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ABSTRACT
Substantial health disparities exist between African Americans and Caucasians in
the United States. Copy number variations (CNVs) are one form of human genetic
variations that have been linked with complex diseases and often occur at different
frequencies among African Americans and Caucasian populations. Here, we aimed
to investigate whether CNVs with differential frequencies can contribute to health
disparities from the perspective of gene networks. We inferred network clusters from
human gene/protein networks based on two different data sources. We then evalu-
ated each network cluster for the occurrences of known pathogenic genes and genes
located in CNVs with different population frequencies, and used false discovery rates
to rank network clusters. This approach let us identify five clusters enriched with
known pathogenic genes and with genes located in CNVs with different frequencies
between African Americans and Caucasians. These clustering patterns predict two
candidate causal genes located in four population-specific CNVs that play potential
roles in health disparities

Subjects Bioinformatics, Genetics, Genomics
Keywords Copy Number Variations (CNVs), Health disparities, Gene Ontology, Clustering,
Gene-disease association, Gene networks

INTRODUCTION
Health disparities refer to differences in the disease distribution and/or health outcomes

across racial and ethnic groups. In the United States, health disparities in African

Americans are found in life expectancy, death rates, and health measures (National Center

for Health Statistics, 2013). In addition to social determinants such as socio-economical

status, health care access and cultural practices, human genetic variations play a significant

role in health disparities. Genetic variations at different frequencies among populations

can lead to differences in disease susceptibility. Studies on genetic variations and disease

association are greatly advanced by the completion of the International HapMap Project

and new genome sequencing techniques (Ramos & Rotimi, 2009).

Genome-wide association studies (GWAS) are currently an effective approach to

identify disease-associated genetic variations (Hirschhorn & Daly, 2005; Wang et al., 2005).

Although GWAS have revealed many disease-associated single nucleotide polymorphisms
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(SNPs), GWAS are often limited to individual genetic variations and often do not

address complex gene interactions. Moreover, associated SNPs are often located in

haplotype blocks that contain more than one gene. To address these limitations, human

gene networks have been used to improve GWAS detection of genes associated with

complex diseases, such as the comorbidity analysis (Sharma et al., 2013), an improved

guilt-by-association method (Baranzini et al., 2009; Lee et al., 2011), and a distance-based

scoring method using seeded diseases genes (Liu et al., 2012).

Copy number variations (CNVs) are duplications or deletions of genomic segments

that can contain one or more genes (McCarroll & Altshuler, 2007). CNVs have been

associated with complex diseases such as autism (Gilman et al., 2011; Glessner et al., 2009).

Computational tools and methods, such as the CNV annotator (Zhao & Zhao, 2013) and

NETBAG (Gilman et al., 2011), have been developed to address the potential roles of CNVs

in human diseases. Recently, it was reported that CNVs can occur at different frequencies

between African Americans and Caucasians (McElroy et al., 2009), and naturally the

question about the potential roles of CNVs in health disparity is raised.

Here, we aim to investigate the clustering of pathogenic genes and genes in CNVs

with different population frequencies in two human gene/protein networks, in order

to better understand health disparities between African Americans and Caucasians.

The current human gene/protein networks contain thousands of interacting molecules

(Barabasi, Gulbahce & Loscalzo, 2011; Vidal, Cusick & Barabasi, 2011). We will partition

gene networks into clusters and use these clusters to predict potential diseases associated

with population-specific CNVs, based on the rationale that interacting genes often share

similar functions (Pizzuti, Rombo & Marchiori, 2012).

MATERIALS AND METHODS
Our overall work flow is shown in Fig. 1. To identify potential diseases associated

with CNVs, our basic idea is to identify gene interaction clusters that involve genes in

population-specific CNVs. The diseases associated with a CNV-gene’s interacting genes are

potential diseases associated with this CNV. Specifically, we first obtained two human

gene/protein networks and partitioned them into gene clusters. We then performed

statistical tests on each cluster to estimate its significances in containing pathogenic genes

and genes in population-specific CNVs. Finally, we ranked gene clusters based on false

discovery rates (FDRs). High-ranked clusters were enriched both for pathogenic genes

and for genes in CNVs with differential frequencies between African-Americans and

Caucasians. These clusters were then searched for enriched Gene Ontology (GO) terms

and related disease phenotypes.

Network clustering
We obtained two human gene/protein networks, one from Human Protein Reference

Database (HPRD) (Mishra et al., 2006; Peri et al., 2003; Prasad et al., 2009) and another

from MultiNet (Khurana et al., 2013). The HPRD network (referred to as HPRDNet)

contains only physical protein–protein interactions (PPIs), whereas MultiNet is a unified

network including PPI, phosphorylation, metabolic, signaling, genetic and regulatory

Jiang et al. (2015), PeerJ, DOI 10.7717/peerj.677 2/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.677


Figure 1 Overview of our approach to identify CNVs associated with health disparities.

networks. These two networks share 8,468 genes (89.6% of HPRDNet and 58.6% of

MultiNet) but only 8,769 interactions (23.8% of HPRDNet and 8% of MultiNet). These

two networks were both partitioned into gene clusters using the Markov Cluster (MCL)

Algorithm (Van Dongen, 2000). Clustering was done with the inflation parameter I ranging

from 1.1 to 2.0 with a step of 0.1. Descriptive statistics of the two networks and their

clustering results are summarized in Table S1.

