


• General	Trees.
• Tree	Traversal	Algorithms.
• Binary	Trees.
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• In	computer	science,	a	tree	
is	an	abstract	model	of	a	
hierarchical	structure.

• A	tree	consists	of	nodes	
with	a	parent-child
relation.

• Applications:
• Organization	charts.
• File	systems.
• Programming	
environments.

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada
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Subtree

• Root:	node	without	parent	(A)
• Internal	node: node	with	at	least	
one	child	(A,	B,	C,	F)

• External	node	(a.k.a.	leaf	):	node	
without	children	(E,	I,	J,	K,	G,	H,	D)

• Ancestors	of	a	node:	parent,	
grandparent,	grand-grandparent,	
etc.

• Depth	of	a	node:	number	of	
ancestors

• Height	of	a	tree:	maximum	depth	
of	any	node	(3)

• Descendant	of	a	node:	child,	
grandchild,	grand-grandchild,	etc.

A

B DC

G HE F

I J K

• Subtree:	tree	consisting	of	
a	node	and	its	descendants.
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• edge	of	tree	T	is	a	pair	of	nodes	
(u,v)	such	that	u	is	the	parent	of	v,	
or	vice	versa.

• Path	of	T	is	a	sequence	of	nodes	
such	that	any	two	consecutive	
nodes	in	the	sequence	form	an	
edge.

• A	tree	is	ordered if	there	is	a	
linear	ordering	defined	for	the	
children	of	each	node
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• We	use	positions	(nodes)	to	
abstract	nodes.
• getElement(	): Return	the	
object	stored	at	this	position.

• Generic	methods:
• integer	getSize(	)
• boolean isEmpty(	)
• Iterator iterator(	)
• Iterable positions(	)

• Accessor methods:
• position	getRoot(	)
• position	getThisParent(p)
• Iterable children(p)

• Query	methods:
• boolean isInternal(p)
• boolean isExternal(p)
• boolean isRoot(p)

• Update	method:
• element	replace	(p,	o)

• Additional	update	methods	
may	be	defined	by	data	
structures	implementing	the	
Tree	ADT.
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• Let	v	be	a	node	of	a	tree	T.	The	depth of	v is	the	number	of	
ancestors	of	v,	excluding	v itself.
• If	v is	the	root,	then	the	depth	of	v is	0
• Otherwise,	the	depth	of	v is	one	plus	the	depth	of	the	parent	of	v.

• The	running	time	of	algorithm	depth(T,	v)	is	O(dv),	where	dv
denotes	the	depth	of	the	node	v in	the	tree	T.
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Algorithm depth(T,	v):
if v is	the	root	of	T	then

return 0
else

return 1+depth(T,	w),	where	w	is	the	parent	of	v in	T
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• A	tree	is	a	data	structure	which	stores	elements	in	parent-
child relationship.

A

B C

D E F G H

Root node

Internal nodes

Leaf nodes (External nodes)

Siblings

Siblings

Siblings
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• Depth:	the	number	of	
ancestors	of	that	node	
(excluding	itself).

• Height: the	maximum	
depth	of	an	external	node	
of	the	tree/subtree.

A

B C

D E F G H

I

Depth(D) = ?Depth(D) = 1Depth(D) = 2

Depth(I) = ?Depth(I) = 3

Height = MAX[ Depth(A), Depth(B), Depth(C), Depth(D), Depth(E), Depth(F), Depth(G), Depth(H), Depth(I) ]

Height = MAX[ 0, 1, 1, 2, 2, 2, 2, 2, 3 ] = 3
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• The	height of	a	node	v in	a	tree	T	is	can	be	calculated	using	the	
depth algorithm.

• algorithm	height1 runs	in	O(n2)	time
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Algorithm	height1(T):
h←	0
for each	vertex	v in	T	do

if v is	an	external	node	in	T	then
h	←	max(h,	depth(T,	v))

return h
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• The	height of	a	node	v in	a	tree	T	is	also	defined	recursively:
• If	v is	an	external	node,	then	the	height	of	v is	0
• Otherwise,	the	height	of	v is	one	plus	the	maximum	height	of	a	
child	of	v.

• algorithm	height1 runs	in	O(n)	time
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Algorithm	height2(T,	v):
if	v is	an	external	node	in	T	then

return 0
else

h←	0
for each	child	w	of	v in	T	do

h←	max(h,	height2(T,	w))
return 1+h
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• A	traversal	visits	the	nodes	of	a	
tree	in	a	systematic	manner.

• In	a	preorder traversal,	a	node	is	
visited	before	its	descendants.	

• Application:	print	a	structured	
document.

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity

2.3 Bank
Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child	w of	v

preorder (w)
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• In	a	postorder traversal,	a	node	
is	visited	after	its	descendants.

• Application:	compute	space	used	
by	files	in	a	directory	and	its	
subdirectories.

