Data Structure & Algorithms in
]AVA Data Structures

5 Algorithms

5th edition
Michael T. Goodrich
Roberto Tamassia

Chapter 7: Trees

CPSC 3200
Algorithm Analysis and Advanced Data Structure

Shuah

Tshbak
Eldaah
Midian Abida
Hanoch
Epher
Medan Ephah
Dedan
;owmumEAmsacu
Nebaioth
Kedar
Adbeel
Mibsam
Abraham Ishamael Mishma
Dumah
Massa
Hadad
Tema
Jetur
Naphish
Kedemah
Eliphaz
Revel
: Esau Jeush
(7p) Jalam
m Korah
7, ._.hm Benjamin
C n Joseph
Dinah
- mo Zebulun
p e ‘ Issachar
0 A Jacob(Israel) Asher
- pm— ONQ
T % w % Zm_u_:m:
(4D} — QO ﬁas
udah
- - O O
T S d Levi
e = - Simeon
_) < < ~ Reuben
Q 5 5 5
am L (T
] O C
Q e u
= O = m
C ° ° °

CPSC 3200

© 2010 Goodrich, Tamassia

University of Tennessee at Chattanooga — Summer 2013

Whatis a Tree

* In computer science, a tree
is an abstract model of a
hierarchical structure.

[Computers”R”Us]

* A tree consists of nodes
with a parent-child
relation.

[quuchturing] [R&D]

78

[US] [Infernqtional] [Lqptops] [Desktops]

* Applications:

* Organization charts.

* File systems.

o Programming Europe | Asia I Canada
environments.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 3

Tree Terminology

Root: node without parent (A) * Subtree: tree consisting of

Internal node: node with at least anode and its descendants.
one child (A, B, C, F)

External node (a.k.a. leaf): node
without children (E, [,], K, G, H, D)
Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

Depth of a node: number of
ancestors

Height of a tree: maximum depth
of any node (3)

Descendant of a node: child, | | [K]
grandchild, grand-grandchild, etc.

Subtree

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 4

Tree Terminology (Cont.)

* edge of tree T is a pair of nodes

(u,v) such that u is the parent of v, LD
 Path of T is a sequence of nodes / ~ 2R [\

- @D @D
\

such that any two consecutive
nodes in the sequence form an
edge.

* Atreeis ordered if thereis a
linear ordering defined for the
children of each node

g I

[é /

@D @1 -
/ 4 "1 \‘\\

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 5

Tree ADT

* We use positions (nodes) to * Query methods:
abstract nodes. * boolean isInternal(p)
* getElement(): Return the * boolean isExternal(p)

object stored at this position. * boolean isRoot(p)

 Generic methods:

* integer getSize() Update method:

* boolean isEmpty() * element replace (p, 0)

* [terator iterator()

* Iterable positions() e Additional update methods

* Accessor methods: may be defined by data
* position getRoot() structures implementing the
* position getThisParent(p) Tree ADT.

e [terable children(p)

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 6

Linked structure for General Tree

parent

f

B
—| ® | element

\

childrenCollection

Operation | Time

size, isEmpty | O(1)
iterator, positions
replace

children(v)

0
0
root, parent | O
0
isinternal, isExternal, isRoot | O

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 7

Depth and Height

 Letvbeanode of atree T. The depth of v is the number of
ancestors of v, excluding v itself.

* If vis the root, then the depth of vis 0
* Otherwise, the depth of v is one plus the depth of the parent of v.

Algorithm depth(T, v):
if vis the root of T then
return 0
else
return 1+depth(T, w), where w is the parentof vin T

* The running time of algorithm depth(T, v) is O(d,), where d,
denotes the depth of the node v in the tree T.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 8

Data Structure (Tree)

» Atree is a data structure which stores elements in parent-
child relationship.

Internal nodes

Leaf nodes (External nodes)

- Siblings

Siblings
- Siblings

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Attributes of a tree

* Depth: the number of
ancestors of that node
(excluding itself).

* Height: the maximum
depth of an external node
of the tree/subtree.

