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Abstract

A technique is described for parameterizing geometries in a manner suitable for 
numerical simulations used in design optimization. The methodology is flexible, easy to 
use, extendable, and is applicable for multidisciplinary design optimization. The 
parameterization technology is described and demonstrated in both two and three 
dimensions.

iii



1. Introduction

The use of numerical simulations for analyzing existing geometries is now routinely 
used in many industries. The simulations are also often used to conduct trade-off 
studies for evaluating options that may lead to improved performance. In recent years, 
numerous researchers have been developing formal methods of determining sensitivity 
derivatives that can be used in conjunction with numerical optimization techniques to 
systematically reduce one or more cost functions that will subsequently lead to better 
performance of the vehicle in question (see for example [ 3-6, 9-10, 12-14, 18-19]). For 
applications where the shape is allowed to change to achieve the desired performance, 
it is necessary to describe either the geometry, or changes to the geometry, in terms of 
a set of parameters that are used as design variables to drive the optimization 
procedure. Example methodologies that have been utilized include the use of the 
individual mesh points on the surface of the mesh [13-14], Bezier, B-spline, and NURBS 
surfaces [4, 11, 20-21], Hicks-Henne functions[12], sine functions [10], discipline 
specific functions [24], and free-form deformation [22-23]. A summary of some of the 
more prevalent parameterization techniques is given in Ref. [21]. Of particular interest is 
the method of free-form deformation (FFD) because it provides a convenient method for 
multidisciplinary design optimization (MDO) applications where it may be necessary to 
modify several unrelated meshes simultaneously. The FFD method uses a three-
dimensional mesh where each node in the mesh is considered to be a control point of a 
NURBS volume. The position of the nodes are used as the design variables so that as 
the control points are repositioned during the design process, the NURBS volume is re-
evaluated to provide changes to the original geometry. Although effective, in the most 
general implementation, the number of design variables can be large if the mesh of 
control points is fully three dimensional. This is due to the fact that the number of nodes 
in the mesh increases as the cube of the number of points placed along one side of the 
mesh.  In reference [23] a methodology is described that alleviates the cubic 
dependence on the number of design variables to a quadratic dependence by replacing 
a trivariate FFD volume with a bivariate FFD surface that is placed onto the surface of 
the geometry. 

In the present work, a technique for parameterizing geometries is described that has 
many of the advantageous features of FFD while also reducing the growth of design 
variables to be quadratic as the number of design variables along a one-dimensional 
direction is increased. Furthermore, the present technique utilizes a grid that is fixed 
throughout the design process. This is in contrast to the FFD technique in which the 
control points are continuously moved and can potentially become tangled. 
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In developing the present technique, the following requirements are considered:
1. Fast and easy to use
2. Applicable for MDO
3. Extendable to new situations as they arise
4. Produce smooth geometries
5. Allow for large deformations
6. Does not require a significant number of design variables
7. May be applied to large or small regions of the geometry to be designed
8. Provides reasonably easy application of constraints
9. Accurate sensitivity derivatives are readily obtained

The methodology described here provides a viable alternative to the FFD technique 
and satisfies the above set of requirements.

2. Control Grids for Parameterization

Although control grids may be used for both two- and three-dimensional 
applications, their use for parameterization is most easily described by initially 
considering a two-dimensional example. Figure 1 depicts an airfoil that is to be 
parameterized, along with an exemplary control grid surrounding the airfoil. To easily 
identify the geometry in the figure, the airfoil is depicted as a line, although in the 
present context it is actuality comprised of a series of mesh points defining the surface. 
These mesh points are typically part of a larger volume mesh. To use the control grid to 
modify the shape of the geometry, a set of partial differential equations with appropriate 
boundary conditions is discretized and solved on the control grid. The solutions of the 
discrete set of equations are considered as perturbations to the original surface and are 
interpolated and added to the points defining the original geometry. For use in shape 
optimization algorithms, the design variables stem from the boundary conditions 
associated with the partial differential equation.

