Data Structure & Algorithms in
JAVA T

hms

5th edition
Michael T. Goodrich
Roberto Tamassia

Chapter 11: Sorting, Sets, and
Selection

CPSC 3200
Algorithm Analysis and Advanced Data Structure

Chapter Topics

e Insertion Sort.

e Selection Sort.
Bubble Sort.
Heap Sort.

* Merge-sort.
e Quick-sort.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 2

Insertion Sort

Algorithm InsertionSort(A):
Input: An array A of n comparable elements

Output: The array A with elements rearranged in nondecreasing
order

fori < 1ton-1do
{Insert A[i] at its proper location in A[0],A[1],...,A[i-1]}
cur < Ali]
jei-1
while j = 0 and alj] > cur do
Alj+1] < A[j]
je<i-1
A[j+1] « cur {cur is now in the right place}

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 3

Selection Sort

Algorithm SelectionSort(A)
Input: An array A of n comparable elements
Output:The array A with elements rearranged in nondecreasing order
n :=length[A]
fori<—1ton do
j < FindIndexOfSmallest(A, 1, n)
swap Ali] with AJj]
retrun A

Algorithm FindIndexOfSmallest(A, i, n)
smallestAt < i
forj< (i+1)tondo
if (A[j] < A[smallestAt])
smallestAt < j
return smallestAt

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia

Bubble Sort

Algorithm BubbleSort(A)
Input: An array A of n comparable elements

Output: The array A with elements rearranged in nondecreasing
order

fori<0toN-2do
for]<0toN-2 do
if (A(J])>A(]J+1)then
temp < A(])
A(])<A(]+1)
A(J+1) « temp
return A

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013 5

Divide-and-Conquer

* Divide-and conquer is a general
algorithm design paradigm:

* Divide: divide the input data S in
two or more disjoint subsets S, .S,

* Recur: solve the subproblems
recursively

* Conquer: combine the solutions for
S, S,, .., into a solution for §
* The base case for the recursion
are subproblems of constant
size.

* Analysis can be done using
recurrence equations.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 6

Divide-and-Conquer

* Divide-and conqueris a
general algorithm design
paradigm:

 Divide: divide the input data
$ in two disjoint subsets S,
and S,

 Recur: solve the

subproblems associated
with §, and §,

* Conquer: combine the
solutions for §, and §, into a
solution for §

* The base case for the recursion
are subproblems of size 0 or 1.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Merge-sort is a sorting
algorithm based on the divide-
and-conquer paradigm.

* Like heap-sort

* [tusesa comparator.

* [t has O(n log n) running
time.

Unlike heap-sort

* [t does not use an auxiliary
priority queue

* [taccesses datain a
sequential manner (suitable
to sort data on a disk)

© 2010 Goodrich, Tamassia

Merge-Sort

* Merge-sort on an input Algorithm mergeSort(S, C)
sequence § with n Input: sequence S with n
elements consists of elements, comparator C
three steps: Output: sequence S sorted

« Divide: partition into two according to C

sequences .S, and S, of if S.size() > 1

about n/2 elements each (S, S,) < partition(S, n/2)
* Recur: recursively sort .S, mergeSort(S,, C)

and §, mergeSort(S,, C)
e Conquer: merge S, and S, S « merge(S,, S,)

into a unique sorted
sequence

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia

Merging Two Sorted Sequences

* The conquer step of

merge-sort consists of
merging two sorted
sequences A and B
into a sorted sequence
$ containing the

union of the elements
of A and B

Merging two sorted
sequences, each with
n/2 elements and
implemented by
means of a doubly
linked list, takes O(n)
time.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Algorithm merge(A, B)

Input: sequences A and B with
n/2 elements each

Output: sorted sequence of A U B

§ < empty sequence

while —A.isEmpty() A —B.isEmpty()
if A.first().element() < B.first().element()
S.addLast(A.remove(A.first()))
else
S.addLast(B.remove(B.first()))

while —A.isEmpty()
S.addLast(A.remove(A.first()))

while —B.isEmpty()
S.addLast(B.remove(B.first()))

return S

© 2010 Goodrich, Tamassia

Merge-Sort Tree

* An execution of merge-sort is depicted by a binary tree

* each node represents a recursive call of merge-sort and stores
* unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

* the root is the initial call

* the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

i] e

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia

10

Execution Example

e Partition

[7294|3861]

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 11

Execution Example (cont.)

* Recursive call, partition

[7294|3861]

CPSC 3200

.............

ennessee at Chattanooga — i

Summer 2013 © 2010 Goodrich, Tamassia 12

Execution Example (cont.)

* Recursive call, partition

[7294|3861]

[72|94

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 13

Execution Example (cont.)

e Recursive call, base case

[7294|3861

[72|94] [

oodrich, Tamassia

Execution Example (cont.)

e Recursive call, base case

[7294|3861]

Execution Example (cont.)