Depth(D) = 2

Height = MAX][Depth(A), Depth(B), Depth(C), Depth(D), Depth(E), Depth(F), Depth(G), Depth(H), Depth(l)]
CPSC 3200

Height'="MAX[-0; ¥ “11°2;92; 272,23] =3 e

Depth and Height (Cont.)

* The height of a node vin a tree T is can be calculated using the
depth algorithm.

Algorithm height1(T):
h<0
for each vertexvin T do
if vis an external node in T then
h < max(h, depth(T, v))
return h

« algorithm height1 runs in O(n?) time

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 11

Depth and Height (Cont.)

* The height of a node vin a tree T is also defined recursively:
* [f vis an external node, then the height of vis 0

* Otherwise, the height of v is one plus the maximum height of a
child of v.

Algorithm height2(T, v):
if vis an external node in T then
return 0
else
h<0
for each child wofvin T do
h < max(h, height2(T, w))
return 1+h

 algorithm heightl runs in O(n) time

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

© 2010 Goodrich, Tamassia 12

Preorder Traversal

* A traversal visits the nodes of a Algorithm preOrder(v)
tree in a systematic manner. visit(v)

. 11_1 Efl preorder .traversal, a node is e ildhw of v
visited before its descendants.
preorder (w)

* Application: print a structured
document.

1
[Make Money Fast!]

2/\9

[1. Motivations] [2. Methods] [References]

6 7 8
3/\4

o 2.1 Stock 2.2 Ponzi 2.3 Bank
[]'] Crmae] [o2 LSl] [Frqud] [Scheme] [Robbery]

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 13

Postorder Traversal

* In a postorder traversal, a node Algorithm postOrder(v)
is visited after its descendants. for each child w of v

postOrder (w)
visit(v)

* Application: compute space used
by files in a directory and its
subdirectories.

todo.txt
1K

2 4 5 6

h1nc.doc DDR.java Stocks.java Robot.java
2K 10K 25K 20K
CPSC 3200

University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 14

[programs/]

h1c.doc
3K

Tree traversals using “flags”

* The order in which the nodes are visited during a tree
traversal can be easily determined by imagining there is a
“flag” attached to each node, as follows:

PN AR PN

preorder inorder postorder

* To traverse the tree, collect the ﬂags

wsczzo0 ABDECFG DBEAFCG DEBFGCA

University of Tennessee at Chattanooga — Summer 2013

Other traversals

 The other traversals are the reverse of these three standard
ones

* That is, the right subtree is traversed before the left subtree is
traversed

* Reverse preorder: root, right subtree, left subtree.
* Reverse inorder: right subtree, root, left subtree.
* Reverse postorder: right subtree, left subtree, root.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013 16

Binary Trees

« Abinary tree is a tree with the following Applications:

properties: » arithmetic expressions.
« Each internal node has at most two) dec1s1o_n PROSESSES:
children (exactly two for proper * searching.
binary trees).

 The children of a node are an ordered
pair.

 We call the children of an internal node
left child and right child.

 Alternative recursive definition: a binary
tree is either

* a tree consisting of a single node, or

* a tree whose root has an ordered pair of [i]
children, each of which is a binary tree.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 17

Tree Balance

d
a b/
b /\ . C/ \e
TN AN Ve
d e f ¢ ol
/\ / /N
h | j g h
A balanced binary tree I/_]

An unbalanced binary tree

* A binary tree is balanced if every level above the lowest is “full”
(contains 2" nodes)
* In most applications, a reasonably balanced binary tree is desirable.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013 18

Decision Tree

* Binary tree associated with a decision process

* internal nodes: questions with yes/no answer
* external nodes: decisions

« Example: dining decision

[Wan’r a fast meal?

Yes

[How about coffee?

|

Yes./NO

Starbucks

Spike’s

No

[On expense account?]

Yes/No

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Al Forno

Café Paragon

© 2010 Goodrich, Tamassia

19

Arithmetic Expression Tree

* Binary tree associated with an arithmetic expression
* internal nodes: operators
 external nodes: operands

 Example: arithmetic expression tree for the expression
(2x(a—1)+ (3 xDb))

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 20

Proper Binary Tree

* Is a binary tree where the number of external nodes is 1
more than the number of internal nodes.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

21

Proper Binary Tree

* Is a binary tree where the number of external nodes is 1
more than the number of internal nodes.

