


• Maps.
• Hash	Tables.
• Dictionaries.

2
CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia



• A	map	models	a	searchable	collection	of	key-value	entries.
• A	map	stores	key-value	pairs	(k,	v)	which	we	call	entries.
• The	main	operations	of	a	map	are	for	searching,	inserting,	and	
deleting items.

• Multiple	entries	with	the	same	key are	not allowed	(map	ADT	
requires	each	key	to	be	unique).

• Applications:
• address	book.
• student-record	database.

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 3© 2010 Goodrich, Tamassia



• get(k): if	the	map	M has	an	entry	with	key	k,	return	its	associated	
value;	else,	return	null	.

• put(k,	v):	insert	entry	(k,	v)	into	the	map	M;	if	key	k is	not	already	
in	M,	then	return	null;	else,	return	old	value	associated	with	k.

• remove(k):	if	the	map	M has	an	entry	with	key	k,	remove	it	from	
M and	return	its	associated	value;	else,	return	null.

• size(	),	isEmpty(	)
• entrySet(	):	return	an	iterable	collection	of	the	entries	in	M
• keySet(	): return	an	iterable	collection	of	the	keys	in	M
• values(	): return	an	iterator	of	the	values	in	M

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 4© 2010 Goodrich, Tamassia



CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 5© 2010 Goodrich, Tamassia



• We	can	efficiently	implement	a	map	using	an	unsorted	list	
• We	store	the	items	of	the	map	in	a	list	S	(based	on	a	doubly-
linked	list),	in	arbitrary	order.

• The	unsorted	list	implementation	is	effective	only	for	maps	of	
small	size	(e.g.,	historical	record	of	logins	to	a	workstation)

trailerheader nodes/positions

entries
9 c 6 c 5 c 8 c

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 6© 2010 Goodrich, Tamassia



Algorithm get(k):
Input:	A	key	k
Output:	The	value	for	key	k	in	M,	or	null	if	there	is	no	key	k in	M
for each	position	p	in	S.positions(	)	do
if p.element(	).getKey(	)	=	k	then
return p.element(	).getValue(	)

return null		{there	is	no	entry	with	key	equal	to	k}

Time	complexity	?

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 7© 2010 Goodrich, Tamassia



Algorithm put(k,v):
Input:	A	key-value	pair	(k,v)
Output:	The	old	value	associated	with	key	k	in	M,	or	null	if	k	is	new
for each	position	p	in	S.positions(	)	do
if p.element(	).getKey(	)	=	k	then
t	←	p.element(	).getValue(	)
B.set(p,(k,v))
return t		{return	the	old	value}

S.addLast((k,v))
n	←	n+1		{increment	variable	storing	number	of	entries}
return null		{there	was	no	previous	entry	with	key	equal	to	k}

Time	complexity	?
CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 8© 2010 Goodrich, Tamassia



Algorithm remove(k):
Input:	A	key	k
Output:	The	(removed)	value	for	key	k	in	M,	or	null	if	k	is	not	in	M
for each	position	p	in	S.positions(	)	do
if p.element().getKey()	=	k	then
t	←	p.element().getValue()
S.remove(p)
n	←	n−1		{decrement	variable	storing	number	of	entries}
return t		{return	the	removed	value}
return null		{there	is	no	entry	with	key	equal	to	k}

Time	complexity	?

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 9© 2010 Goodrich, Tamassia



• A	hash	table for	a	given	key	type	consists	of
• Hash	function	h
• Array	(called	table)	of	size	N

• When	implementing	a	map	with	a	hash	table,	the	goal	is	to	
store	item	(k,	v)	at	index	i =	h(k)

• A	hash	function hmaps	keys	of	a	given	type	to	integers	in	a	
fixed	interval	[0,	N	- 1]

• The	integer	h(k)	is	called	the	hash	value of	key	k
CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 10© 2010 Goodrich, Tamassia



• We	design	a	hash	table	for	a	map	
storing	entries	as	(SSN,	Name),	
where	SSN	(social	security	
number)	is	a	nine-digit	positive	
integer.

• Our	hash	table	uses	an	array	of	size	
N	=	10,000	and	the	hash	function
h(x)	=	last	four	digits	of	x

Æ

Æ

Æ

Æ

0
1
2
3
4

9997
9998
9999

…
451-229-0004

981-101-0002

200-751-9998

025-612-0001

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 11© 2010 Goodrich, Tamassia



• A	hash	function	is	usually	specified	
as	the	composition	of	two	
functions:
Hash	code:

mapping	the	key	k to	integer
h1:	keys	® integers

Compression	function:
mapping	the	hash	code	to	an	

integer	in	range	of	indices	[0,	N-1]
h2:	integers	® [0,	N	- 1]

• The	hash	code	is	applied	
first,	and	the	compression	
function	is	applied	next	on	
the	result,	i.e.,	

h(x)	=	h2(h1(x))

• The	goal	of	the	hash	
function	is	to		“disperse”	
the	keys	in	an	apparently	
random	way.

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 12© 2010 Goodrich, Tamassia



• Collisions	occur	when	different	
elements	are	mapped	to	the	same	
cell

• Separate	Chaining: let	each	cell	in	
the	table	point	to	a	linked	list	of	
entries	that	map	there

• Separate	chaining	is	simple,	
but	requires	additional	
memory	outside	the	table

Æ

Æ
Æ

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 13© 2010 Goodrich, Tamassia



Delegate	operations	to	a	list-based	map	at	each	cell:
Algorithm get(k):
return	A[h(k)].get(k)	

Algorithm put(k,v):
t	=	A[h(k)].put(k,v)	
if	t	=	null	then	 {k	is	a	new	key}
n	=	n	+	1

return	t

Algorithm remove(k):
t	=	A[h(k)].remove(k)
if	t	≠ null	then	 {k	was	found}
n	=	n	- 1

return	t
CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 14© 2010 Goodrich, Tamassia



• Open addressing: the 
colliding item is placed in a 
different cell of the table

• Linear	probing: handles	collisions	
by	placing	the	colliding	item	in	
the	next	(circularly)	available	
table	cell

• Each	table	cell	inspected	is	
referred	to	as	a	“probe”

• Colliding	items	lump	together,	
causing	future	collisions	to	cause	
a	longer	sequence	of	probes

• Example:
• h(x) = x mod 13
• Insert	keys	18,	41,	22,	
44,	59,	32,	31,	73,	in	
this	order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

© 2010 Goodrich, Tamassia
CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 15



CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 16