Mapping of CNVs and SNPs
CNV coordinates were obtained from a CNV map in African Americans and Caucasians

(McElroy et al., 2009). There are three types of CNVs in this map: (1) CNVs only

occurred in African Americans; (2) CNVs only occurred in Caucasians; and (3) CNVs

occurred in both African Americans and Caucasians. To simplify the analysis, we further

partitioned the last type: CNVs that occurred more than 50% in African Americans or

in Caucasians were combined with the first and second types of CNVs, respectively. This

repartition resulted in two modified CNV sets with differential population frequencies.

The coordinates of these CNVs were then searched in the UCSC Genome Database

(Karolchik et al., 2014) through its MySQL API to obtain the corresponding gene sets.

For simplicity, CNVs that occur more frequently in African Americans were called

African-American CNVs or CNV AA; CNVs that occur more frequently in Caucasians

were called Caucasian CNVs or CNV CA.

Disease-associated SNPs were retrieved from a file, OmimVarLocusIdSNP.bcp, from

the FTP site of Single Nucleotide Polymorphism Database (dbSNP) (Sherry et al., 2001).

Coordinates of these SNPs were then queried against the MySQL API of the UCSC Genome
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Table 1 (A) Contingency table for Fisher’s exact test on pathogenic genes. (B) Contingency table for
Fisher’s exact test on CNV genes.

(A)

Pathogenic genes Non-pathogenic genes Total

Genes in this cluster q m − q m

Genes in other clusters Q − q N − Q − m + q N − m

Total Q N − Q N

(B)

CNV genes Non-CNV genes Total

Genes in this cluster s m − s m

Genes in other clusters S − s N − S − m + s N − m

Total S N − S N

Notes.
For each cluster, contingency tables were constructed for right-tailed Fisher’s exact Tests. (A) is for pathogenic signifi-
cance test, and (B) is for tests of enrichment significance of CNV genes (CNV AA or CNV CA genes). Q and q are the
number of pathogenic genes in the whole networks and that in current cluster, respectively. N and m are the number of
genes in whole networks and that in current cluster, respectively. S and s are the number of CNV AA or CNV CA genes
in the whole networks and that in current cluster, respectively.

Database to identify genes in which those SNPs are located. This identified gene set was

termed as pathogenic genes. Details of gene mapping results are shown in Table S2.

Cluster analyses
Clusters were obtained from both HPRDNet and MultiNet using MCL with a range of

ten inflation parameters. For each cluster, contingency tables were constructed using the

numbers of pathogenic genes and CNVs related genes (Tables 1(A) and 1(B)). Right-tailed

Fisher’s exact tests were applied to these contingency tables to calculate enrichment

significance of pathogenic genes, and CNV AA or CNV CA genes, respectively. Based

on obtained p-values, false discovery rates (FDRs) were calculated using the Robust FDR

Routine (Pounds & Cheng, 2006). Fisher’s exact tests and Robust FDR Routine were both

performed in the R statistical environment (R Development Core Team, 2013). Ranking

was applied to clusters with p-value <0.10 and FDR <0.20 in both enrichment tests for

pathogenic genes and population-preferred CNVs genes. Assuming both enrichment tests

are independent, the FDR values were multiplied to jointly rank the network clusters.

The same cluster analysis procedure was applied to clustering results with different MCL

inflation parameters.

For clarity, we focused our functional analyses on clusters that were consistently ranked

at the first place with different MCL inflation parameter values.

Biological significance analyses
Biological relevance of selected network clusters were analyzed by GOrilla (Eden et al.,

2009) to search for enriched gene ontology (GO) terms. In GOrilla search, genes in the

selected clusters were target genes, and all genes in the network were treated as background

genes. To investigate the possible links of population-specific CNVs to heath disparities,

we first identified significantly enriched GO terms that are associated with CNV AA or
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Figure 2 Graph representations of selected clusters for biological significance analysis. Each rounded
rectangle represents a gene and each gray line represents a gene–gene interaction. Black rounded rectan-
gles represent non-pathogenic genes and orange rounded rectangles represent pathogenic genes. Genes
labeled with red or blue ovals are located in African American CNVs or in Caucasian CNVs. Genes with
green lines share the same GO terms. In each cluster, different line types represent the enrichment of
different GO terms. Line types shown in different clusters refer to the enrichment of different GO terms.

CNV CA genes. We then focused on the pathogenic genes related to the enriched GO

terms, and examined their associated disease phenotypes in OMIM database (Online

Mendelian Inheritance in Man, 2014).

RESULTS AND DISCUSSIONS
Top-ranked network clusters
We performed cluster analyses with ten MCL inflation parameter values for both

HPRDNet and MultiNet (Table S1), and scored the resulted clusters for their potential

roles in CNV related health disparities (Table S3). For clarity, we focused on clusters

that are consistently top-ranked with different MCL inflation parameters. The graph

representations of selected clusters are shown in Fig. 2.

We found four similar clusters, (AA1, AA2, and AA3 in HPRDNet and AA4 in

Multinet), that are enriched both for pathogenic genes and for genes located in African-

American CNVs (Table 2). In HPRDNet, cluster AA1, AA2 and AA3 together were ranked

at first place five times; and cluster AA4 were ranked five times in Multinet (Table S3).

Cluster AA1 contains 11 genes, within which eight are pathogenic genes (Fig. 2A). Cluster

AA2 and AA3 contain one and two more genes than cluster AA1, respectively (Fig. S1). In

MultiNet, cluster AA4 contains five genes and can be considered as a sub-cluster of cluster

AA1, AA2 and AA3 (Fig. 2B). In these four clusters, gene HSPB1 is mainly duplicated in

African Americans (Tables 2 and 3). Based on GO enrichment tests, this family of clusters
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Table 2 Cluster analysis results for HPRDNet and MultiNet.