Internal nodes = 2

External nodes = 2

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

22

Proper Binary Tree

* Is a binary tree where the number of external nodes is 1
more than the number of internal nodes.

Internal nodes = 2

External nodes = 3

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

23

Proper Binary Tree

* Is a binary tree where the number of external nodes is 1
more than the number of internal nodes.

Internal nodes = 3

External nodes = 3

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

24

Proper Binary Tree

* Is a binary tree where the number of external nodes is 1
more than the number of internal nodes.

Internal nodes = 3
External nodes = 4

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

25

Properties of a Proper Binary Tree

1. The number of external nodes is at least h+1 and at most 2h

Ex:h=3 \

Worst case: The tree @
havmg the minimum External nodes = 3+1 =4
number of external and

internal nodes.)/:

Best case: The tree e
having the maximum /\ /\

number of external and

internal nodes.
University of Tennessee at Chattanooga — Summer 2013 26

External nodes = 23 =8

Properties of a Proper Binary Tree

2. The number of internal nodes is at least h and at most 2-1

Ex:h=3

WOl_‘St case: The tree O Internal nodes = 3
having the minimum
number of external and
internal nodes.)/:

Internal nodes = 23 -1=7
Best case: The tree B e

having the maximum
number of external and

/\ / \\\\
internal nodes.
CPSC 3200 ég &)
University of Tennessee at Chattanooga — Summer 2013 27

Properties of a Proper Binary Tree

3. The number of nodes is at least 2h+1 and at most 2h+1 -1
Ex:h=3

Internal nodes = 3 Internal nodes = 7
External nodes = 4 External nodes = 8
Internal + External = 2*3 +1 =7 Internal + External = 23t1 -1 =15

@ S

B ée dododude

University of Tennessee at Chattanooga — Summer 2013 28

Properties of a Proper Binary Tree

4. The height is at least log(n+1)-1 and at most (n-1)/2

Number of nodes = 7 Number of nodes = 15
h=3 h=3

CPSC 3200 &

Univers ity of Tennessee at Chattanoo ga — Summer 2013

Sboub b

29

BinaryTree ADT

* The BinaryTree ADT extends the <+ Update methods may be

Tree ADT, i.e,, it inherits all the defined by data structures
methods of the Tree ADT. implementing the
BinaryTree ADT.

* Additional methods:
* position getThisLeft(p)
* position getThisRightight(p)
* boolean hasLeft(p)
* boolean hasRight(p)

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 30

Linked Structure for Binary Trees

* A node is represented by
an object storing

%)

* Element ?

* Parent node }

- Left child node .
* Right child node [1Y])

. . %) %)

* Node objects implement ! !
the Position ADT ! '
A D

G Y
A . [@i@] "

CPSC 3200 E
University of Tennessee at Chot’ranOQG— Sumhmer 2013

© 2010 Goodrich, Tamass ia 31

Binary Tree - Example

parent

Implementation of the Linked Binary
Tree Structure

 addRoot(e): Create and return a new node r storing element e and
make r the root of the tree; an error occurs if the tree is not empty.

* insertLeft(v, e): Create and return a new node w storing element e, add

w as the the left child of v and return w; an error occurs if v already has
a left child.

* insertRight(v,e): Create and return a new node z storing element e,
add z as the the right child of v and return z; an error occurs if v already
has a right child.

 remove(v): Remove node v, replace it with its child, if any, and return
the element stored at v; an error occurs if v has two children.

« attach(v, T1, T2): Attach T1 and T2, respectively, as the left and right
subtrees of the external node v; an error condition occurs ifv is not
external.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 33

Binary Search Tree (BST)

* Binary trees are excellent data structures for searching
large amounts of information.

 When used to facilitate searches, a binary tree is called a
binary search tree.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

34

Binary Search Tree (BST)

* A binary search tree (BST) is a binary tree in which:

* Elements in left subtree are smaller than the current node.

