
Application Layer 2-1

Chapter 2
Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only
ask the following:
v If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
v If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications
§ app architectures
§ app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§ SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-3

DNS: domain name system

people: many identifiers:
§ SSN, name, passport #

Internet hosts, routers:
§ IP address (32 bit) -

used for addressing
datagrams

§ “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
v distributed database

implemented in hierarchy of
many name servers

v application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
§ note: core Internet function,

implemented as application-
layer protocol

§ complexity at network’s
“edge”

Application Layer 2-4

DNS: services, structure
why not centralize DNS?
v single point of failure
v traffic volume
v distant centralized database
v maintenance

DNS services
v hostname to IP address

translation
v host aliasing

§ canonical, alias names
v mail server aliasing
v load distribution

§ replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 2-5

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
v client queries root server to find com DNS server
v client queries .com DNS server to get amazon.com DNS server
v client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Application Layer 2-6

DNS: root name servers

v contacted by local name server that can not resolve name
v root name server:

§ contacts authoritative name server if name mapping not known
§ gets mapping
§ returns mapping to local name server

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-7

TLD, authoritative servers

top-level domain (TLD) servers:
§ responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
§ Network Solutions maintains servers for .com TLD
§ Educause for .edu TLD

authoritative DNS servers:
§ organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

§ can be maintained by organization or service provider

Application Layer 2-8

Local DNS name server

v does not strictly belong to hierarchy
v each ISP (residential ISP, company, university) has

one
§ also called “default name server”

v when host makes DNS query, query is sent to its
local DNS server
§ has local cache of recent name-to-address translation

pairs (but may be out of date!)
§ acts as proxy, forwards query into hierarchy

Application Layer 2-9

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

v host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
v contacted server

replies with name of
server to contact

v “I don’t know this
name, but ask this
server”

Application Layer 2-10

45

6

3

recursive query:
v puts burden of name

resolution on
contacted name
server

v heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-11

DNS: caching, updating records

v once (any) name server learns mapping, it caches
mapping
§ cache entries timeout (disappear) after some time (TTL)
§ TLD servers typically cached in local name servers

• thus root name servers not often visited

v cached entries may be out-of-date (best effort
name-to-address translation!)
§ if name host changes IP address, may not be known

Internet-wide until all TTLs expire
v update/notify mechanisms proposed IETF standard

§ RFC 2136

Application Layer 2-12

DNS records

DNS: distributed db storing resource records (RR)

type=NS
§ name is domain (e.g.,

foo.com)
§ value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some
“canonical” (the real) name

§ www.ibm.com is really
servereast.backup2.ibm.com

§ value is canonical name

type=MX
§ value is name of mailserver

associated with name

Application Layer 2-13

DNS protocol, messages

v query and reply messages, both with same message
format

msg header
v identification: 16 bit # for

query, reply to query uses
same #

v flags:
§ query or reply
§ recursion desired
§ recursion available
§ reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-14

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-15

Inserting records into DNS

v example: new startup “Network Utopia”
v register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
§ provide names, IP addresses of authoritative name server

(primary and secondary)
§ registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

v create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
v Bombard root servers

with traffic
§ Not successful to date
§ Traffic Filtering
§ Local DNS servers

cache IPs of TLD
servers, allowing root
server bypass

v Bombard TLD servers
§ Potentially more

dangerous

Redirect attacks
v Man-in-middle

§ Intercept queries
v DNS poisoning

§ Send bogus relies to
DNS server, which
caches

Exploit DNS for DDoS
v Send queries with

spoofed source
address: target IP

v Requires amplification
Application Layer 2-16

Application Layer 2-17

Chapter 2: outline

2.1 principles of network
applications
§ app architectures
§ app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§ SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-18

Pure P2P architecture
v no always-on server
v arbitrary end systems

directly communicate
v peers are intermittently

connected and change IP
addresses

examples:
§ file distribution

(BitTorrent)
§ Streaming (KanKan)
§ VoIP (Skype)

Application Layer 2-19

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
§ peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-20

File distribution time: client-server

v server transmission: must
sequentially send (upload) N
file copies:
§ time to send one copy: F/us

§ time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

v client: each client must
download file copy
§ dmin = min client download rate
§ min client download time: F/dmin

us

network
di

ui

F

Application Layer 2-21

File distribution time: P2P

v server transmission: must
upload at least one copy
§ time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

v client: each client must
download file copy
§ min client download time: F/dmin

v clients: as aggregate must download NF bits
§ max upload rate (limting max download rate) is us + Sui

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer 2-22

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-23

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

v file divided into 256Kb chunks
v peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer 2-24

v peer joining torrent:
§ has no chunks, but will

accumulate them over time
from other peers

§ registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

v while downloading, peer uploads chunks to other peers
v peer may change peers with whom it exchanges chunks
v churn: peers may come and go
v once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

