point ‘j’

in the grid and ghost edges which connect point ‘i’ to an imaginary point which is
usually used to impose boundary condition through an indirect method. It is more
convenient to separate boundary (ghost) edges from interior edges in (5.4) resulting

Vi

d

dt
(ūi) +

interior∑

j

F∗
ij (ū) .∆Sij

+

ghost
∑

j

F∗
ij (ū) .∆Sij = 0 (5.6)

The reconstructed flux tensor F∗ is usually obtained in the terms of the origi-
nal flux F using appropriate Reimann-Solver. For example, using Roe flux vector
differencing we have,

F∗ (ū) =
1

2

(

F (ūi) + F (ūj)−
∣
∣
∣Ãij

∣
∣
∣ (ūj − ūi)

)

(5.7)

Substituting (5.7) into (5.6) and using flux notation (5.5) we obtain

Vi

d

dt
(ūi) +

1

2

3∑

k=1

interior∑

j

[

∆skij (fk (ūi) + fk (ūj))−∆skij

∣
∣
∣Ãkij

∣
∣
∣ (ūj − ūi)

]

+
1

2

3∑

k=1

ghost
∑

j

[

∆skij (fk (ūi) + fk (ūj))−∆skij

∣
∣
∣Ãkij

∣
∣
∣ (ūj − ūi)

]

= 0(5.8)

To increase readability, we represent the ghost values with a over hat

113

Vi

d

dt
(ūi) +

1

2

3∑

k=1

interior∑

j

[

∆skij (fk (ūi) + fk (ūj))−∆skij

∣
∣
∣Ãkij

∣
∣
∣ (ūj − ūi)

]

+
1

2

3∑

k=1

ghost
∑

j

[

∆ŝkij

(

fk (ūi) + f̂k (ūj)
)

−∆ŝkij

∣
∣
∣
ˆ̃
Akij

∣
∣
∣

(
ˆ̄uj − ūi

)]

= 0(5.9)

The above equation can be effectively written in the following form

Vi

d

dt
(ūi) +

1

2

3∑

k=1

Ψki = 0, (5.10)

where Ψki is written in the term of diagonal and off-diagonal entries as

Ψki =





int∑

j

∆skij +
bn∑

j

ˆ∆skij



 fk (ūi) +
int∑

j

∆skijfk (ūj)

︸ ︷︷ ︸

[M]ki[f]ki

+





int∑

j

∣
∣
∣Ãkij

∣
∣
∣∆skij +

bn∑

j

∣
∣
∣
ˆ̃
Akij

∣
∣
∣ ˆ∆skij



 ūi −
int∑

j

∣
∣
∣Ãkij

∣
∣
∣∆skijūj

︸ ︷︷ ︸

[Q]ki[ū]

+
bn∑

j

∆ŝkij f̂k (ūj)

︸ ︷︷ ︸

[M̂]
ki
[f̂]

ki

−
bn∑

j

∣
∣
∣
ˆ̃
Akij

∣
∣
∣∆ŝkij ˆ̄uj

︸ ︷︷ ︸

[Q̂]
ki
[ˆ̄u]

= 0, (5.11)

Now, if we write down (5.11) for all nodes, i.e. all ‘i’ indices, we come up with

the following equation

[Ψ]k = [M]k[f]k + [Q]k [ū] +
[

M̂
]

k

[

f̂
]

k
+
[

Q̂
]

k

[
ˆ̄u
]

(5.12)

where [ū] is a nested vector of conservative variables ū for all points j=1. . . Nnodes

114

in the grid, say

[ū] =

























ū1
...
ūy





1



ū1
...
ūy





2
...





ū1
...
ūy





Nnodes





















(5.13)

and the coefficient matrix [M]k is

Mk =


















[
int.∑

j

∆sk1j +
bn.∑

j

∆̂sk1j

]

jth

↓[
int.∑

j

∆sk1j

]

[
int.∑

j

∆sk2j +
bn.∑

j

∆̂sk2j

]

. . .
[
int.∑

j

∆s
kNj

+
bn.∑

j

∆̂s
kN

where each sub-block entry

[
int.∑

j

∆skij +
bn.∑

j

∆̂skij

]

in (5.14) is obtained using using

multipication of scalar value
int.∑

j

∆skij +
bn.∑

j

∆̂skij with identity matrix of size y × y

where y is the number of equations in system of conservation laws.

It should be noted that the matrix [Q]k in (5.12) is simply obtained by replacing

each block on the main dagonal (5.14) with ‘y’ times ‘y’ block
[
∑int

j

∣
∣
∣Ãkij

∣
∣
∣∆skij +

∑bn
j

∣
∣
∣
ˆ̃
Akij

∣
∣
∣

and off-diagonal elements with −
∑int

j

∣
∣
∣Ãkij

∣
∣
∣∆skij. We also note that matrices

[

M̂
]

k

and
[

f̂
]

k
and

[

Q̂
]

k
all depend on the conservative variables at boundaries, i.e.

[
ˆ̄u
]
.

Therefore they are independent of [ū] and this is important when we want to calculate
Jacobian matrix.

115

We proceed by finding residuals. From eq.(5.10) we have

d

dt
(ūi) = Ri (t) = −

1

2Vi

3∑

k=1

Ψki, (5.15)

Substituting (5.12) into (5.15) we will have

[R] (t) = −

[

diag

(
1

2Vi

)] 3∑

k=1

[M]k[f]k + [Q]k [ū] +
[

M̂
]

k

[

f̂
]

k
+
[

Q̂
]

k

[
ˆ̄u
]

(5.16)

Thus the derivative of residual with respect to

∂ [R]

∂ū
(t) = −

[

diag

(
1

2Vi

)] 3∑

k=1

[M]k

[
∂f

∂ū

]

k

+
∂

∂ū
([Q]k [ū]) (5.17)

116

Bibliography

Beam, R.M. & Warming, R.F. 1978 An implicit finite difference algorithm for
hyperbolic systems in conservation-law form. J. Comput. Phys. 22, 87–110.

Briley, R. W. & McDonald, H. 1977 Solution of the multi-dimensional com-
pressible navierstokes equations by a generalized implicit method. J. Comput. Phys.
21, 372–397.

Briley, R. W. & McDonald, H. 2001 An overview and generalization of implicit
navier-stokes algorithms and approximate factorization. J. Computers and Fluids

30, 807–828.

Coddington, E. A. & Norman, L. 1955 Theory of Ordinary Differential Equa-

tions . McGraw-Hill.

Ghasemi, A. 2010 Developing nonlinear ode solvers for practical simulation of air

vehicle configurations using compact schemes for integration. Proceedings of AIAA
Guidance, Navigation, and Control Conference, AIAA 2010-7808 .

Goldberg, D. 1991 What every computer scientist should know about floating-

point arithmetic. ACM Computing Surveys 23(1), 5–48.

Lomax, H., Pulliam, T. H. & Zingg, D. W. 2004 Fundamentals of Computa-

tional Fluid Dynamics . Springer.

Quarteroni, A., Sacco, R. & Saleri, F. 2000 Numerical Mathematics .

Springer.

Shampine, L. F. & Reichelt, M. W. 1997 The matlab ode suite. SIAM Journal

on Scientific Computing 18, 1–22.

Sidi, A. 2003 Practical extrapolation methods theory and applications. Cambridge

Univ. Press .

Trefethen, L. N. 2001 Spectral Methods in MATLAB . SIAM.

117

Wang, Li 2009 Techniques for high-order adaptive discontinuous galerkin discretiza-
tions in fluid dynamics. PhD thesis, University of Wyoming.

118

