# Chapter 4 Network Layer

#### A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we' d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

CAll material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

#### Computer Networking

A Top-Down Approach



Computer Networking: A Top Down Approach 6<sup>th</sup> edition Jim Kurose, Keith Ross Addison-Wesley March 2012

# Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
  - datagram format
  - IPv4 addressing
  - ICMP
  - IPv6

#### 4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
  - RIP
  - OSPF
  - BGP
- 4.7 broadcast and multicast routing

### Interplay between routing, forwarding



## Graph abstraction



graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$ 

*aside:* graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

## Graph abstraction: costs



c(x,x') = cost of link (x,x') e.g., c(w,z) = 5

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path  $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$ 

key question: what is the least-cost path between u and z ? routing algorithm: algorithm that finds that least cost path

### Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms
   decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- \* "distance vector" algorithms

### Q: static or dynamic?

static:

 routes change slowly over time

#### dynamic:

- routes change more quickly
  - periodic update
  - in response to link cost changes

# Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
  - datagram format
  - IPv4 addressing
  - ICMP
  - IPv6

### 4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
  - RIP
  - OSPF
  - BGP
- 4.7 broadcast and multicast routing

## A Link-State Routing Algorithm

### Dijkstra 's algorithm

- net topology, link costs known to all nodes
  - accomplished via "link state broadcast"
  - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
  - gives forwarding table for that node
- iterative: after k
   iterations, know least cost
   path to k dest.'s

#### notation:

- C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

# Dijsktra's Algorithm

#### 1 Initialization:

- 2 N' = {u}
- 3 for all nodes v
- 4 if v adjacent to u

```
5 then D(v) = c(u,v)
```

```
6 else D(v) = \infty
```

7

8

#### Loop

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N':
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /\* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v \*/
- 15 until all nodes in N'

### Dijkstra's algorithm: example

|      |        | D(v) | D(w)       | D(x)       | D( <b>y</b> ) | D(z)     |
|------|--------|------|------------|------------|---------------|----------|
| Step | o N'   | p(v) | p(w)       | p(x)       | p(y)          | p(z)     |
| 0    | u      | 7,u  | <u>3,u</u> | 5,u        | 8             | $\infty$ |
| 1    | uw     | 6,w  |            | <u>5,u</u> | )<br>11,w     | $\infty$ |
| 2    | UWX    | 6,w  |            |            | 11,w          | 14,x     |
| 3    | UWXV   |      |            |            | 10,7          | 14,x     |
| 4    | uwxvy  |      |            |            |               | (12,y)   |
| 5    | uwxvyz |      |            |            |               |          |

#### notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)



## Dijkstra's algorithm: another example

| Step | N'       | D(v),p(v)   | D(w),p(w) | D(x),p(x) | D(y),p(y) | D(z),p(z) |
|------|----------|-------------|-----------|-----------|-----------|-----------|
| 0    | u        | 2,u         | 5,u       | 1,u       | $\infty$  | $\infty$  |
| 1    | UX 🔶     | <b>2</b> ,u | 4,x       |           | 2,x       | $\infty$  |
| 2    | uxy      | <u>2,u</u>  | З,у       |           |           | 4,y       |
| 3    | uxyv 🗸   |             | 3,y       |           |           | 4,y       |
| 4    | uxyvw 🔶  |             |           |           |           | 4,y       |
| 5    | uxyvwz 🗲 |             |           |           |           |           |



# Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:



#### resulting forwarding table in u:

| link  |  |
|-------|--|
| (u,v) |  |
| (u,x) |  |
| (u,x) |  |
| (u,x) |  |
| (u,x) |  |
|       |  |

## Dijkstra's algorithm, discussion

### algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: O(n<sup>2</sup>)
- more efficient implementations possible: O(nlogn)

### oscillations possible:

e.g., support link cost equals amount of carried traffic:



# Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
  - datagram format
  - IPv4 addressing
  - ICMP
  - IPv6

#### 4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
  - RIP
  - OSPF
  - BGP
- 4.7 broadcast and multicast routing

Bellman-Ford equation (dynamic programming)

let

 $d_x(y) := cost of least-cost path from x to y then$ 

 $d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y) \}$ cost from neighbor v to destination y cost to neighbor v min taken over all neighbors v of x

