Chapter 3
Transport Laxer

A note on the use of these ppt slides:

We’ re making these slides freely available to all (faculty, students, readers).

They’ re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a /ot of work on our part. In return for use, we only

ask the following:

+ If you use these slides (e.g., in a class) that you mention their source
(after all, we’ d like people to use our book!)

< If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this

material.
Thanks and enjoy! JFK/IKWR

©AII material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking
A Top-Down Approach

KUROSE | ROSS

Computer
Networking:A Top
Down Approach
6t edition
Jim Kurose, Keith Ross

Addison-WVesley
March 2012

Transport Layer 3-1

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-2

TCP: Overview Recs: 793,1122,1323, 2018, 2581

< point-to-point: < full duplex data:

" one sender, one receiver * bi-directional data flow
<+ reliable, in-order byte In same connection

steam: = MSS: maximum segment
“ size
" N0 message . .
boundaries” % connection-oriented:

+ pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

" TCP congestion and
flow control set window
size

Transport Layer 3-3

TCP segment structure

32 bits

A

URG: urgent data

(generally not used)™_ source port # | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

. Sequence number
\olqmwledgement number

PSH: push data now
(generally not used) —]

head
len wEAIEJBSF receive window

7

bytes

Urg data pointer rovr willing

RST SYN, FIN:/

to accept

op/(s (variable length)

connection estab
(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-4

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers: source port # dest port #
i “ ’ sequence number
" b)’te stream number’ of acknowledgement number
. . ’
first byte in segment’s [| rwnd
checksum urg pointer
data
wmdow Size
acknowledgements: N
expected from other side
sender sequence number space

= cumulative ACK
. . sent sent not- usable not
Q: how receiver handles ACKed yet ACKed butnot usable
out-of-order segments (“in- yetsent
, flight™)

" A: TCP spec doesn t say, incoming segment to sender

- UP to |mplementor~ source port# | dest port #

sequence number

llll acknowledgement number

A rwnd

checksum urg pointer

Transport Layer 3-5

TCP seq. numbers, ACKs

Seq=42, ACK=79, data = ‘C’
host ACKs

receipt of
/ ‘C’ , eChoes
Seq=79, ACK=43, data = ‘C’ .,
host ACKs back ‘C

receipt

of echoed ~—___
C Seq=43, ACK=80___

simple telnet scenario

Transport Layer 3-6

TCP round trip time, timeout

Q: how to set TCP
timeout value!?

+ longer than RTT
= but RTT varies
< too short: premature

timeout, unnecessary
retransmissions

<+ too long: slow reaction
to segment loss

Q: how to estimate RTT?
»* SampleRTT: measured

time from segment
transmission until ACK
receipt

" jgnore retransmissions

» SampleRTT will vary, want

estimated RTT “smoother”

= average several recent
measurements, not just
current SampleRTT

Transport Layer 3-7

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

+ exponential weighted moving average
<+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

& sampleRTT

EstimatedRTT

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-8

TCP round trip time, timeout

% timeout interval: EstimatedRTT plus “safety margin~
" large variation in EstimatedRTT -> larger safety margin

<« estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-PB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-9

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-10

TCP reliable data transfer

« TCP creates rdt service
on top of IP" s unreliable

service
" pipelined segments ,
= cumulative acks let s initially consider
 single retransmission simplified TCP sender:
timer " ignore duplicate acks
% retransmissions " ignore flow control,
triggered by: congestion control

" timeout events
" duplicate acks

Transport Layer 3-11

TCP sender events:

data rcvd from app:

% create segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

» start timer if not
already running
= think of timer as for

oldest unacked
segment

= expiration interval:
TimeOutInterval

&

timeout;

% retransmit segment
that caused timeout

< restart timer
ack revd:

<+ if ack acknowledges
previously unacked
segments

" update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer 3-12

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)

A T start timer
NextSegqNum = InitialSeqNum

SendBase = InitialSeqNum

timeout

retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-13

TCP: retransmission scenarios

Host A Ho
B/
4“:&’
\
Seq=92, 8 bytes of data
/
ACK=100

le—— timeout —*

S

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

-

Host A

e ——

SendBase=92

e—— timeout ——

SendBase=100
SendBase=120

SendBase=120

w

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACK=10/

ACK=120

/

Seq=92, 8
bytes of data\

/

ACK=120

\

premature timeout

Transport Layer 3-14

TCP: retransmission scenarios

I
(®)
n
~t
>

I

le—— timeout —*

Host B
\
=
\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of da

ACK=100
X
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-15

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-16

TCP fast retransmit

% time-out period often
relatively long:

* long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends

many segments back-
to-back

" if segment is lost, there

will likely be many
duplicate ACKs.

