
UNIX Concurrent IO Simulator Exercises

This document was derived from simulation software created by Steve Robbins which was

supported by NSF DUE-9752165

Instructions: Download the UNIX Concurrent I/O simulator and extract the zip file. This

produces a folder named io. The user manual for this simulator, io_doc.html, is included in the

folder. It is strongly suggested that you carefully read through this documentation describing

how the simulator operates prior to beginning this section.

Steps: Perform the following steps using the concurrent I/O simulator:

1. In the io directory you will find the file ioconfig. This is the configuration file for the

concurrent I/O simulator. Add a line at the top of this file that begins with user followed

by your name. For example, if your name is Avi Galvin, you would enter the following:

user Avi Galvin

Save and close the configuration file. This will ensure any log files you generate will

have your name at the top.

2. In the io directory, execute runio(UNIX, Linux, Mac OS X) or runio.bat

(Windows.) This will start the concurrent I/O simulator.

3. Click the button labeled Open Log in the left-hand column of the UNIX Concurrent IO

Simulation window. After you have pushed this button, its name will change to Close

Log.

4. Click on the button labeled Run in the right-hand column of the main window. This will

run the first program of the simulator which forks a child process.

5. After the simulator runs this program, click the button Log Image in the left-hand

column of the main window.

6. Click the pink button labeled Reset in the right-hand column of the main window.

7. Next, click the button labeled Step at the top of the right-hand column of the main

window. The Step button executes the line of code pointed to by the red arrow in the

program. Click this button several times so that both the parent and child processes

complete execution.

8. Reset the simulator once again.

9. At the top of the middle column of the main window is a button which begins with the

label After Fork: The default value of this button should be parent. Click this button so

that it changes to After Fork: child. The value of this button determines whether the

parent or child process runs first after the call to fork(). Run the program again.

10. Click the pink button labeled Choose Program in the lower right-hand corner of the

main window, opening a pop-up window that allows you to choose from a list of

programs the simulator may execute. Choose Program2 from this list.

11. Run the program again, and then log the image.

12. Click the button labeled After Fork: to reset its value to parent. Reset the program, and

then run it again. After this program has run, log the image.

13. Choose Program3.

14. Run the program again, and then log the image.

15. Reset, then run, the program. After this program has completed, log the image.

16. Choose Program4.

17. Run the program, and then log the image.

18. Resent the program and experiment with this program by altering whether the parent or

child process runs after the fork.

19. Close the log file by clicking on the Close Log button. You have created a file called

logfile01.html in the logs directory within the io directory.

20. Click the pink Quit button in the upper left-hand corner of the main window to terminate

the simulator.

21. Submit your log file -- logfile01.html -- to your instructor per his or her instructions.

Questions:

Answer the following questions after completing Steps 1-21 above.

1. After completing Step 4, which process ran first?

 a) Parent process

 b) Child process

2. After completing Step 4, what is the value of buf for both the parent and child processes?

 a) ab

 b) cd

 c) abcd

 d) cdab

3. After completing Step 7, which of the following statements best explains the final value of

buf?

 a) Since the parent and child are the same program, we can expect the same output.

 b) Since the open() system call is done after fork(), the parent and child each open

separate copies of the same file.

 c) Since the open() system call is done after fork(), the parent and child each open

separate copies of a different file.

 d) None of the above

4. After completing Step 9, does the process which runs first affect the final value of buf for

both the parent and child processes?

 a) Yes

 b) No

5. After completing Step 11, notice the final value of buf for the parent and child processes is

different? Which of the following statements best explains why it is different?

 a) The parent and child programs are the same -- the different output makes no sense.

 b) Because the open() system call is done before fork(), the parent and child processes

are sharing the same file descriptor and are sequentially reading from the same file.

 c) Because the open() system call is done before fork(), the parent and child processes

each open separate copies of the same file.

 d) Because the open() system call is done before fork(), the parent and child processes

each open separate copies of a different file.

6. After completing Step 12, does the process which runs first affect the final value of buf for

both the parent and child processes?

 a) Yes

 b) No

7. After completing Step 14, what is the final value of outfile? (It appears on the right-hand

side of the main window under Disk Space.)

 a) abcd

 b) ABcd

 c) abCD

 d) ABCD

8. After completing Step 14, which of the following statements best explains the final value of

the file outfile?

 a) Both the parent and child processes open the same file with the same inode, although each

process writes different values to the file.

 b) Both the parent and child processes open different files with the same inode; the process

that finishes last determines the final value of outfile.

 c) Both the parent and child processes open the same file with the same name but different

inodes; the process that finishes last determines the final value of outfile.

 d) Since the open() system call is done after fork(), the parent and child processes each open a

copy of the same file.

9. After completing Step 15, does the process which runs last affect the final value of the file

outfile?

 a) Yes

 b) No

10. After completing Step 18, does the order of which process runs first affect the final value of

the file outfile?

 a) Yes

 b) No

11. After completing Step 18, which of the following statements best explains the final value of

the file outfile?

 a) The parent and child programs are the same -- the different output makes no sense.

 b) Since the open() system call is done before fork(), the parent and child processes

share the same file descriptor and are sequentially writing to the same file.

 c) Since the open() system call is done before fork(), the parent and child processes

each open separate copies of the same file.

 d) Since the open() system call is done before fork(), the parent and child processes

each open separate copies of a file with the same name, but different inode values.

12. The button with the label Active: in the right-hand column can be used to determine which

process is running. Using this button, run Program4 such that the value of outfile is

abABcdCD. What is the necessary order of execution (indicated by process number) to

generate this output? (You will have to use the Step button which will allow you to step through

the program line-by-line.)

 a) 1001, 1002, 1001, 1002

 b) 1002, 1001, 1002, 1001

 c) 1001, 1001. 1002, 1002

 d) 1002, 1002, 1001, 1001