# **Bellman-Ford** example



clearly,  $d_v(z) = 5$ ,  $d_x(z) = 3$ ,  $d_w(z) = 3$ B-F equation says:  $d_u(z) = \min \{ c(u,v) + d_v(z), c(u,x) + d_x(z), c(u,w) + d_w(z), c(u,w) + d_w(z) \}$  $= \min \{2 + 5, 1 + 3, 5 + 3\} = 4$ 

node achieving minimum is next hop in shortest path, used in forwarding table

- \*  $D_x(y)$  = estimate of least cost from x to y
  - x maintains distance vector  $D_x = [D_x(y): y \in N]$
- node x:
  - knows cost to each neighbor v: c(x,v)
  - maintains its neighbors' distance vectors. For each neighbor v, x maintains
     D<sub>v</sub> = [D<sub>v</sub>(y): y ∈ N]

### key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

 $D_x(y) \leftarrow min_v \{c(x,v) + D_v(y)\}$  for each node  $y \in N$ 

\* under minor, natural conditions, the estimate  $D_x(y)$ converge to the actual least cost  $d_x(y)$ 

- *iterative, asynchronous:* each local iteration caused by:
- local link cost change
- DV update message from neighbor

### distributed:

- each node notifies neighbors *only* when its DV changes
  - neighbors then notify their neighbors if necessary

each node:







Network Layer 4-21

### Distance vector: link cost changes

#### link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector



if DV changes, notify neighbors

"good<br/>news $t_0: y$  detects link-cost change, updates its DV, informs its<br/>neighbors.travels<br/>fast" $t_1: z$  receives update from y, updates its table, computes new<br/>least cost to x, sends its neighbors its DV.

 $t_2$ : y receives z's update, updates its distance table. y's least costs do *not* change, so y does *not* send a message to z.

### Distance vector: link cost changes

#### link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

#### 60 x 50 50

#### poisoned reverse:

- ✤ If Z routes through Y to get to X :
  - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

### Comparison of LS and DV algorithms

#### message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
  - convergence time varies

### speed of convergence

- LS: O(n<sup>2</sup>) algorithm requires O(nE) msgs
  - may have oscillations
- **DV:** convergence time varies
  - may be routing loops
  - count-to-infinity problem

*robustness:* what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

#### DV:

- DV node can advertise incorrect path cost
- each node's table used by others
  - error propagate thru network

# Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
  - datagram format
  - IPv4 addressing
  - ICMP
  - IPv6

#### 4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
  - RIP
  - OSPF
  - BGP
- 4.7 broadcast and multicast routing

Hierarchical routing

our routing study thus far - idealization
all routers identical
network "flat"
... not true in practice

- scale: with 600 million destinations:
- can't store all dest's in routing tables!
- routing table exchange would swamp links!

### administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

# Hierarchical routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
  - "intra-AS" routing protocol
  - routers in different AS can run different intra-AS routing protocol

#### gateway router:

- \* at "edge" of its own AS
- has link to router in another AS

### Interconnected ASes



- forwarding table configured by both intraand inter-AS routing algorithm
  - intra-AS sets entries for internal dests
  - inter-AS & intra-AS sets entries for external dests

## Inter-AS tasks

- suppose router in ASI receives datagram destined outside of ASI:
  - router should forward packet to gateway router, but which one?

#### ASI must:

- learn which dests are reachable through AS2, which through AS3
- propagate this reachability info to all routers in ASI

#### job of inter-AS routing!



### Example: setting forwarding table in router Id

- suppose ASI learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway Ic), but not via AS2
  - inter-AS protocol propagates reachability info to all internal routers
- router Id determines from intra-AS routing info that its interface / is on the least cost path to Ic
  - installs forwarding table entry (x,l)



### Example: choosing among multiple ASes

- now suppose ASI learns from inter-AS protocol that subnet
   x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine which gateway it should forward packets towards for dest x
  - this is also job of inter-AS routing protocol!



### Example: choosing among multiple ASes

- now suppose ASI learns from inter-AS protocol that subnet
   x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x
  - this is also job of inter-AS routing protocol!
- hot potato routing: send packet towards closest of two routers.



# Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
  - datagram format
  - IPv4 addressing
  - ICMP
  - IPv6

### 4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
  - RIP
  - OSPF
  - BGP
- 4.7 broadcast and multicast routing

### Intra-AS Routing

- \* also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
  - RIP: Routing Information Protocol
  - OSPF: Open Shortest Path First
  - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

### RIP (Routing Information Protocol)

- included in BSD-UNIX distribution in 1982
- distance vector algorithm
  - distance metric: # hops (max = 15 hops), each link has cost 1
  - DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
  - each advertisement: list of up to 25 destination subnets (in IP addressing sense)



#### from router A to destination subnets:

| <u>subnet</u> | <u>hops</u> |
|---------------|-------------|
| u             | 1           |
| V             | 2           |
| W             | 2           |
| Х             | 3           |
| V             | 3           |
| Z             | 2           |

### **RIP: example**



routing table in router D

| destination subnet | next router | # hops to dest |
|--------------------|-------------|----------------|
| W                  | A           | 2              |
| У                  | В           | 2              |
| Z                  | В           | 7              |
| X                  |             | 1              |
|                    |             |                |
# **RIP: example**



### RIP: link failure, recovery

if no advertisement heard after 180 sec --> neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- Ink failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

## RIP table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated



## OSPF (Open Shortest Path First)

- "open": publicly available
- uses link state algorithm
  - LS packet dissemination
  - topology map at each node
  - route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor
- advertisements flooded to entire AS
  - carried in OSPF messages directly over IP (rather than TCP or UDP
- Solution Series Seri

### OSPF "advanced" features (not in RIP)

- security: all OSPF messages authenticated (to prevent malicious intrusion)
- multiple same-cost paths allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort ToS; high for real time ToS)
- integrated uni- and multicast support:
  - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.



# **Hierarchical OSPF**

- \* *two-level hierarchy:* local area, backbone.
  - Ink-state advertisements only in area
  - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- Soundary routers: connect to other AS' s.

### Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
  - "glue that holds the Internet together"
- BGP provides each AS a means to:
  - eBGP: obtain subnet reachability information from neighboring ASs.
  - iBGP: propagate reachability information to all ASinternal routers.
  - determine "good" routes to other networks based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: "1 am here"

# **BGP** basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
  - advertising paths to different destination network prefixes ("path vector" protocol)
  - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to ASI:
  - AS3 promises it will forward datagrams towards that prefix
  - AS3 can aggregate prefixes in its advertisement



#### BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
  - Ic can then use iBGP do distribute new prefix info to all routers in ASI
  - Ib can then re-advertise new reachability info to AS2 over Ib-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.



# Path attributes and BGP routes

- advertised prefix includes BGP attributes
  - prefix + attributes = "route"
- \* two important attributes:
  - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
  - NEXT-HOP: indicates specific internal-AS router to nexthop AS. (may be multiple links from current AS to nexthop-AS)
- gateway router receiving route advertisement uses import policy to accept/decline
  - e.g., never route through AS x
  - policy-based routing

# **BGP** route selection

- router may learn about more than I route to destination AS, selects route based on:
  - I. local preference value attribute: policy decision
  - 2. shortest AS-PATH
  - 3. closest NEXT-HOP router: hot potato routing
  - 4. additional criteria



- BGP messages exchanged between peers over TCP connection
- BGP messages:
  - OPEN: opens TCP connection to peer and authenticates sender
  - UPDATE: advertises new path (or withdraws old)
  - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
  - NOTIFICATION: reports errors in previous msg; also used to close connection



- ✤ A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- \* X is dual-homed: attached to two networks
  - X does not want to route from B via X to C
  - .. so X will not advertise to B a route to C

### BGP routing policy (2)



legend: provider network customer network:

- ✤ A advertises path AW to B
- ✤ B advertises path BAW to X
- Should B advertise path BAW to C?
  - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
  - B wants to force C to route to w via A
  - B wants to route only to/from its customers!

### Why different Intra-, Inter-AS routing ?

#### policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed
  scale:
- hierarchical routing saves table size, reduced update traffic

#### performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

# Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
  - datagram format
  - IPv4 addressing
  - ICMP
  - IPv6

#### 4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
  - RIP
  - OSPF
  - BGP
- 4.7 broadcast and multicast routing

# **Broadcast routing**

- deliver packets from source to all other nodes
- source duplication is inefficient:



source duplication un-network duplication

source duplication: how does source determine recipient addresses?

## In-network duplication

- flooding: when node receives broadcast packet, sends copy to all neighbors
  - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
  - node keeps track of packet ids already broadacsted
  - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
  - no redundant packets received by any node

# Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree



(a) broadcast initiated at A



# Spanning tree: creation

- center node
- each node sends unicast join message to center node
  - message forwarded until it arrives at a node already belonging to spanning tree



(a) stepwise construction of spanning tree (center: E)



(b) constructed spanning tree

### Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members legend

- tree: not all paths between routers used
- shared-tree: same tree used by all group members
- source-based: different tree from each sender to rcvrs



source-based trees

group

member

not group

member

router with a

group

router without

group

member

member

### Approaches for building mcast trees

approaches:

- source-based tree: one tree per source
  - shortest path trees
  - reverse path forwarding
- shared tree: group uses one tree
  - minimal spanning (Steiner)
  - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches

# Shortest path tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
  - Dijkstra' s algorithm



LEGEND



- group member
- rou gro
  - group member
  - i link used for forwarding, i indicates order link added by algorithm

# Reverse path forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

if (mcast datagram received on incoming link on shortest path back to center)
 then flood datagram onto all outgoing links
 else ignore datagram

### Reverse path forwarding: example



LEGEND



router with attached group member



router with no attached group member

datagram will be forwarded

datagram will not be forwarded

- result is a source-specific reverse SPT
  - may be a bad choice with asymmetric links

## Reverse path forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
  - no need to forward datagrams down subtree
  - "prune" msgs sent upstream by router with no downstream group members



```
LEGEND
```

- ×
- router with attached group member
- - router with no attached group member
  - prune message
  - links with multicast forwarding

#### Shared-tree: steiner tree

steiner tree: minimum cost tree connecting all routers with attached group members

- problem is NP-complete
- excellent heuristics exists
- not used in practice:
  - computational complexity
  - information about entire network needed
  - monolithic: rerun whenever a router needs to join/leave

## Center-based trees

- single delivery tree shared by all
- one router identified as "center" of tree
- to join:
  - edge router sends unicast join-msg addressed to center router
  - join-msg "processed" by intermediate routers and forwarded towards center
  - join-msg either hits existing tree branch for this center, or arrives at center
  - path taken by join-msg becomes new branch of tree for this router

## Center-based trees: example

#### suppose R6 chosen as center:



#### LEGEND

- router with attached group member
- X
- router with no attached group member
- path order in which join messages generated

#### Internet Multicasting Routing: DVMRP

- DVMRP: distance vector multicast routing protocol, RFC1075
- flood and prune: reverse path forwarding, sourcebased tree
  - RPF tree based on DVMRP's own routing tables constructed by communicating DVMRP routers
  - no assumptions about underlying unicast
  - initial datagram to mcast group flooded everywhere via RPF
  - routers not wanting group: send upstream prune msgs

# DVMRP: continued...

- soft state: DVMRP router periodically (1 min.) "forgets" branches are pruned:
  - mcast data again flows down unpruned branch
  - downstream router: reprune or else continue to receive data
- routers can quickly regraft to tree
  - following IGMP join at leaf
- odds and ends
  - commonly implemented in commercial router

# Tunneling

Q: how to connect "islands" of multicast routers in a "sea" of unicast routers?



physical topology

logical topology

- mcast datagram encapsulated inside "normal" (nonmulticast-addressed) datagram
- normal IP datagram sent thru "tunnel" via regular IP unicast to receiving mcast router (recall IPv6 inside IPv4 tunneling)
- receiving mcast router unencapsulates to get mcast datagram

#### PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)
- two different multicast distribution scenarios :

#### dense:

- group members densely packed, in "close" proximity.
- bandwidth more plentiful

#### sparse:

- # networks with group members small wrt # interconnected networks
- group members "widely dispersed"
- bandwidth not plentiful

#### Consequences of sparse-dense dichotomy:

#### dense

- group membership by routers assumed until routers explicitly prune
- data-driven construction on mcast tree (e.g., RPF)
- bandwidth and non-grouprouter processing profligate

#### sparse:

- no membership until routers explicitly join
- receiver- driven construction of mcast tree (e.g., centerbased)
- bandwidth and non-grouprouter processing *conservative*

### PIM- dense mode

#### flood-and-prune RPF: similar to DVMRP but...

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router
# PIM - sparse mode

- center-based approach
- router sends join msg to rendezvous point (RP)
  - intermediate routers update state and forward join
- after joining via RP, router can switch to sourcespecific tree
  - increased performance: less concentration, shorter paths



# PIM - sparse mode

### sender(s):

- unicast data to RP,
  which distributes
  down RP-rooted tree
- RP can extend mcast tree upstream to source
- RP can send stop msg if no attached receivers
  - "no one is listening!"



# Chapter 4: done!

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
  - datagram format, IPv4 addressing, ICMP, IPv6

#### 4.5 routing algorithms

- link state, distance vector, hierarchical routing
- 4.6 routing in the Internet
  - RIP, OSPF, BGP
- 4.7 broadcast and multicast routing
- understand principles behind network layer services:
  - network layer service models, forwarding versus routing how a router works, routing (path selection), broadcast, multicast
- instantiation, implementation in the Internet