— JTCP fast retransmit —

if sender receives 3
ACKSs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don ' t
wait for timeout

Transport Layer 3-17

TCP fast retransmit

Host A Host B
e S

— Seq=92, 8 bytes of data

Seq= 100%%
\X

|_ACK=100

timeout

TSeq=100, 20 bytes of data

A A

v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-18

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-19

TCP flow control —_—

application
application may process
remove data from S
TCP socket buffers FV | E_]Ep_“f‘—it'_o_n
TCP socket OS
receiver buffers
... slower than TCP N\
receiver is delivering —|—— ‘
(sender is sending) TCP
code
[l _ |
- IP
ﬂOW control code \
receiver controls sender, so T
sender won’ t overflow , R | =
receiver s buffer by transmitting from sender:
too much, too fast _
receiver protocol stack

Transport Layer 3-20

TCP flow control

. 11 o b4
» receiver advertises free

buffer space by including to application process
rwnd value in TCP header rlj
of receiver-to-sender f
segments RcvBuffer buffered data
= RevBuffer size set via
socket options (typical default rwn_i
is 4096 bytes) g _ ////

" many operating systems
autoadjust RcvBuffer
« sender limits amount of
135 o ”
unacked (" in-flight ') data to
o ’
receiver s rwnd value

TCP segment payloads

receiver-side buftfering

guarantees receive buffer
will not overflow

Transport Layer 3-21

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-22

Connection Management

before exchanging data, sender/receiver “handshake”:

<+ agree to establish connection (each knowing the other willing
to establish connection)

< agree on connection parameters

application application

o
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

f’ V{ network network
i
. ‘
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-23

Agreeing to establish a connection

2-way handshake:

g caf
S
" Let’s talk -

oK
ESTAB &

g
*‘\!/

choose x \req_conn(&
—® ESTAB

acc_conn(x)
ESTAB &—

Q: will 2-way handshake
always work in
network!?

<« variable delays

« retransmitted messages
(e.g. req_conn(x)) due to
message loss

» message reordering
” 11 7 .
% can t see other side

Transport Layer 3-24

Agreeing to establish a connection

2-way handshake failure scenarios:

w
choose x

retransmit
req_conn(x)

ESTAB

client™
terminates

\req_conn(>_<L>

% ESTAB

acc_conn(x)

reg_conn(x)

\

connection

- x completes ~

server
forgets x

ESTAB

half open connection!

(no client!)

req_conn(x)

retransmit

ESTAB

retransmit

1
_cIient
terminates

\req_conn(L(L‘

A ESTAB

acc_conn(x)

" data(x+ 1L~

data(x+1) ™\

connection
X completes

1

req_conn(x)

data(x+1)

accept
data(x+1)

server
forgets x

ESTAB
accept

data(x+1)

Transport Layer 3-25

TCP 3-way handshake

client state - Iiﬁ server state
LISTEN e LISTEN

choose init seq num, x

send TCP SYN msg [~

SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
v received SYNACK(x) /

indicates server is live;
ESTAB cend ACK for SYNACK; |~

this segment may contain | ACKbit=1, ACKnum=y+1

client-to-server data)
T~ received ACK(y)
indicates client is live

v

ESTAB

Transport Layer 3-26

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A .
Socket clientSocket =
SYN(X) v newSocket ("hostname", "port
Inb " ,.
SYNACK(seq=y,ACKnum=x+1) number")
create new socket for SYN(seq=x)
communication back to client
l v
‘ SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-27

TCP: closing a connection

+ client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own FIN
+ simultaneous FIN exchanges can be handled

Transport Layer 3-28

TCP: closing a connection

client state
ESTAB

clientSocket.close ()

FIN_WAIT 1 can no longer
send but can
l receive data

FIN WAIT 2 wait for server
T - close
TIMED_WAIT —.
timed wait
for 2*max
segment lifetime
CLOSED J,

w

T FiRbit=1
it=1, Seq=X\‘
/
ACKbit=1; ACKnum=x+1
—

/
‘/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

server state
ESTAB
CLOSE_WAIT
can still
send data
LAST ACK
can no longer
send data
CLOSED

Transport Layer 3-29

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-30

Princieles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
+ a top-10 problem!

