Data Structure & Algorithms in

JAVA

5th edition Michael T. Goodrich Roberto Tamassia

Chapter 11: Sorting, Sets, and Selection

CPSC 3200

Algorithm Analysis and Advanced Data Structure

Chapter Topics

- Insertion Sort.
- Selection Sort.
- Bubble Sort.
- Heap Sort.
- Merge-sort.
- Quick-sort.

Insertion Sort

Algorithm InsertionSort(A): **Input:** An array A of n comparable elements **Output:** The array A with elements rearranged in nondecreasing order for $i \leftarrow 1$ to n-1 do {Insert A[i] at its proper location in A[0],A[1],...,A[i−1]} $cur \leftarrow A[i]$ j ← i-1 **while** $j \ge 0$ and a[j] > cur**do** $A[j+1] \leftarrow A[j]$ $j \leftarrow j-1$

 $A[j+1] \leftarrow cur \{cur \text{ is now in the right place}\}$

Selection Sort

```
Algorithm SelectionSort(A)
   Input: An array A of n comparable elements
   Output: The array A with elements rearranged in nondecreasing order
  n := length[A]
  for i \leftarrow 1 to n do
      j \leftarrow FindIndexOfSmallest(A, i, n)
      swap A[i] with A[j]
  retrun A
Algorithm FindIndexOfSmallest(A, i, n)
smallestAt ← i
```

return smallestAt

for $j \leftarrow (i+1)$ to $n \operatorname{do}$

if (A[j] < A[smallestAt])

smallestAt ← j

Bubble Sort

Algorithm BubbleSort(A)

Input: An array A of n comparable elements

Output: The array A with elements rearranged in nondecreasing order

for i ← 0 to N - 2 do
for J ← 0 to N - 2 do
if (A(J) > A(J + 1) then
temp ← A(J)

$$A(J) \leftarrow A(J + 1)$$

 $A(J + 1) \leftarrow$ temp

return A

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - **Divide:** divide the input data S in two or more disjoint subsets S_1 , S_2 ,

. . .

- Recur: solve the subproblems recursively
- Conquer: combine the solutions for $S_1, S_2, ...$, into a solution for S
- The base case for the recursion are subproblems of constant size.
- Analysis can be done using recurrence equations.

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - **Divide:** divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1.

- Merge-sort is a sorting algorithm based on the divideand-conquer paradigm.
- Like heap-sort
 - It uses a comparator.
 - It has $O(n \log n)$ running time.
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - **Divide:** partition S into two sequences S_1 and S_2 of about n/2 elements each
 - **Recur:** recursively sort S_1 and S_2
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

```
Algorithm mergeSort(S, C)
Input: sequence S with n
elements, comparator C
Output: sequence S sorted
according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence
 S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time.

```
Algorithm merge(A, B)
   Input: sequences A and B with
        n/2 elements each
   Output: sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() < B.first().element()
           S.addLast(A.remove(A.first()))
       else
           S.addLast(B.remove(B.first()))
   while \neg A.isEmpty()
       S.addLast(A.remove(A.first()))
   while \neg B.isEmpty()
       S.addLast(B.remove(B.first()))
   return S
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Merge

Recursive call, ..., base case, merge

Merge

Recursive call, ..., merge, merge

Merge

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element
 x (called pivot) and partition S
 into
 - *L* elements less than *x*
 - E elements equal x
 - *G* elements greater than *x*
 - Recur: sort L and G
 - Conquer: join L, E and G

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G,
 depending on the result of the
 comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quicksort takes O(n) time.

```
Algorithm partition(S, p)
   Input: sequence S, position p of pivot
    Output: subsequences L, E, G of the
        elements of S less than, equal to,
        or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
   while \neg S.isEmpty()
       v \leftarrow S.remove(S.first())
       if y < x
           L.addLast(y)
        else if y = x
            E.addLast(y)
        else \{y>x\}
            G.addLast(y)
    return L, E, G
```

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

• Join, join

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

```
Algorithm inPlaceQuickSort(S,a,b):
     Input: An array S of distinct elements; integers a and b
     Output: Array S with elements originally from indices from a to b, inclusive,
     sorted in nondecreasing order from indices a to b
     if a \ge b then return {at most one element in subrange}
     p \leftarrow S[b] \{the pivot\}
     l \leftarrow a \{ will scan rightward \}
     r \leftarrow b-1 {will scan leftward}
     while | < r do
          {find an element larger than the pivot}
          while l \le r and S[l] \le p do
               l ← l+1
          {find an element smaller than the pivot}
          while r \ge l and S[r] \ge p do
               r \leftarrow r-1
          if l < r then
                swap the elements at S[l] and S[r]
     {put the pivot into its final place}
     swap the elements at S[l] and S[b]
     {recursive calls}
     inPlaceQuickSort(S,a,l-1)
     inPlaceQuickSort(S,l +1,b)
     {we are done at this point, since the sorted subarrays are already consecutive}
```

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
bubble-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort PSC 3200 University of Tennessee at Chattanooga – Summ	$O(n \log n)$	sequential data accessfast (good for huge inputs)

End of Chapter 11