* Elements in right subtree are greater than the current node.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

35

Traversing the tree

* There are three common methods for traversing a binary tree and
processing the value of each node:

 Pre-order
e In-order
e Post-order

Each of these methods is best implemented as a recursive function.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 36

Tree Traversal (Pre-order)

* Pre-order: Node = Left = Right

CPSC 3200 A B D E C F G

University of Tennessee at Chattanooga — Summer 2013

37

Exercise: Pre-order traversal

Insert the following items into a binary search tree.
50, 25,75,12,30,67,88, 6,13, 65, 68

Draw the binary tree and print the items using Pre-order
traversal.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

38

Tree Traversal (In-order)

* In-order: Left ® Node = Right

CPSC 3200 D B E A F C G

University of Tennessee at Chattanooga — Summer 2013

39

Exercise: In-order traversal

* From the previous exercise, print the tree’s nodes using In-

prder traversal.o

Tree Traversal (Post-order)

* Post-order: Left & Right = Node

CPSC 3200 D E B F G C A

University of Tennessee at Chattanooga — Summer 2013

41

Exercise: Post-order traversal

* From the previous exercise, print the tree’s nodes using Post-
order traversal.

University of Tennessee at Chattanooga — Summer 2013 42

Inorder Traversal

 In aninorder traversal a node Algorithm inOrder(v)
svisted aeritsletoubiree | it hastef ()
* Application: draw a binary tree OmOm’er (left (v))
* X(v) = inorder rank of v visit(v)
* y(v) = depth of v if hasRight (v)
inOrder (right (v))

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamass ia 43

Delete a node

 After deleting an item, the resulting binary tree must be a
binary search tree.
1. Find the node to be deleted.
2. Delete the node from the tree.

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

44

Delete (Case 1)

* The node to be deleted has no left and right subtree (the
node to be deleted is a leaf).

delete(30) @

CPSC 3200

University of Tennessee at Chattanoo ga — Summer 2013 45

Delete (Case 2)

* The node to be deleted has no left subtree (the left subtree
is empty but it has a nonempty right subtree).

delete(30) Q

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013 46

Delete (Case 3)

* The node to be deleted has no right subtree (the right
subtree is empty but it has a nonempty left subtree).

delete(80) Q

CPSC 3200

University of Ten at Chattanooga — Summer 2013

Delete (Case 4)

* The node to be deleted has nonempty left and right
subtree.

delete(70) @

CPSC 3200

University of Ten at Chattanooga — Summer 2013

Delete (Case 4)

* The node to be deleted has nonempty left and right
subtree.

delete(70) @
= :

CPSC 3200

University of Ten at Chattanooga — Summer 2013

Binary Search

* Binary search can perform operations get, floorEntry and
ceilingEntry on an ordered map implemented by means of an
array-based sequence, sorted by key

* similar to the high-low game
* at each step, the number of candidate items is halved
 terminates after O(log n) steps

* Example: find(7)

1

®,

D © © @

N (&) G

) (G
&

=

i

H-0 © ©
©: @ ©@
Q-0-0 ©
& @ @=

OROL

—
I.l
IOI

T
S
I

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 50

Binary Search Trees

* A binary search tree is a

binary tree storing keys (or An inorder traversal of a

key-value entries) at its binary search trees visits
internal nodes and the keys in increasing order.
satisfying the following

property:

* Let u, v, and w be three
nodes such that u is in
the left subtree of v and
w is in the right subtree
of v. We have
key(u) < key(v) < key(w)

* External nodes do not store
items.

CPSC 3200
University of Tennessee at Chattanooga — Summer 2013 © 2010 Goodrich, Tamassia 51

Search

* To search for a key k, we trace
a downward path starting at
the root.

* The next node visited
depends on the comparison
of k with the key of the
current node.

* If we reach a leaf, the key is
not found.

 Example: get(4):
* Call TreeSearch(4,root)

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

Algorithm TreeSearch(k, v)
if TisExternal (v)
return v
if k < key(v)
return TreeSearch(k, Tleft(v))
else if k = key(v)
return v
else { k> key(v) }
return TreeSearch(k, Tright(v))

© 2010 Goodrich, Tamassia 52

End of Chapter 7

CPSC 3200

University of Tennessee at Chattanooga — Summer 2013

53