Algorithm postOrder(v)
for each child	w of	v

postOrder (w)
visit(v)

cs16/

homeworks/
todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8
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• The	order	in	which	the	nodes	are	visited	during	a	tree	
traversal	can	be	easily	determined	by	imagining	there	is	a	
“flag”	attached	to	each	node,	as	follows:

• To	traverse	the	tree,	collect	the	flags:

preorder inorder postorder

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A B D E C F G D B E A F C G D E B F G C ACPSC 3200 
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• The	other	traversals	are	the	reverse	of	these	three	standard	
ones
• That	is,	the	right	subtree is	traversed	before	the	left	subtree is	
traversed

• Reverse	preorder: root,	right	subtree,	left	subtree.
• Reverse	inorder:	right	subtree,	root,	left	subtree.
• Reverse	postorder: right	subtree,	left	subtree,	root.
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• A	binary	tree	is	a	tree	with	the	following	
properties:
• Each	internal	node	has	at	most	two	
children (exactly	two	for	proper	
binary	trees).
• The	children	of	a	node	are	an	ordered	
pair.

• We	call	the	children	of	an	internal	node	
left	child and	right	child.

• Alternative	recursive	definition:	a	binary	
tree	is	either
• a	tree	consisting	of	a	single	node,	or
• a	tree	whose	root	has	an	ordered	pair	of	
children,	each	of	which	is	a	binary	tree.

A

B C

F GD E

H I

Applications:
• arithmetic	expressions.
• decision	processes.
• searching.
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• A	binary	tree	is	balanced	if	every	level	above	the	lowest	is	“full”	
(contains	2h nodes)

• In	most	applications,	a	reasonably	balanced	binary	tree	is	desirable.

a

b c

d e f g

h i j
A balanced binary tree

a

b

c

d

e

f

g h

i j
An unbalanced binary tree
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• Binary	tree	associated	with	a	decision	process
• internal	nodes:	questions	with	yes/no	answer
• external	nodes:	decisions

• Example:	dining	decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No
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• Binary	tree	associated	with	an	arithmetic	expression
• internal	nodes:	operators
• external	nodes:	operands

• Example: arithmetic	expression	tree	for	the	expression	
(2	´ (a	- 1)	+ (3	´ b))

+

´´

-2

a 1

3 b
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• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.
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• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 2
External nodes = 2
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• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 2
External nodes = 3

E
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• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 3
External nodes = 3

E F
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• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 3
External nodes = 4

E F G
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Worst	case: The	tree	
having	the	minimum	
number	of	external	and	
internal	nodes.

Best	case: The	tree	
having	the	maximum	
number	of	external	and	
internal	nodes.	

1.	The	number	of	external	nodes	is	at	least	h+1 and	at	most	2h

Ex:	h	=	3

External nodes = 3+1 = 4

External nodes = 23 = 8
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2.	The	number	of	internal	nodes	is	at	least	h and	at	most	2h-1
Ex:	h	=	3
Worst	case: The	tree	
having	the	minimum	
number	of	external	and	
internal	nodes.

Best	case: The	tree	
having	the	maximum	
number	of	external	and	
internal	nodes.	

Internal nodes = 3

Internal nodes = 23 -1=7
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3.	The	number	of	nodes	is	at	least	2h+1 and	at	most	2h+1 -1
Ex:	h	=	3

Internal nodes = 3
External nodes = 4

----------------------------
Internal + External = 2*3 +1 = 7

Internal nodes = 7
External nodes = 8
-----------------------

Internal + External = 23+1 – 1 = 15
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4.	The	height	is	at	least	log(n+1)-1	and	at	most	(n-1)/2

Number of nodes = 7
h = 3

Number of nodes = 15
h = 3
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• The	BinaryTree ADT	extends the	
Tree	ADT,	i.e.,	it	inherits	all	the	
methods	of	the	Tree	ADT.

• Additional	methods:
• position	getThisLeft(p)
• position	getThisRightight(p)
• boolean hasLeft(p)
• boolean hasRight(p)

• Update	methods	may	be	
defined	by	data	structures	
implementing	the	
BinaryTree ADT.
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• A	node	is	represented	by	
an	object	storing
• Element
• Parent	node
• Left	child	node
• Right	child	node

• Node	objects	implement	
the	Position	ADT

B

DA

C E

Æ Æ

Æ Æ Æ Æ

B

A D

C E

Æ
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• addRoot(e): Create	and	return	a	new	node	r	storing	element	e	and	
make	r	the	root	of	the	tree;	an	error	occurs	if	the	tree	is	not	empty.

• insertLeft(v,	e): Create	and	return	a	new	node	w	storing	element	e,	add	
w	as	the	the left	child	of	v	and	return	w;	an	error	occurs	if	v	already	has	
a	left	child.

• insertRight(v	,e): Create	and	return	a	new	node	z	storing	element	e,	
add	z	as	the	the right	child	of	v	and	return	z;	an	error	occurs	if	v	already	
has	a	right	child.

• remove(v): Remove	node	v,	replace	it	with	its	child,	if	any,	and	return	
the	element	stored	at	v;	an	error	occurs	if	v	has	two	children.