Transport Layer 3-31

C

original data: 7‘~in

two senders, two

Ao

receivers Host A

one router, infinite

./
buffers _ L,; .

output link capacity: R
No retransmission

auses/costs of congestion: scenario |

throughput: }‘out

unlimited shared
output link buffers

B) /-A-

/

~

/L

R/24-----mememe- . |
- i > i
3 | Q :
| O |
= | © |
i i
Ain R/2 Ain R/2
% maximum per-connection ¢ large delays as arrival rate, A;,,
throughput: R/2 approaches capacity

Transport Layer 3-32

Causes/costs of congestion: scenario 2

% one router, finite buffers

+ sender retransmission of timed-out packet

= application-layer input = application-layer output: A;, =
7‘*out
" transport-layer input includes retransmissions : A;, > A,

Ain - original data ,
41— hout

A'i: original data, plus
retransmitted data

— S v

Ss=—— “EENRERR

= |

finite shared output
link buffers

Transport Layer 3-33

Host B

Causes/costs of congestion: scenario 2

. . . R/z_ ____________ i
idealization: perfect ;
knowledge 5 |
<+ sender sends only when < |
router buffers available |

B —)\, : original data

Ccopy

A'i: original data, plus
retransmitted data

free buffer space! E
>

Ss=—— “EENRERR

finite shared output
link buffers

Transport Layer 3-34

Host B

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,

dropped at router due
to full buffers

<+ sender only resends if
packet known to be lost

i

B—)\, : original data
copy |l M'i: original data, plus
retransmitted data

no buffer space!
>

=HENARNR

A~ Aout

Host B

Transport Layer 3-35

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due

7 e

when sending at R/2,

5 some/packets are
to full buffers < retrafismissions but
. asymptotic goodput
<+ sender only resends if is iﬁ..pR,z (V?,hy?f
packet known to be lost ' v Rz

Ain - Original data

A~ Aout

free buffer space! | E
S v %

=HENARNR

A'i: original data, plus
retransmitted data

Transport Layer 3-36

Causes/costs of congestion: scenario 2

Realistic: duplicates

<« packets can be lost, dropped
at router due to full buffers

R/2

ut

+ sender times out prematurely, <

sending two copies, both of
which are delivered

PAQ
.(3 {')1
yi ' — 7\‘il"l
]
% . 7\‘ in

™

free buffer space!
>

=HENARNR

__

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

7\'i,n R/2

T Xout

Transport Layer 3-37

Causes/costs of congestion: scenario 2

Realistic: duplicates

<« packets can be lost, dropped
at router due to full buffers

+ sender times out prematurely, <
sending two copies, both of
which are delivered

R/2

ut

“costs’ of congestion:

» more work (retrans) for given “goodput”

__

R/2

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

+ unneeded retransmissions: link carries multiple copies of pkt

" decreasing goodput

Transport Layer 3-38

Causes/costs of congestion: scenario 3

Q: what happens as A, and X,
increase !

A:asred), increases,all arriving
blue pkts at upper queue are
dropped, blue throughput = 0

< four senders
< multihop paths
< timeout/retransmit

Host A

Ain - original data Aout Host B

A'.: original data, plus
retransmitted data

finite shared output
li

k buffers ‘ E

Host D

Transport Layer 3-39

Causes/costs of congestion: scenario 3

C/2

Xout
L

11 77 o
another “cost of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-40

Approaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted =
control: congestion control:
% no explicit feedback <+ routers provide
from network feedback to end systems
% congestion inferred = single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-41

Case study: ATM ABR congestion control

ABR: available bit rate:
+ “elastic service”

» if sender’ s path
underloaded :

= sender should use
available bandwidth
+ if sender’ s path
congested:
= sender throttled to

minimum guaranteed
rate

RM (resource management)

cells:

+ sent by sender, interspersed

with data cells

<« bits in RM cell set by switches

(“network-assisted *)

= N/ bit: no increase in rate
(mild congestion)

= Cl bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-42

Case study: ATM ABR congestion control

I RM cell H data cell

4 4
R I Ry

+ two-byte ER (explicit rate) field in RM cell

" congested switch may lower ER value in cell

= senders’ send rate thus max supportable rate on path
+ EFCI bit in data cells: set to | in congested switch

" if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

%

Transport Layer 3-43

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-44

TCP congestion control: additive increase
multiplicative decrease
% approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 3-45

TCP Congestion Control: details

sender sequence number space

—— cwnd —s| TCP sending rate:
WU i
bytes, wait RTT for
Jast byte \ jast byte ACKS, then send
e ethGea = more bytes
1(’Iig;1-t”)
+ sender limits transmission: rate w bytes/sec
LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-46

TCP Slow Start

< when connection begins,
Increase rate
exponentially until first
loss event:
" initially cwnd = | MSS
" double cwnd every RTT

= done by incrementing
cwnd for every ACK
received

% summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-47

TCP: detecting, reacting to loss

%+ loss indicated by timeout:
* cwnd set to | MSS;

" window then grows exponentially (as in slow start)
to threshold, then grows linearly

% loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKSs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-48

TCP: switching from slow start to CA

Q: when should the
exponential
. . 14 —
increase switch to TCP Reno
linear?

A: when cwnd gets
to |/2 of its value
before timeout.

—
N
l

10—
ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

. . O
|mP|ementat|0n. 0 1 2 34 56 7 8 910111213 14 15
o Variable SSthreSh Transmission round

<+ on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

Transport Layer 3-49

S

u

mmary: TCP Congestion Control

duplicate ACK

dupACKcount++

()

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount =0 >

cLQ

(e 4) timeout </

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount =0

retransmit missing segment

PR

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

new ACF

cwnd = cwnd + MSS « (MSS/cwnd)
dupACKcount =0

new ACK
transmit new segment(s), as allowed

cwnd = cwnd+MSS
dupACKcount =0
transmit new segment(s), as allowed

cwnd > ssthresh

A
f(;O’:;Q\ timeout
(¢ £))'ssthresh = cwnd/2
cwnd = 1 MSS duplicate ACK
dupACKcount =0 dupACKcount++
retransmit missing segment A
PAQ '
. (<)
timeout
ssthresh = cwnd/2 ‘
cwnd = 1 New ACK
dupACKcount = 0 cwnd = ssthresh
. . = ACK t ==
retransmit missing segment dupACKcount = 0 dupACKcoun
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

v
A

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-50

TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window size (measured in bytes) Where loss occurs
= avg. window size (# in-flight bytes) is ¥4 W
" avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

N14444%4

Transport Layer 3-51

7

TCP Futures: TCP over “long, fat pipes

+» example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

+ requires W = 83,333 in-flight segments

+ throughput in terms of segment loss probability, L
[Mathis 1997]:

_ 1.22-MSS
TCP throughput = RTTJf

=?» to achieve 10 Gbps throughput, need a loss rate of L
=2'10"'9 — a very small loss rate!

+ new versions of TCP for high-speed

Transport Layer 3-52

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENg—_—

™, bottleneck
g router
N

TCP connection 2 capacity R

Transport Layer 3-53

Why is TCP fair?

two competing sessions:
<+ additive increase gives slope of |, as throughout increases
< multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-54

Fairness gmorez

Fairness and UDP Fairness, parallel TCP
» multimedia apps often connections
do not use TCP + application can open
" do not want rate multiple parallel
throttled by congestion connections between two
control hosts

< instead use UDP;

= send audio/video at . .
constant rate, tolerate < €.g., link of rate R with 9

<+ web browsers do this

packet loss existing connections:
" new app asks for | TCP, gets rate
R/10

= new app asks for || TCPs, gets R/2

Transport Layer 3-55

Chapter 3: summary

< principles behind
transport layer services:
= multiplexing,
demultiplexing

= reliable data transfer
* flow control
" congestion control

% Instantiation,
implementation in the
Internet
= UDP
= TCP

next:

+ leaving the
network “edge”
(application,
transport layers)

% into the network

core

Transport Layer 3-56