Network Cluster name CNV AA CNV CA Pathogenic
gene number

Cluster
size

HPRDNet AA1 HSPB1 – 8 11

AA2 HSPB1 – 8 12

AA3 HSPB1 – 8 13

CA1 – ATP2A1 4 5

MultiNet AA4 HSPB1 – 5 5

CA1 – ATP2A1 4 5

Notes.
Selected clusters were listed. CNV AA and CNV CA are CNV-related genes.

Table 3 Detected genes with potential roles in health disparity and their located CNVs.

Gene Chr Gene coordinates CNV region CNV type CNV occurrence
preference

HSPB1 7 75,931,861–75,933,614 75,867,431–76,481,102 Duplication Only in African
American

75,929,740–76,481,102 Duplication Only in African
American

75,929,740–76,568,388 Duplication More in African Ameri-
can than in Caucasian

ATP2A1 16 28,889,726–28,915,830 28,306,730–28,936,772 Duplication Only in Caucasian

Notes.
Chr represents chromosomes. CNV Regions are regions of CNVs identified in more than a single individual; all CNVs
listed have a type of Duplication, referring to one copy increase. CNV Regions and Types are from the CNV map
(McElroy et al., 2009). CNV Occurrence preference describes in which population those CNVs have higher occurrence
frequency.

was found to be involved in visual perception and eye development. Since cluster AA1, AA2

and AA3 were selected from the same network and are highly similar to each other, only

cluster AA1 and AA4 will be discussed further for their potential roles in health disparities.

In both HPRDNet and MultiNet, the same cluster, named as CA1, was identified to

be enriched with both pathogenic genes and genes located in Caucasian CNVs (Table 2).

Cluster CA1 was ranked at first place four times in HPRDNet and seven times in MultiNet

(Table S3). This cluster contains five genes, and four of them are associated with diseases

(Fig. 2C). The GO term enrichment tests suggested that cluster CA1 was involved in

calcium ion transportation and muscle contraction regulation. Cluster CA1 contains

gene ATP2A1 that is duplicated only in Caucasians (Table 3).

Duplication of HSPB1 and health disparities in African Americans
Gene HSPB1 is located in genomic duplication regions occurring more frequently in

African Americans (Table 3), and is found in the cluster family of AA1, AA2, AA3, and AA4

(Table 2). For cluster AA1, only one GO molecular function term related to gene HSPB1 is

significantly enriched (Cluster AA1 in Table 4). For cluster AA4, in addition to the same en-

riched GO molecular functions term, three GO biological process terms and one GO cellu-
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Table 4 Enriched GO terms with CNV-genes in the identified network clusters.

Clusters Involved genes GO domain GO ID GO term

AA1 HSPB1, CRYAA,
CRYAB,CRYBB2,
CRYBA1, CRYBA2

Molecular function GO:0042802 Identical protein binding

AA4 HSPB1, CRYAA, CRYAB Biological process GO:0043086 Negative regulation of
catalytic activity

Biological process GO:0043066 Negative regulation of
apoptotic process

Biological process GO:0043069 Negative regulation of
programmed cell death

HSPB1, CRYAA, CRYAB,
CRYBB2

Molecular function GO:0042802 Identical protein binding

HSPB1, CRYAB Cellular component GO:0030018 Z disc

CA1a ATP2A1, ATP2A2, PLN,
SLN

Biological process GO:0090257 Regulation of muscle
system process

Biological process GO:0006816 Calcium ion transport

Cellular component GO:0033017 Sarcoplasmic reticulum
membrane

ATP2A1, ATP2A2, PLN Biological process GO:0003012 Muscle system process

Biological process GO:0006874 Cellular calcium ion
homeostasis

Cellular component GO:1902495 Transmembrane trans-
porter complex

ATP2A1, ATP2A2, SLN Cellular component GO:0016529 Sarcoplasmic reticulum

ATP2A1, ATP2A2 Biological process GO:0032470 Positive regulation of
endoplasmic reticulum
calcium ion concentration

Cellular component GO:0031095 Platelet dense tubular
network membrane

Notes.
Biological relevance of network clusters was analyzed by GOrilla (Eden et al., 2009) to search for enriched gene ontology
(GO) terms. Genes in the selected clusters were used as target genes, and all genes in the networks were treated
as background genes. Three types of GO terms were analyzed: biological process, molecular function and cellular
component. The default p-value threshold (1 × 10−3) was used. In the results, enriched GO terms that are associated
with CNV AA gene HSPB1 and CNV CA gene ATP2A1 were selected and listed in the table.

a When multiple enriched GO terms show similar meanings, we only presented the most general terms.

lar component term are found significantly enriched (Cluster AA4 in Table 4). In the genes

with the enriched GO terms, four of them are known to be associated with diseases (Clus-

ter AA1/AA4 in Table 5). Among these four genes, three of them are implicated in health

disparities of African Americans. Specifically, gene CRYAB is related to dilated cardiomy-

opathy and myofibrillar myopathy. African Americans were found at higher risk for idio-

pathic dilated cardiomyopathy compared with Caucasian, and this could not be explained

by income, education, alcohol use, smoking, or history of some other diseases (Coughlin,

Labenberg & Tefft, 1993). Moreover, gene CRYAA, CRYAB and CRYBB2 are all related to

various types of cataract. It was reported that age-specific blindness prevalence was higher

for African Americans compared with Caucasian, and cataract accounts for 36.8% of all

blindness in African American, but for only 8.7% in Caucasian (Congdon et al., 2004).
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Table 5 Associated diseases of genes with enriched GO terms.