• attach(v,	T1,	T2): Attach	T1	and	T2,	respectively,	as	the	left	and	right	
subtrees of	the	external	node	v;	an	error	condition	occurs	ifv is	not	
external.
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• Binary	trees	are	excellent	data	structures	for	searching	
large	amounts	of	information.	

• When	used	to	facilitate	searches,	a	binary	tree	is	called	a
binary	search	tree.	
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• A	binary	search	tree	(BST)	is	a	binary	tree	in	which:
• Elements	in	left subtree are	smaller than	the	current	node.
• Elements	in	right subtree are	greater than	the	current	node.

10

7 12

5 9 11 25
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• There	are	three	common	methods	for	traversing	a	binary	tree	and	
processing	the	value	of	each	node:	
• Pre-order
• In-order
• Post-order

• Each	of	these	methods	is	best	implemented	as	a	recursive	function.
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• Pre-order: Node	a Left	a Right	

A

B C

D E F G

A B D E C F GCPSC 3200 
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• Insert	the	following	items	into	a	binary	search	tree.
50,	25,	75,	12,	30,	67,	88,	6,	13,	65,	68

• Draw	the	binary	tree	and	print	the	items	using	Pre-order	
traversal.
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• In-order: Left	a Node	a Right	

A

B C

D E F G

D B E A F C GCPSC 3200 
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• From	the	previous	exercise,	print	the	tree’s	nodes	using	In-
order	traversal.

50

25 75

12 30 67 88

6 13 65 68
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• Post-order: Left	a Right	a Node	

A

B C

D E F G

D E B F G C ACPSC 3200 
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• From	the	previous	exercise,	print	the	tree’s	nodes	using	Post-
order	traversal.

50

25 75

12 30 67 88

6 13 65 68
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• In	an	inorder traversal	a	node	
is	visited	after	its	left	subtree
and	before	its	right	subtree

• Application:	draw	a	binary	tree
• x(v)	=	inorder rank	of	v
• y(v)	=	depth	of	v

Algorithm inOrder(v)
if hasLeft (v)

inOrder (left (v))
visit(v)
if hasRight (v)

inOrder (right (v))

3

1

2

5

6

7 9

8

4
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• After	deleting	an	item,	the	resulting	binary	tree	must	be	a	
binary	search	tree.
1. Find	the	node	to	be	deleted.
2. Delete	the	node	from	the	tree.
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• The	node	to	be	deleted	has	no	left	and	right	subtree (the	
node	to	be	deleted	is	a	leaf).

60

50 70

30 53 65 80

51 57 61 67 79 95

delete(30)
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• The	node	to	be	deleted	has	no	left	subtree (the	left	subtree
is	empty	but	it	has	a	nonempty	right	subtree).

60

50 70

30 53 65 80

35 51 57 61 67 79 95

delete(30)

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 46



• The	node	to	be	deleted	has	no	right	subtree (the	right	
subtree is	empty	but	it	has	a	nonempty	left	subtree).

60

50 70

30 53 65 80

25 35 51 57 61 67 79

delete(80)
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• The	node	to	be	deleted	has	nonempty	left	and	right	
subtree.

60

50 70

30 53 65 80

25 35 51 57 61 67 79 95

delete(70)

79
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• The	node	to	be	deleted	has	nonempty	left	and	right	
subtree.

60

50 70

30 53 65 80

25 35 51 57 61 67 79 95

delete(70)

67
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• Binary	search	can	perform	operations	get,	floorEntry and	
ceilingEntry on	an	ordered	map	implemented	by	means	of	an	
array-based	sequence,	sorted	by	key
• similar	to	the	high-low	game
• at	each	step,	the	number	of	candidate	items	is	halved
• terminates	after	O(log	n)	steps

• Example:	find(7)
1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
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• A	binary	search	tree	is	a	
binary	tree	storing	keys	(or	
key-value	entries)	at	its	
internal	nodes	and	
satisfying	the	following	
property:
• Let	u,	v,	and	w be	three	
nodes	such	that	u is	in	
the	left	subtree of	v and	
w is	in	the	right	subtree
of	v.	We	have	
key(u)	£ key(v)	£ key(w)

• External	nodes	do	not	store	
items.

• An	inorder traversal	of	a	
binary	search	trees	visits	
the	keys	in	increasing	order.

6

92

41 8
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• To	search	for	a	key	k,	we	trace	
a	downward	path	starting	at	
the	root.

• The	next	node	visited	
depends	on	the	comparison	
of	kwith	the	key	of	the	
current	node.

• If	we	reach	a	leaf,	the	key	is	
not	found.

• Example:	get(4):
• Call	TreeSearch(4,root)

Algorithm TreeSearch(k, v)
if T.isExternal (v)
return v

if	k < key(v)
return TreeSearch(k, T.left(v))

else	if	k = key(v)
return v

else {	k > key(v)	}
return TreeSearch(k, T.right(v))

6

92

41 8

<

>

=
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