 

Figure 1. Control grid surrounding an airfoil
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As a specific example, it is noted that a requirement specified earlier is that 
perturbations to the geometry be generally smooth. In this way, an initially smooth 
geometry will remain smooth after perturbations are added. This leads one to consider 
the use of elliptic partial differential equations such as Laplace-type equations for each 
direction or equations for linear elasticity. However, it should be noted that the use of a 
partial differential equation is not required. In the present work, a simple approximation 
to a Laplacian is used to smoothly propagate perturbations in each direction 
independently. For the present results, the approximation to the Laplacian in the interior 
of the mesh is based on inverse distance weighting, although simple averaging has also 
been used. Dirichlet boundary conditions are typically used at external boundaries of 
the control grid, although internal boundaries may also be considered as described in a 
later section. Separate boundary conditions are applied to individual points on the 
boundaries of the control grid, and it is the magnitude of the boundary conditions that 
become the design variables used to modify the shape. The boundary conditions for 
perturbations in each direction are determined by specifying them to be either normal to 
the control grid, tangent to the control grid, normal to the surface of the geometry, or in 
an otherwise pre-specified direction. The individual Cartesian components or the 
directions of the perturbations could also be used as design variables, although using 
the magnitude of the perturbation reduces the number of design variables and allows for 
better control. For example, if one wishes to control the thickness of a geometry that is 
not aligned with a coordinate axis, the control grid would be aligned with the geometry 
and perturbations normal to the upper and lower boundaries of the control grid could be 
obtained. 

With the smoothing procedure described above, the number of design variables is 
proportional to the number of mesh points lying on the boundaries of the control grid. 
This represents a reduction in the number of design variables in comparison with a free-
form deformation technique, which requires the number of design variables to be 
proportional to the total number of points in the entire grid.[23] A further reduction in the 
number of design variables is obtained by defining a “design grid”, which is coarser than 
the control grid but has the same general shape. The design variables are associated 
with points lying on the boundaries of the design grid and the boundary conditions for 
the control grid are obtained by interpolation. An example is given in Fig. 2 for a two-
dimensional control grid. Here, the design grid consists of  a series of points defined on 
each boundary of the control grid. Note that the number of points on each boundary are 
not required to be the same, as the otherwise double valued points at the corners of the 
control grid are not used in the smoothing procedure because the computational stencil 
only utilizes points immediately connected the central point. Furthermore, in some 
applications it may be advantageous to define boundary conditions that are applied to 
larger regions of the control grid. A natural example would be specifying a single 
boundary condition that is applied around the entire perimeter of an axisymmetric 
control grid.
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Figure 2. Control grid including depiction of points on design grid surface

An example of using a control grid to manipulate a geometry is shown in Fig. 3. In 
this example, the initial geometry corresponds to an NACA 0012 airfoil, which is placed 
approximately in the center of the control grid. The smoothing procedure is applied in 
each direction independently and the boundary conditions are specified so that 
perturbations are only allowed in the vertical direction. As seen in the figure, the new 
airfoil geometry is greatly modified from the original and the contours of the 
perturbations are smooth. Note also from the figure that the modified geometry extends 
beyond the boundaries of the control grid. Because the perturbations are relative to the 
original geometry and because the control grid is fixed, large deformations can be 
obtained with no tangling of the control grid which could happen with free-form 
deformation.

Figure 3 Example deformation using control grid

During the design process, mesh sensitivities are generally required as the geometry  
deformations at the surface are propagated into the interior. The means for propagating 
the interior mesh points is not generally dependent on the parameterization of the 
surface and can be accomplished with many techniques [see e.g. 3, 18]. However, the 
determination of mesh sensitivities inevitably requires the sensitivity derivatives of the 
surface mesh points with respect to the design variables. Because of the linearity of the 
present smoothing algorithm and because the geometry is always perturbed in relation 
to the original shape, the sensitivities of the surface points with respect to the design 
variables are easily obtained by sequentially setting each design variable to unity while 
setting the remainder of the boundary conditions to zero. After solving the equations, the 
solution corresponds to the sensitivity derivatives. While this parameterization technique 
requires the solution of the perturbations for each design variable, the sensitivity 
derivatives of the surface points are fixed throughout the design process so the solution 
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of the perturbations is only required at the initial step and need not be repeated during 
each design cycle. Again, this is because of the linearity of the smoothing procedure 
and because the geometry is always modified in relation to the original geometry. In 
addition, efficient procedures, such as multigrid acceleration, may be used to obtain 
rapid convergence. Finally, it should be noted that control grids may be relatively coarse 
and that a highly converged solution is not generally required, provided that the 
boundary conditions propagate into the interior.