Cluster Gene Associated Disease

AA1 and AA4 HSPB1 Axonal Charcot-Marie-Tooth disease type 2F

Distal hereditary motor neuronopathy type 2B

CRYAA Multiple types of cataract 9

CRYAB Multiple types of cataract 16

Dilated cardiomyopathy-1II

Myofibrillar myopathy-2

CRYAB-related fatal infantile hypertonic myofibril-
lar myopathy

CRYBB2 Multiple types of Cataract 3

CA1 ATP2A1 Brody myopathy

ATP2A2 Acrokeratosis verruciformis

Darier disease

PLN Dilated cardiomyopathy-1P

Familial hypertrophic cardiomyopathy-18

Notes.
Only GO terms that contain CNV-genes are studied due to our focus on the role of CNV-genes in health disparity.

How could HSPB1 duplication contribute to health disparities? Based on the direct

interaction between HSPB1 and CRYAB and the fact that both genes are expressed in

Z-disc (Table 4), it is plausible that HSPB1 may play an unknown role in cardiomyopathy.

Alternatively, HSPB1 might be involved in cataract, because HSPB1, CRYAA and CRYAB

interact with each other and all can negatively regulate the apoptotic process (Table 4).

Studies suggested that lens epithelial cell apoptosis may be a common cellular basis for

initiation of non-congenital cataract formation (Li et al., 1995), and inhibition of epithelial

cell apoptosis may be one possible mechanism that inhibits cataract development (Nahomi

et al., 2013). Our results here argue for further experimental studies to test the possible role

of HSPB1 CNVs in cardiomyopathy or cataract/blindness in African Americans.

Duplication of ATP2A1 and cardiomyopathy
Gene ATP2A1 in cluster CA1 is located in a genomic duplication region that occurs only in

Caucasians (Table 3). We found that four genes in cluster CA1 are enriched with various

GO terms that involve ATP2A1 (Cluster CA1 in Table 4), and three of those four genes are

related to diseases when they are mutated (Cluster CA1 in Table 5).

How would ATP2A1 influence health disparities? Among the diseases related to the

pathogenic genes in cluster CA1, idiopathic dilated cardiomyopathy occurs less often in

Caucasians than in African Americans (Coughlin, Labenberg & Tefft, 1993). Based on the

fact that ATP2A1 interacts directly with PLN, and that they are both involved in the same

biological processes and exist in the same cellular component (Table 4), it is plausible to

suggest that duplication of ATP2A1 may lead to the health disparity in idiopathic dilated

cardiomyopathy. One possibility is that higher copies of ATP2A1 may offer some benefits

to Caucasians. Studies have shown that increased activity of sarco/endoplasmic reticulum

Ca2+-ATPase 1 (SERCA1), which is encoded by ATP2A1, can partially rescue the heart
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from ·OH-induced injury (Hiranandani, Bupha-Intr & Janssen, 2006), and protect the

heart from ischemia-reperfusion (I/R) injury (Talukder et al., 2007). Another possibility is

that higher copies of ATP2A1 only lead to moderate risk of cardiomyopathy in Caucasians,

and this moderate effect is overshadowed by other genetics factors not covered by our

CNV dataset.

Remarks, limitations, and future directions
Although genetic factors play a crucial role in health disparities, only a few association

studies have been reported in health disparities in common complex diseases, such as

breast cancer (Long et al., 2013), prostate cancer (Bensen et al., 2014; Bensen et al., 2013; Xu

et al., 2011), type 2 diabetes (Ng et al., 2014) and vascular diseases (Wei et al., 2011).

Our study here is closely related to network-based meta-analyses of GWAS results

(Atias, Istrail & Sharan, 2013; Leiserson et al., 2013). One important aim of network-based

meta-analysis of GWAS data is to distinguish the bona fide causal gene from other genes

in the same haplotype block associated with the significant SNP. Likewise, our network

approach aims to predict a potential causal gene from a population-specific CNV that can

be associated with pathogenic genes.

Noticeably, our method does not require network permutations, whereas many existing

methods of network/pathway based meta-analyses of GWAS data do. This difference is

because we first partitioned the network into clusters and then performed association tests.

In comparison, many network based GWAS meta-analysis methods use traversal distances

to seed genes to evaluate candidate genes. This kind of traversal distance based method

generally prohibits pre-partition of network into clusters and require network permuta-

tions for estimation of p-values. It can be seen that our cluster-based method naturally

accommodates multiple candidate genes in the association analysis, whereas traversal

distance in a network is by definition often limited to single candidate gene evaluation.

The clustering method of MCL that we chose has been consistently reported to work

better than several other methods in detecting annotated protein complexes (Pizzuti &

Rombo, 2014), is more tolerant to noises in the network datasets (Vlasblom & Wodak,

2009), and is argued to be the most reliable and robust method for network clustering

analysis especially when interaction networks contain many noises and missing data

(Vlasblom & Wodak, 2009; Wang et al., 2010). Nevertheless, this clustering procedure

has introduced some limitations in our analysis.

The first major limitation is that the biological meanings of many clusters generated

by MCL may be limited or ambiguous. For example, GO enrichment test suggested that

cluster AA1 and AA4 are involved in visual perception and eye development, but GO

term related to cardiomyopathy was not enriched. Moreover, gene–gene interactions

(also known as edges) in our networks are unweighted. Since MCL basically partitions

genes into strongly connected groups and separates these groups based on weak-flows

(Lin et al., 2007), MCL essentially partitions networks only based on gene connection

patterns (i.e., network topology) in this study. It is known that gene expression can be

used to weight gene/protein interactions and thereby improve the biological relevance of
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gene/protein networks (Csermely et al., 2013; Liu & Chen, 2012; Liu et al., 2013; Qin &

Yang, 2008; Wu, Zhu & Zhang, 2012). In the present study, we were not able to use gene

expression data sets relevant for health disparity-related diseases—a limitation that we

hope to overcome in the future.