Application Layer 2-25

BitTorrent: requesting, sending file chunks

requesting chunks:
v at any given time, different

peers have different subsets
of file chunks

v periodically, Alice asks each
peer for list of chunks that
they have

v Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
v Alice sends chunks to those

four peers currently sending her
chunks at highest rate
§ other peers are choked by Alice

(do not receive chunks from her)
§ re-evaluate top 4 every10 secs

v every 30 secs: randomly select
another peer, starts sending
chunks
§ “optimistically unchoke” this peer
§ newly chosen peer may join top 4

Application Layer 2-26

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Distributed Hash Table (DHT)

v DHT: a distributed P2P database
v database has (key, value) pairs; examples:

§ key: ss number; value: human name
§ key: movie title; value: IP address

v Distribute the (key, value) pairs over the
(millions of peers)

v a peer queries DHT with key
§ DHT returns values that match the key

v peers can also insert (key, value) pairs
Application 2-27

Q: how to assign keys to peers?

v central issue:
§ assigning (key, value) pairs to peers.

v basic idea:
§ convert each key to an integer
§ Assign integer to each peer
§ put (key,value) pair in the peer that is closest

to the key

Application 2-28

DHT identifiers

v assign integer identifier to each peer in range
[0,2n-1] for some n.
§ each identifier represented by n bits.

v require each key to be an integer in same range
v to get integer key, hash original key

§ e.g., key = hash(“Led Zeppelin IV”)
§ this is why its is referred to as a distributed “hash”

table

Application 2-29

Assign keys to peers

v rule: assign key to the peer that has the
closest ID.

v convention in lecture: closest is the
immediate successor of the key.

v e.g., n=4; peers: 1,3,4,5,8,10,12,14;
§ key = 13, then successor peer = 14
§ key = 15, then successor peer = 1

Application 2-30

1

3

4

5

8
10

12

15

Circular DHT (1)

v each peer only aware of immediate successor and
predecessor.

v “overlay network”
Application 2-31

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible
for key 1110 ?I am

O(N) messages
on avgerage to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-32

Circular DHT (1)

Circular DHT with shortcuts

v each peer keeps track of IP addresses of predecessor,
successor, short cuts.

v reduced from 6 to 2 messages.
v possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

1

3

4

5

8
10

12

15

Who’s responsible
for key 1110?

Application 2-33

Peer churn

example: peer 5 abruptly leaves
vpeer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8’s immediate successor its second successor.
vwhat if peer 13 wants to join?

1

3

4

5

8
10

12

15

handling peer churn:
vpeers may come and go (churn)
veach peer knows address of its
two successors
veach peer periodically pings its
two successors to check aliveness
vif immediate successor leaves,
choose next successor as new
immediate successor

Application 2-34

Application Layer 2-35

Chapter 2: outline

2.1 principles of network
applications
§ app architectures
§ app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§ SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-36

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Application Layer 2-37

Socket programming

Two socket types for two transport services:
§ UDP: unreliable datagram
§ TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2. The server receives the data and converts

characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays

the line on its screen.

Application Layer 2-38

Socket programming with UDP

UDP: no “connection” between client & server
v no handshaking before sending data
v sender explicitly attaches IP destination address and

port # to each packet
v rcvr extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
v UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-39

server (running on serverIP) client

Application Layer 2-40

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Application Layer 2-41

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Application Layer 2-42

Socket programming with TCP

client must contact server
v server process must first be

running
v server must have created

socket (door) that
welcomes client’s contact

client contacts server by:
v Creating TCP socket,

specifying IP address, port
number of server process

v when client creates socket:
client TCP establishes
connection to server TCP

v when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
§ allows server to talk with

multiple clients
§ source port numbers used

to distinguish clients
(more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Application Layer 2-43

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Application Layer 2-44

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Application Layer 2-45

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Application Layer 2-46

Chapter 2: summary

v application architectures
§ client-server
§ P2P

v application service
requirements:
§ reliability, bandwidth, delay

v Internet transport service
model
§ connection-oriented,

reliable: TCP
§ unreliable, datagrams: UDP

our study of network apps now complete!

v specific protocols:
§ HTTP
§ FTP
§ SMTP, POP, IMAP
§ DNS
§ P2P: BitTorrent, DHT

v socket programming: TCP,
UDP sockets

Application Layer 2-47

v typical request/reply
message exchange:
§ client requests info or

service
§ server responds with

data, status code
v message formats:

§ headers: fields giving
info about data

§ data: info being
communicated

important themes:
v control vs. data msgs

§ in-band, out-of-band
v centralized vs. decentralized
v stateless vs. stateful
v reliable vs. unreliable msg

transfer
v “complexity at network

edge”

Chapter 2: summary
most importantly: learned about protocols!