To examine the ability of the current procedure to obtain general shapes while not 
producing high-frequency oscillations, an NACA 0012 airfoil is used as an initial 
geometry and a target geometry is obtained by randomly moving points on the lower 
surface of the airfoil. A single control grid is used where vertical perturbations are 
allowed on the top and bottom boundaries and zero perturbations are prescribed on the 
left and right sides of the control grid. The control grid has 201 points in the horizontal 
direction and 81 points in the vertical direction. There are 32 design variables evenly 
spaced on the upper and lower boundaries for a total of 64 design variables. Fig. 4a 
depicts the original airfoil geometry, the current geometry, and the target geometry. The 
current geometry is obtained after 10 design cycles using a trust-region method [15]  
and the cost function is the squared difference between the coordinates of the current 
geometry and the target geometry. Fig. 4b shows contours of the perturbations in the 
control grid as well as the final geometry. As seen in Fig. 4a, the present method 
reproduces the target geometry reasonably well although it does not capture the higher-
frequency oscillations near the leading edge. Increasing the number of design variables 
may capture this high-frequency oscillation. Note that from the contours depicted in Fig. 
4b, the design variables successfully adjust to produce the oscillations on the lower 
surface while reasonably maintaining the original geometry on the upper surface. It 
should be noted that repeating this experiment using several control grids of varying 
extent in the vertical direction from 0.1 to 0.5 has very little effect on the final answer.
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Figure 4a. Original, current, and target 
geometries

Figure 4b. Boundaries of control grid 
and contours of y-perturbations

In the results shown in Fig. 4, the upper surface points have been approximately 
held fixed by explicitly including them in the cost function. With close examination, 
however, a very slight variation between the current geometry and the original geometry  
can be seen on the upper surface approximately ten percent aft of the leading edge. A 
more direct way to hold the upper surface fixed is to simply place the control grid so it 
only effects the geometry points on the lower surface of the airfoil. Although using this 
technique may be suitable in some instances, a more general procedure is to initially 
determine the points in the control grid that surround the constrained geometry points, 
and then simply specify zero perturbations at those points during the solution 
procedure. This method is easily automated and can be viewed as enforcing internal 
boundary conditions during the solution for the perturbations. 

Figure 5 depicts results obtained using the internal boundary condition procedure for 
the same problem shown earlier in Fig. 4. As seen in Fig. 5a, the fidelity of the upper 
surface is successfully maintained while the lower surface is allowed to change. Further, 
from the contours of the perturbations shown in Fig. 5b, the perturbations appear to be 
smooth. However, it should be noted that the geometry at the interface between the 
fixed points and the points that are allowed to move may not be smooth, particularly if 
the perturbations at the adjoining points are large. This is because the fixed point is 
essentially a boundary between the fixed curve and the variables curve.
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Figure 5a. Original, current, and target 
geometries with upper surface fixed