The second major limitation is the difficulty for parameter optimization due to uneven

cluster sizes. Like other clustering methods, MCL yields clusters with uneven sizes, and

makes it challenging for us to optimize the inflation parameter to find a level of sensitivity

that can be acceptable in all cases. Consequently, significant associations were mostly

detected when clusters sizes were moderate but not when cluster sizes were too large.

We mitigated this problem to some extent by trying a range of values for the inflation

parameter, but an optimal ‘default’ setting remains a challenge.

In future studies, we plan to address these limitations of the present study by integrating

functional genomics data sets, such as gene expressions, into gene networks to generate

weighted interactions, and by developing step-wise clustering methods.

CONCLUSIONS
In this study, gene clusters were inferred from two human gene/protein networks,

HPRDNet and MultiNet, by the MCL clustering algorithm with different parameters.

Each cluster was ranked using the products of FDR values based on the right-tailed Fisher’s

exact tests for enrichment of pathogenic or CNV-genes. Five clusters were consistently

found to be enriched with both pathogenic genes and genes located in African-American

or Caucasian CNVs. In cluster AA1, AA2, AA3 and AA4, gene HSPB1 is duplicated more

frequently in African Americans. In clusters CA1, gene ATP2A1 is duplicated only in

Caucasians. All gene clusters are associated with certain diseases that occur more often in

one population than in the other. Although we only studied population-preferred CNVs

and did not consider the roles of other genetic factors, our computational studies have

generated some interesting hypotheses for further experimental studies to understand

health disparities in these diseases.

List of Key Abbreviations

CNV Copy number variation

SNP Single nucleotide polymorphism

PPIN Protein–protein interaction network

HPRD Human protein reference database

PPI Protein–protein interaction

AA African American
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FDR False discovery rate
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OMIM Online Mendelian Inheritance in Man
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SERCA1 Sarco/endoplasmic reticulum Ca2+-ATPase 1

Jiang et al. (2015), PeerJ, DOI 10.7717/peerj.677 10/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.677


ACKNOWLEDGEMENTS
The authors thank three reviewers for constructive comments that have greatly improved

the quality and presentation of this work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Yi Jiang and Li Yang were partially supported by the Tennessee Higher Education

Commission’s Center of Excellence in Applied Computational Science and Engineering.

Hong Qin was partially supported by the Spelman Center for Health Disparities Research

and Education (NIH 5P20MD000215-05) and the Spelman ASPIRE program (NSF award

number 0714553). The funders had no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Tennessee Higher Education Commission’s Center of Excellence in Applied Computa-

tional Science and Engineering.

Spelman Center for Health Disparities Research and Education: NIH 5P20MD000215-05.

Spelman ASPIRE program: NSF award #0714553.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yi Jiang performed the experiments, analyzed the data, wrote the paper, prepared figures

and/or tables, reviewed drafts of the paper.

• Hong Qin conceived and designed the experiments, analyzed the data, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

• Li Yang conceived and designed the experiments, wrote the paper, reviewed drafts of the

paper.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.677#supplemental-information.

REFERENCES
Atias N, Istrail S, Sharan R. 2013. Pathway-based analysis of genomic variation data. Current

Opinion in Genetics 23:622–626 DOI 10.1016/j.gde.2013.09.002.

Barabasi AL, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to
human disease. Nature Reviews Genetics 12:56–68 DOI 10.1038/nrg2918.

Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, Wu W,
Uitdehaag BM, Kappos L, Gene MSAC, Polman CH, Matthews PM, Hauser SL, Gibson RA,

Jiang et al. (2015), PeerJ, DOI 10.7717/peerj.677 11/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.7717/peerj.677#supplemental-information
http://dx.doi.org/10.1016/j.gde.2013.09.002
http://dx.doi.org/10.1038/nrg2918
http://dx.doi.org/10.7717/peerj.677


Oksenberg JR, Barnes MR. 2009. Pathway and network-based analysis of genome-wide
association studies in multiple sclerosis. Human Molecular Genetics 18:2078–2090
DOI 10.1093/hmg/ddp120.

Bensen JT, Xu Z, McKeigue PM, Smith GJ, Fontham ET, Mohler JL, Taylor JA. 2014. Admixture
mapping of prostate cancer in African Americans participating in the North Carolina–Louisiana
Prostate Cancer Project (PCaP). Prostate 74:1–9 DOI 10.1002/pros.22722.

Bensen JT, Xu Z, Smith GJ, Mohler JL, Fontham ET, Taylor JA. 2013. Genetic polymorphism
and prostate cancer aggressiveness: a case-only study of 1,536 GWAS and candidate SNPs in
African-Americans and European-Americans. Prostate 73:11–22 DOI 10.1002/pros.22532.

Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, Kempen J, Taylor HR,
Mitchell P. 2004. Causes and prevalence of visual impairment among adults in the United
States. Archives of Ophthalmology 122:477–485 DOI 10.1001/archopht.122.4.477.

Coughlin SS, Labenberg JR, Tefft MC. 1993. Black–white differences in idiopathic dilated
cardiomyopathy: the Washington DC dilated Cardiomyopathy Study. Epidemiology 4:165–172
DOI 10.1097/00001648-199303000-00013.