* Merge

[7294|3861]

{72|94

Execution Example (cont.)

* Recursive call, ..., base case, merge

[7294|3861]

{72|94

7|2—>27 [94—>49] _____________________

-&%}‘. -

CSC3 OO

Execution Example (cont.)

 Merge

[7294|3861]

(

[72|94—>2479]

/\

7|2—>27 94—)49
CSC3OO

Execution Example (cont.)

* Recursive call, ..., merge, merge

[7294|3861]
/\
[72|94—>2479] [3861—)1368]
B~ AN
[7|2—>27] [94—>49] [38—)38] [61—)16]

EEEs se e

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 19

Execution Example (cont.)

 Merge

[7294|3861—)12346789]

RS

[72|94—>2479] [3861—)1368]
o e o e

EEEs se e

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 20

Quick-Sort

* Quick-sortis a randomized
sorting algorithm based on
the divide-and-conquer
paradigm:

* Divide: pick a random element
x (called pivot) and partition §
into

* L elements less than x

* E elements equal x

* G elements greater than x
* Recur: sort L and G

e Conquer:join L, E and G

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013

/'

© 2010 Goodrich, Tamassia

21

Partition

* We partition an input sequence as
follows:

* We remove, in turn, each element y
from S and

* Weinsertyinto L, E or G,
depending on the result of the
comparison with the pivot x

* Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

* Thus, the partition step of quick-
sort takes O(n) time.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

e

L

Algorithm partition(S, p)
Input: sequence S, position p of pivot

Output: subsequences L, E, G of the
elements of §' less than, equal to,
or greater than the pivot, resp.

L, E, G < empty sequences
x < S.remove(p)
while —S.isEmpty()
y < S.remove(S.first())
ify<x
L.addLast(y)
elseify=x
E.addLast(y)
else { y>x }
G.addLast(y)
return L, E, G

© 2010 Goodrich, Tamassia 22

Quick-Sort Tree

* An execution of quick-sort is depicted by a binary tree

* Each node represents a recursive call of quick-sort and stores
* Unsorted sequence before the execution and its pivot
« Sorted sequence at the end of the execution

* The root is the initial call

* The leaves are calls on subsequences of size 0 or 1

[749@2—)24Q79]

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia

23

Execution Example

* Pivot selection

72943761]

———————————

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 24

Execution Example (cont.)

 Partition, recursive call, pivot selection

[729437@1]

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 25

Execution Example (cont.)

e Partition, recursive call, base case

[729437Q1]

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 26

Execution Example (cont.)

* Recursive call, ..., base case, join

[729437Q1]

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 27

Execution Example (cont.)

* Recursive call, pivot selection

[729437Q1

[2431—)1234]

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013

oodrich, Tamassia

Execution Example (cont.)

Partition, ..., recursive call, base case

[72943791]
2431—)1234 [792]

M

{[\ 3

University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 29

Execution Example (cont.)

* Join, join

[729437@1—)1234§779]

m

2431—)1234 [792—) 779]

{[\ 3

University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 30

In-Place Quick-Sort

* Quick-sort can be implemented to
run in-place

* In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that

* the elements less than the pivot
have rank less than &

* the elements equal to the pivot
have rank between h and &

 the elements greater than the
pivot have rank greater than &

* The recursive calls consider
* elements with rank less than /4
* elements with rank greater than &

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamassia

31

Algorithm inPlaceQuickSort(S,a,b):
Input: An array S of distinct elements; integers a and b
Output: Array S with elements originally from indices from a to b, inclusive,
sorted in nondecreasing order from indices ato b
if a > b then return {at most one element in subrange}
p < S[b] {the pivot}
1 < a {will scan rightward}
r < b-1 {will scan leftward}
whilel <rdo
{find an element larger than the pivot}
whilel <randS[l] <p do
l<1+1
{find an element smaller than the pivot}
whiler>1and S[r] 2 p do
rer-1
if] <r then
swap the elements at S[1] and S[r]
{put the pivot into its final place}
swap the elements at S[I] and S[b]
{recursive calls}
inPlaceQuickSort(S,a,l -1)
inPlaceQuickSort(S,1 +1,b)
{we are done at this point, since the sorted subarrays are already consecutive}

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 32

Summary of Sorting Algorithms

Q

PSC 3200

Algorithm Time | Notes
selection-sort O(n?) : :I]:\?\I/a(cc_:jeood for small inputs)
insertion-sort O(n?) : Esrl]c-)F\?\Ila(CC_:Jeo0d for small inputs)
bubble-sort O(n?) : Esrl]c;F\?\Ila(cc_:jeood for small inputs)
quick-sort | o for v puts
heap-sort O(n log n) : :‘Z;F’zl?;sod for large inputs)
e O(n log n) = sequential data access

= fast (good for huge inputs)

=

niversity of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamass ia

3

End of Chapter 11

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

34