Figure 5b. Boundaries of control grid 
and contours of y-perturbations 

There are many ways to incorporate control grids into the parameterization process. 
First, note that while the examples above have all been rectangular, there is no 
requirement that this be the case. For example, in two dimensions, the control grids 
may be circular, triangular, elliptical, or virtually any other shape that is convenient for 
the application. For three-dimensional applications the control grids can be cubes, 
spheres, cylinders, pyramids, tetrahedra, or combinations of these, although these 
shapes are in no way inclusive. Control grids may be deployed such that they surround 
one or more geometries or even just portions of the geometries. However, a control grid 
surrounding a geometry will not necessarily modify that geometry unless that geometry 
is explicitly associated with the control grid. For example, in Fig. 6a, a single control grid 
surrounds both airfoil geometries. The perturbations obtained on the control grid may be 
interpolated to both geometries but may optionally only be used to modify the shape of 
one of them. In an alternate deployment shown in Fig. 6b, two control grids are 
associated with a single geometry. As also seen in Fig. 6b, the control grids may be 
used to modify large or small regions of any geometry being parameterized. For the 
example in Fig. 6b, the points lying outside the control grids would remain fixed, which 
could potentially lead to a lack of smoothness at the interfaces. To help maintain the 
smoothness of the surface in the transition regions, a better approach would be to 
specify zero perturbation boundary conditions for the first few design variables that lie 
closest to the edge of the control grid. Multiple control grids may also be used to modify 
the same points on a given geometry. In this instance, the final perturbation that gets 
added to the original geometry is the sum of the perturbations from each control grid. 
Finally, it should be noted that algebraic changes, such as sweep or twist, may also be 
easily included through specification of the boundary conditions for the partial 
differential equations, or by directly specifying these changes at individual points on 
either the control grid or the geometry itself.
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Figure 6a. Single control grid 
surrounding two geometries

Figure 6b. Multiple control grids 
associated with a single geometry

Note that for internal flows, a situation can occur using the present technique which 
will be referred to as “blocking.” Referring again to Fig. 6a, if the design variables are 
placed only at the external boundaries of the control grid and the upper surface of the 
top airfoil and the lower surface of the bottom airfoil are held fixed using the procedure 
described in reference to Fig. 5, the perturbations prescribed on the external boundaries 
could be prevented from propagating into the interior of the control grid. In many 
applications this is easily remedied by simply using a separate control grid for each 
geometry. In three-dimensional applications, it may be also be desirable to modify the 
internal surface of a geometry while holding the outer surface fixed. A typical example 
would include the design of the internal shape of an inlet while holding the outer mold 
lines of the nacelle fixed. Blocking may be alleviated using several techniques. The 
easiest method is to simply ensure that the control grid is finer than the defining points 
on the geometry so that the perturbations are allowed to propagate between the fixed 
points and into the interior of the control grid. Although not shown, this approach has 
been successfully used. Alternatively, a control grid may be placed between the two 
surfaces so that only the interior surface will be modified. Other approaches would 
include simply using some of the points in the interior of the control grid as design 
variables, incorporating source terms into the partial differential equations, using 
Neumann boundary conditions, or by devising a suitable control grid with a passage 
through it (for example, a hollow tube). In the latter case, design variables would be 
placed on the inner and outer surfaces of tube. 
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3. Results

Results are given below for both two and three-dimensional applications. In the two 
dimensional applications, an unstructured Euler solver similar to that described in Ref. 
[1] is used to determine the variables in the flow field, while sensitivity derivatives are 
obtained using the complex-variable method of forward-mode differentiation described 
in Refs. [2, 16-17]. Although the examples are for inviscid flows, it should be noted that 
the parameterization method is only used to modify surface points and is thus 
applicable to viscous flows as well.

In the first example, the initial geometry is an NACA 0012 airfoil at a free-stream 
Mach number of 0.5 and an angle of attack of 1.25 degrees. The goal of the design is to 
increase the lift coefficient from its initial value of 0.17 to a target value of 1.0. For this 
test, two control grids are used and the design is repeated separately for each. In each 
case, the design variables on the upper and lower surfaces of the control grid provide 
perturbations in the vertical direction, while the design variables on the left and right 
sides of the control grid are held constant at zero. In the first control grid, shown in Fig. 
7a, the leading edge of the airfoil is placed a specified distance from the left side of the 
control grid, while the trailing edge is placed adjacent to the right side of the control grid. 
Because the perturbations on the right-hand-side of the control grid are zero, the effect 
of this placement is to allow the vertical position of the leading edge to change while the 
trailing edge is held fixed. Note that the trailing edge could also be held fixed using the 
approach described earlier. The second control grid, depicted in Fig. 7b is constructed 
so that the leading and trailing edges of the airfoil are both placed adjacent to the 
boundaries of the control grid, thereby effectively fixing those points. 