Csermely P, Korcsmaros T, Kiss HJ, London G, Nussinov R. 2013. Structure and dynamics of
molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacology
and Therapeutics 138:333–408 DOI 10.1016/j.pharmthera.2013.01.016.

Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: a tool for discovery and
visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48
DOI 10.1186/1471-2105-10-48.

Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. 2011. Rare de novo variants
associated with autism implicate a large functional network of genes involved in formation and
function of synapses. Neuron 70:898–907 DOI 10.1016/j.neuron.2011.05.021.

Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW,
Bradfield JP, Imielinski M, Frackelton EC, Reichert J, Crawford EL, Munson J, Sleiman PM,
Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M,
Soorya L, Klei L, Piven J, Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS,
Zurawiecki D, McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A,
Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T, McMahon WM,
Wassink TH, Sweeney JA, Nurnberger JI, Coon H, Sutcliffe JS, Minshew NJ, Grant SF,
Bucan M, Cook EH, Buxbaum JD, Devlin B, Schellenberg GD, Hakonarson H. 2009. Autism
genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–573
DOI 10.1038/nature07953.

Hiranandani N, Bupha-Intr T, Janssen PM. 2006. SERCA overexpression reduces hydroxyl radical
injury in murine myocardium. American Journal of Physiology. Heart and Circulatory Physiology
291:H3130–H3135 DOI 10.1152/ajpheart.01315.2005.

Hirschhorn JN, Daly MJ. 2005. Genome-wide association studies for common diseases and
complex traits. Nature Reviews Genetics 6:95–108 DOI 10.1038/nrg1521.

Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA,
Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH,
Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM,
Kent WJ. 2014. The UCSC genome browser database: 2014 update. Nucleic Acids Research
42:D764–D770 DOI 10.1093/nar/gkt1168.

Khurana E, Fu Y, Chen J, Gerstein M. 2013. Interpretation of genomic variants using a unified
biological network approach. PLoS Computational Biology 9:e1002886
DOI 10.1371/journal.pcbi.1002886.

Jiang et al. (2015), PeerJ, DOI 10.7717/peerj.677 12/15

https://peerj.com
http://dx.doi.org/10.1093/hmg/ddp120
http://dx.doi.org/10.1002/pros.22722
http://dx.doi.org/10.1002/pros.22532
http://dx.doi.org/10.1001/archopht.122.4.477
http://dx.doi.org/10.1097/00001648-199303000-00013
http://dx.doi.org/10.1016/j.pharmthera.2013.01.016
http://dx.doi.org/10.1186/1471-2105-10-48
http://dx.doi.org/10.1016/j.neuron.2011.05.021
http://dx.doi.org/10.1038/nature07953
http://dx.doi.org/10.1152/ajpheart.01315.2005
http://dx.doi.org/10.1038/nrg1521
http://dx.doi.org/10.1093/nar/gkt1168
http://dx.doi.org/10.1371/journal.pcbi.1002886
http://dx.doi.org/10.7717/peerj.677


Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. 2011. Prioritizing candidate disease genes by
network-based boosting of genome-wide association data. Genome Research 21:1109–1121
DOI 10.1101/gr.118992.110.

Leiserson MD, Eldridge JV, Ramachandran S, Raphael BJ. 2013. Network analysis of GWAS data.
Current Opinion in Genetics & Development 23:602–610 DOI 10.1016/j.gde.2013.09.003.

Li WC, Kuszak JR, Dunn K, Wang RR, Ma W, Wang GM, Spector A, Leib M, Cotliar AM,
Weiss M, Espy J, Howard G, Farris RL, Auran J, Donn A, Hofeldt A, Mackay C, Merriam J,
Mittl R, Smith TR. 1995. Lens epithelial cell apoptosis appears to be a common cellular basis
for non-congenital cataract development in humans and animals. Journal of Cell Biology
130:169–181 DOI 10.1083/jcb.130.1.169.

Lin C, Cho Y-R, Hwang W-C, Pei P, Zhang A. 2007. Clustering methods in a protein–protein
interaction network. In: Hu X, Pan Y, eds. Knowledge discovery in bioinformatics. Hoboken:
John Wiley & Sons, Inc., 319–355 DOI 10.1002/9780470124642.ch16.

Liu ZP, Chen L. 2012. Proteome-wide prediction of protein–protein interactions from
high-throughput data. Protein Cell 3:508–520 DOI 10.1007/s13238-012-2945-1.

Liu ZP, Wang Y, Zhang XS, Chen L. 2012. Network-based analysis of complex diseases. IET
Systems Biology 6:22–33 DOI 10.1049/iet-syb.2010.0052.

Liu ZP, Zhang W, Horimoto K, Chen L. 2013. Gaussian graphical model for identifying
significantly responsive regulatory networks from time course high-throughput data. IET
Systems Biology 7:143–152 DOI 10.1049/iet-syb.2012.0062.

Long J, Zhang B, Signorello LB, Cai Q, Deming-Halverson S, Shrubsole MJ, Sanderson M,
Dennis J, Michailiou K, Easton DF, Shu XO, Blot WJ, Zheng W. 2013. Evaluating
genome-wide association study-identified breast cancer risk variants in African–American
women. PLoS ONE 8:e58350 DOI 10.1371/journal.pone.0058350.

McCarroll SA, Altshuler DM. 2007. Copy-number variation and association studies of human
disease. Nature Genetics 39:S37–S42 DOI 10.1038/ng2080.

McElroy JP, Nelson MR, Caillier SJ, Oksenberg JR. 2009. Copy number variation in African
Americans. BMC Genetics 10:15 DOI 10.1186/1471-2156-10-15.

Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K,
Anuradha N, Reddy R, Raghavan TM, Menon S, Hanumanthu G, Gupta M, Upendran S,
Gupta S, Mahesh M, Jacob B, Mathew P, Chatterjee P, Arun KS, Sharma S, Chandrika KN,
Deshpande N, Palvankar K, Raghavnath R, Krishnakanth R, Karathia H, Rekha B, Nayak R,
Vishnupriya G, Kumar HG, Nagini M, Kumar GS, Jose R, Deepthi P, Mohan SS, Gandhi TK,
Harsha HC, Deshpande KS, Sarker M, Prasad TS, Pandey A. 2006. Human protein reference
database–2006 update. Nucleic Acids Research 34:D411–D414 DOI 10.1093/nar/gkj141.

Nahomi RB, Wang B, Raghavan CT, Voss O, Doseff AI, Santhoshkumar P, Nagaraj RH. 2013.
Chaperone peptides of alpha-crystallin inhibit epithelial cell apoptosis, protein insolubilization,
and opacification in experimental cataracts. Journal of Biological Chemistry 288:13022–13035
DOI 10.1074/jbc.M112.440214.

National Center for Health Statistics. 2013. Health, United States, 2012: With Special Feature on
Emergency Care. Hyattsville: National Center for Health Statistics.

Ng MC, Shriner D, Chen BH, Li J, Chen WM, Guo X, Liu J, Bielinski SJ, Yanek LR, Nalls MA,
Comeau ME, Rasmussen-Torvik LJ, Jensen RA, Evans DS, Sun YV, An P, Patel SR, Lu Y,
Long J, Armstrong LL, Wagenknecht L, Yang L, Snively BM, Palmer ND, Mudgal P,
Langefeld CD, Keene KL, Freedman BI, Mychaleckyj JC, Nayak U, Raffel LJ, Goodarzi MO,
Chen YD, Taylor Jr HA, Correa A, Sims M, Couper D, Pankow JS, Boerwinkle E, Adeyemo A,

Jiang et al. (2015), PeerJ, DOI 10.7717/peerj.677 13/15

https://peerj.com
http://dx.doi.org/10.1101/gr.118992.110
http://dx.doi.org/10.1016/j.gde.2013.09.003
http://dx.doi.org/10.1083/jcb.130.1.169
http://dx.doi.org/10.1002/9780470124642.ch16
http://dx.doi.org/10.1007/s13238-012-2945-1
http://dx.doi.org/10.1049/iet-syb.2010.0052
http://dx.doi.org/10.1049/iet-syb.2012.0062
http://dx.doi.org/10.1371/journal.pone.0058350
http://dx.doi.org/10.1038/ng2080
http://dx.doi.org/10.1186/1471-2156-10-15
http://dx.doi.org/10.1093/nar/gkj141
http://dx.doi.org/10.1074/jbc.M112.440214
http://dx.doi.org/10.7717/peerj.677


Doumatey A, Chen G, Mathias RA, Vaidya D, Singleton AB, Zonderman AB, Igo Jr RP,
Sedor JR, Kabagambe EK, Siscovick DS, McKnight B, Rice K, Liu Y, Hsueh WC, Zhao W,
Bielak LF, Kraja A, Province MA, Bottinger EP, Gottesman O, Cai Q, Zheng W, Blot WJ,
Lowe WL, Pacheco JA, Crawford DC, Grundberg E, Rich SS, Hayes MG, Shu XO, Loos RJ,
Borecki IB, Peyser PA, Cummings SR, Psaty BM, Fornage M, Iyengar SK, Evans MK,
Becker DM, Kao WH, Wilson JG, Rotter JI, Sale MM, Liu S, Rotimi CN, Bowden DW.
2014. Meta-analysis of genome-wide association studies in African Americans provides
insights into the genetic architecture of type 2 diabetes. PLoS Genetics 10:e1004517
DOI 10.1371/journal.pgen.1004517.

Online Mendelian Inheritance in Man O. 2014. Baltimore: McKusick-Nathans Institute of
Genetic Medicine, Johns Hopkins University.

Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V,
Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola N, Deshpande N, Shanker K,
Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC,
Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana R,
Chandran S, Krishna S, Joy M, Anand SK, Madavan V, Joseph A, Wong GW, Schiemann WP,
Constantinescu SN, Huang L, Khosravi-Far R, Steen H, Tewari M, Ghaffari S, Blobe GC,
Dang CV, Garcia JG, Pevsner J, Jensen ON, Roepstorff P, Deshpande KS, Chinnaiyan AM,
Hamosh A, Chakravarti A, Pandey A. 2003. Development of human protein reference
database as an initial platform for approaching systems biology in humans. Genome Research
13:2363–2371 DOI 10.1101/gr.1680803.

Pizzuti C, Rombo SE. 2014. Algorithms and tools for protein–protein interaction networks
clustering, with a special focus on population-based stochastic methods. Bioinformatics
30:1343–1352 DOI 10.1093/bioinformatics/btu034.

Pizzuti C, Rombo S, Marchiori E. 2012. Complex detection in protein–protein interaction
networks: a compact overview for researchers and practitioners. In: Giacobini M, Vanneschi
L, Bush W, eds. Evolutionary computation, machine learning and data mining in bioinformatics.
Berlin Heidelberg: Springer, 211–223.

Pounds S, Cheng C. 2006. Robust estimation of the false discovery rate. Bioinformatics
22:1979–1987 DOI 10.1093/bioinformatics/btl328.

Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D,
Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S,
Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M,
Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S,
Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. 2009. Human protein reference
database–2009 update. Nucleic Acids Research 37:D767–D772 DOI 10.1093/nar/gkn892.

Qin H, Yang L. 2008. Detection of changes in transitive associations by shortest-path analysis
of protein interaction networks integrated with gene expression profiles. In: BioMedical
Engineering and Informatics, Proceedings of the IEEE international conference on BioMedical
Engineering and Informatics, 2008. Piscataway: IEEE, 418–423 DOI 10.1109/BMEI.2008.157.

R Development Core Team. 2013. R: A language and environment for statistical computing. Vienna:
R Foundation for Statistical Computing.

Ramos E, Rotimi C. 2009. The A’s, G’s, C’s, and T’s of health disparities. BMC Medical Genomics
2:29 DOI 10.1186/1755-8794-2-29.

Sharma A, Gulbahce N, Pevzner SJ, Menche J, Ladenvall C, Folkersen L, Eriksson P,
Orho-Melander M, Barabasi AL. 2013. Network-based analysis of genome wide association

Jiang et al. (2015), PeerJ, DOI 10.7717/peerj.677 14/15

https://peerj.com
http://dx.doi.org/10.1371/journal.pgen.1004517
http://dx.doi.org/10.1101/gr.1680803
http://dx.doi.org/10.1093/bioinformatics/btu034
http://dx.doi.org/10.1093/bioinformatics/btl328
http://dx.doi.org/10.1093/nar/gkn892
http://dx.doi.org/10.1109/BMEI.2008.157
http://dx.doi.org/10.1186/1755-8794-2-29
http://dx.doi.org/10.7717/peerj.677


data provides novel candidate genes for lipid and lipoprotein traits. Molecular & Cellular
Proteomics 12:3398–3408 DOI 10.1074/mcp.M112.024851.

Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. 2001.
dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29:308–311
DOI 10.1093/nar/29.1.308.

Talukder MA, Kalyanasundaram A, Zhao X, Zuo L, Bhupathy P, Babu GJ, Cardounel AJ,
Periasamy M, Zweier JL. 2007. Expression of SERCA isoform with faster Ca2+ transport
properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial
infarction. American Journal of Physiology. Heart and Circulatory Physiology 293:H2418–H2428
DOI 10.1152/ajpheart.00663.2007.

Van Dongen S. 2000. Graph clustering by flow simulation. PhD Thesis, University of Utrecht.
Available at http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm.

Vidal M, Cusick ME, Barabasi AL. 2011. Interactome networks and human disease. Cell
144:986–998 DOI 10.1016/j.cell.2011.02.016.

Vlasblom J, Wodak SJ. 2009. Markov clustering versus affinity propagation for the partitioning of
protein interaction graphs. BMC Bioinformatics 10:99 DOI 10.1186/1471-2105-10-99.

Wang WY, Barratt BJ, Clayton DG, Todd JA. 2005. Genome-wide association studies: theoretical
and practical concerns. Nature Reviews Genetics 6:109–118 DOI 10.1038/nrg1522.

Wang J, Li M, Deng Y, Pan Y. 2010. Recent advances in clustering methods for protein interaction
networks. BMC Genomics 11(Suppl 3):S10 DOI 10.1186/1471-2164-11-S3-S10.

Wei P, Milbauer LC, Enenstein J, Nguyen J, Pan W, Hebbel RP. 2011. Differential endothelial cell
gene expression by African Americans versus Caucasian Americans: a possible contribution to
health disparity in vascular disease and cancer. BMC Medicine 9:2 DOI 10.1186/1741-7015-9-2.

Wu C, Zhu J, Zhang X. 2012. Integrating gene expression and protein–protein interaction network
to prioritize cancer-associated genes. BMC Bioinformatics 13:182
DOI 10.1186/1471-2105-13-182.

Xu Z, Bensen JT, Smith GJ, Mohler JL, Taylor JA. 2011. GWAS SNP Replication among African
American and European American men in the North Carolina–Louisiana prostate cancer
project (PCaP). Prostate 71:881–891 DOI 10.1002/pros.21304.

Zhao M, Zhao Z. 2013. CNVannotator: a comprehensive annotation server for copy number
variation in the human genome. PLoS ONE 8:e80170 DOI 10.1371/journal.pone.0080170.

Jiang et al. (2015), PeerJ, DOI 10.7717/peerj.677 15/15

https://peerj.com
http://dx.doi.org/10.1074/mcp.M112.024851
http://dx.doi.org/10.1093/nar/29.1.308
http://dx.doi.org/10.1152/ajpheart.00663.2007
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm
http://dx.doi.org/10.1016/j.cell.2011.02.016
http://dx.doi.org/10.1186/1471-2105-10-99
http://dx.doi.org/10.1038/nrg1522
http://dx.doi.org/10.1186/1471-2164-11-S3-S10
http://dx.doi.org/10.1186/1741-7015-9-2
http://dx.doi.org/10.1186/1471-2105-13-182
http://dx.doi.org/10.1002/pros.21304
http://dx.doi.org/10.1371/journal.pone.0080170
http://dx.doi.org/10.7717/peerj.677

	Using network clustering to predict copy number variations associated with health disparities
	Introduction
	Materials and Methods
	Network clustering
	Mapping of CNVs and SNPs
	Cluster analyses
	Biological significance analyses

	Results and Discussions
	Top-ranked network clusters
	Duplication of HSPB1 and health disparities in African Americans
	Duplication of ATP2A1 and cardiomyopathy
	Remarks, limitations, and future directions

	Conclusions
	Acknowledgements
	References