Figure 7a. Control grid boundaries 
and y-perturbations: Leading edge 
floating, trailing edge fixed

Figure 7b. Control grid boundaries 
and y-perturbations: Leading and 
trailing edges fixed

After only 2 design cycles using a trust-region method [15], the final lift coefficient is 
successfully obtained for each case. As seen in Fig. 8a, the resulting pressure 
distributions show significant changes in comparison to that for the baseline NACA 
0012. In addition, the pressure distributions for the modified geometries are each 
somewhat different, reflecting the effectively different constraints on the geometries. As 
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seen in Fig. 8b, the modified geometries are similar although they are significantly 
different from the original. Furthermore, Fig. 8c shows a close-up of the leading edge 
geometries and illustrates the differences obtained using the different 
parameterizations. In particular, when using the first control grid, the leading edge of the 
airfoil is slightly raised when compared to the other geometries.
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Figure 8a. Pressure 
distributions

Figure 8b. Original and 
modified geometries

Figure 8c. Original and 
modified geometries 
near leading edge

A final two-dimensional example is shown in Figs. 9 and 10 for a transonic slotted 
airfoil originally described in Ref. [27]. For the case considered here, the Mach number 
and angle of attack are 0.7 and 1.0 degrees, respectively. The cost function is defined 
as a linear combination of the lift and drag coefficients so that the lift will remain 
approximately constant while simultaneously reducing the drag. The lift on the baseline 
configuration is 0.1359 with a corresponding drag coefficient of 0.0402. Figure 9a 
depicts the initial and final shapes of the main element and the flap, whereas Fig. 9b 
shows the control grid as well as the contours of vertical perturbations after the design. 
For this case, the control grid is not rectangular and contains 101 points in the direction 
approximately aligned with the free stream and 41 points in the normal direction. Only 7 
design variables are used on the top and bottom boundaries of the control grid, for a 
total of 14 design variables. As seen in Fig. 9b, the control grid extends ahead of and 
behind the airfoil. The trailing edge of each airfoil is held fixed by specifying internal 
boundary conditions as described earlier. 

After ten design cycles, the final lift and drag coefficients are 0.1351 and 0.0222 
respectively, resulting in a 40% decrease in drag coefficient. It is seen in Fig. 9a that the 
upper and lower surfaces of the modified airfoil near the leading edge of the main 
element are slightly lower than the baseline geometry, although the overall thickness is 
approximately unchanged. Toward the aft end of the main element, the upper surface is 
slightly above the original surface whereas the lower surface is only very slightly raised. 
Consequently, the thickness at the aft end of the main element is increased. The 
geometry of the flap on the modified airfoil appears to be only slightly changed over that 
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of the original geometry. Density contours for the baseline and modified geometries are 
shown in Figs. 10a and 10b. After the design, the shock on the main element is not 
eliminated but is smaller in extent when compared to the baseline configuration.
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The control-grid methodology has also been developed and tested for three-
dimensional applications. For these applications, the flow solver developed at the 
University of Tennessee at Chattanooga [25,26] is used for analysis of the flow field, 
gradients are obtained using the adjoint solver as described in Refs. [7-8], and the 
PORT trust-region optimization code is used [15].

To demonstrate the methodology in three dimensions, two examples are provided. 
For the first example, shown in Fig. 11, a wing is parameterized using two control grids. 
In this example, an optimization is not performed but forced changes are imposed to 
artificially manipulate the geometry. As seen in Fig. 11a, the first control grid is placed 
near the mid-span of the wing whereas the second control grid is placed near the tip. 
The colored contours in Figs. 11a-11c indicate actual perturbations in the direction 
normal to the surface of the wing. In Fig. 11b, the unperturbed geometry is shown while 
the perturbed geometry is shown in Fig. 11c. It is seen that near the mid-span section of 
the wing, a significant bump has been developed whereas the tip is drooped. Although 
not readily apparent in Fig. 11c, the airfoil cross-sections near the tip of the wing are 
also significantly changed.   

Figure 11a. Baseline 
geometry with two 
control grids

Figure 11b. Contours of 
perturbations overlaid 
on baseline geometry

Figure 11c. Contours of 
perturbations overlaid 
on modified geometry

Figures 12a-12c depict the second three-dimensional example. Here, shape 
optimization is used to double the lift coefficient for a wing, while holding the Mach 
number and angle of attack fixed at 0.6 and 3.0 degrees respectively. The initial 
geometry, shown in Figure 12a, is an unswept wing with NACA 0012 airfoils at each 
spanwise station. Also shown in the figure is a representative of a structural model that 
includes several ribs and wing spars.  The upper surface of the wing is shown to be 
transparent so the structural model can be clearly seen, whereas the tip region is 
opaque to more clearly demonstrate the changes to the airfoil section near the tip. It 
should be noted that although a structural model is shown, no structural analysis is 
actually included as part of the optimization procedure. As such, the structural model is 
“passive” and is only included to demonstrate that although the aerodynamic and 
structural grids have been generated independently, they change simultaneously in 
response to changes in the design variables. As with Fig. 11, the color contours indicate 
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the size of the perturbations that are applied to the original geometry after the 
optimization.

The control grid, shown in Fig. 12b, has only 11 points in the spanwise direction with 
a 21x11 grid in the plane normal to the span. Although not shown, a 6x6x2 design grid is 
used, with only 2 planes of design variables in the spanwise direction. To transfer the 
design variables from the design grid to the control grid, linear interpolation is first used 
along each of the twelve edges to determine boundary conditions for the control grid 
along these edges. Note that boundary conditions on each of the six faces of the control 
grid are typically determined using linear interpolation from the design grid. However, in 
this application, in the plane of the control grid nearest the wing tip, a smoothing 
procedure similar to that used for two-dimensional applications is first used instead of 
linearly interpolating the data from the design grid. The data on the remaining planes is 
then determined using linear interpolation from the points on the design grid to those on 
the control grid. The entire volume is then smoothed to propagate the perturbations at 
the boundaries into the interior. In this application, the only non-zero design variables 
are those that lie on the upper and lower line segments defining the plane nearest the 
wing tip. Combined with the fact that only two spanwise planes are used for the design 
grid, the effect is that modifications are made to the geometry of the airfoil sections near 
the tip, which decrease linearly as the wing root is approached. In this manner, changes 
in the airfoil profiles may be introduced without the possibility of simultaneously causing 
spanwise oscillations so the airfoil sections vary smoothly between the wing tip and the 
root. This procedure is referred to as “face smoothing.” As seen in Fig. 12b, after the 
optimization is complete, larger perturbations are evident on the face of the control grid 
nearest the tip, which subsequently decrease as the root is approached. 

After only two design cycles, the target lift has been achieved to eleven decimal 
places. As shown in Fig. 12c, the final geometry exhibits noticeably more camber at the 
tip, which decreases linearly to zero at the wing root. As also observed, the structural 
model has also been deformed in response to changes in the design variables, and 
remains congruent with the aerodynamic model.
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Figure 12a. Baseline 
aerodynamic and 
structural models

Figure 12b. Control grid 
with contours of 
perturbations

Figure 12c. Final 
aerodynamic and 
structural models

4. Summary

A new procedure has been developed to parameterize geometries for use in design 
optimization. The technique shares many of the positive qualities of parameterizations 
based on free-form deformation including the fact that it may be used in multidisciplinary  
applications. However, the number of design variables can be reduced when compared 
to free-form deformation so they increase as the square of the size of the design grid 
instead of cubicly. Further, the control grid is held fixed during the entire design cycle, 
preventing it from folding on itself and thereby allowing very large deformations. The 
method has been implemented in both two and three dimensions and exemplary 
designs have been demonstrated. 
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