
CPSC2800 - Introduction to Operating System Linux Hands-on Series

1

CPSC 2800 Linux Hands-on Lab # 2 Developing Linux Application in Java, C and C++

Project 2-1 Develop a Java test program in NetBeans

• If you have not installed Netbeans IDE yet, install it by typing sudo apt-get install netbeans in a

terminal window.

• Enter root password “123456” for old version of Linux or “12345678” for new version of Linux.

• And type Y when it is asked.

• If you have not launched NetBeans IDE yet, start it by typing command netbeans in a terminal

window.

• Click on menu item “File|New Project …” to launch the “New Project” window. Make sure

Categories selection chooses “Java”, and Projects selection chooses “Java Application”, as

shown below.

• Click on the Next button and see the “New Java Application” window. Type “Test” in the

“Project Name” text field, as shown below. Make sure that the checkboxes for “Create Main

Class” and “Set as Main Project” are checked.

CPSC2800 - Introduction to Operating System Linux Hands-on Series

2

• Click on the Finish button, and you will see a screen similar to the following one:

CPSC2800 - Introduction to Operating System Linux Hands-on Series

3

• In the body of method main, enter “System.out.println(“Hello”);”, as shown below.

CPSC2800 - Introduction to Operating System Linux Hands-on Series

4

• In the left-upper project pane, right-click on file “Main.java” and choose “Run File” on the

popup menu, as show below:

CPSC2800 - Introduction to Operating System Linux Hands-on Series

5

• The program will be saved to hard disk, compiled into a bytecode file, and executed. The

execution output is displayed under the “Output” tab, as shown below:

CPSC2800 - Introduction to Operating System Linux Hands-on Series

6

• Click on menu item “File|Close Project” to close this project, and use “File|Exit” to shut

down NetBeans IDE.

• Your NetBeans projects are saved under “/home/user/NetBeansProjects”.

Project 2-2

In this project you create and run a simple C program.

To write a simple C program:

1. Use the vi or other editor (such as gedit or nedit) to create and save the file inchines.c

(Remember that the C complier uses the .c extension to identify a file containing C source code).

Enter this code:

/* this program converts 10 feet to inches. */

#include <stdio.h>

int main(){

 int inches, feet;

CPSC2800 - Introduction to Operating System Linux Hands-on Series

7

 feet = 10;

 inches = feet * 12;

 printf("There are %d inches in %d feet. \n", inches, feet);

}

/* this program converts 10 feet to inches. */

#include <stdio.h>

#include <unistd.h>

int main(){

 int pid, i;

 setbuf(stdout,NULL);

 pid = fork();

 if(pid == 0) {

 printf(“Hey! \n”);

 }

 else if (pid < 0){

 fprintf(stderr, “Could not fork!\n”);

}

else {

 printf(“Hello!\n”);

 for(i=0; i<60; i++){

 sleep(1);

 printf(“.”);

 }

 printf(“Bye!\n”);

}

return 0;

}

--

-

2. Save the program and exit the editor.

3. The C compiler is executed by the gcc command in Linux. Type gcc inches.c and press Enter. If

you typed the program correctly, you see no messages. If you see error messages, load the

program into editor, and correct the mistake.

4. By default, the compiler stores the executable program in a file named a.out. Execute a.out by

typing ./a.out and press Enter. Record your screen:

5. You can specify the name of the executable file with the –o option. Type gcc –o inches inches.c

and press Enter. The command complies the inches.c file and stores the executable code in a file

named inches.

6. Run the inches program by typing ./inches and pressing Enter.

7. Type clear and press Enter to clear the screen for the next project.

CPSC2800 - Introduction to Operating System Linux Hands-on Series

8

Project 2-3

In this project, you create a C program that uses an if-else statement.

To use the C if-else statement:

1. Create the file radius.c with your choice of editor. Enter the following C code:

#include <stdio.h>

int main(){

 float radius = 50, area;

 area = 3.14159 * radius * radius;

 if (area > 100)

 printf("The area, %f, is too large. \n", area);

 else

 printf("The area, %f, is within limits. \n", area);

}

2. Save the file and exit the editor.

3. Compile the program by typing gcc –o radius radius.c and pressing Enter. If you see error

messages, edit the file, and correct your mistakes.

4. Execute the program by typing ./radius and pressing Enter. Record your output:

5. Type clear and press Enter to clear the screen.

Project 2-4

In this project, you create a C program using a for loop.

To practice using a C for loop:

1. Use the editor of your choice to create the file rain.c, entering this C code:

/* rain.c*/

#include <stdio.h>

int main(){

 int rain, total_rain=0;

 for (rain=0; rain< 10; rain++)

 {

 printf("We have had %d inches of rain. \n", rain);

 total_rain = total_rain + rain;

 }

 printf("We have had a total ");

 printf("of %d inches of rain. \n", total_rain);

}

2. Save the file and exit the editor.

3. Compile the program and store the executable code in a file named rain.

4. Run the program. Your screen look like:

5. Type clear and press Enter to clear the screen.

Project 2-5

Functions can be powerful tools in C programming. In this program, you create two functions that

accept arguments and return a value.

CPSC2800 - Introduction to Operating System Linux Hands-on Series

9

To practice writing functions that accepts arguments and returns a value:

1. Use the editor of your choice to create the file absolute.c, entering this C code:

#include <stdio.h>

int absolute(int num);

int main(){

 int x = -12, y;

 y = absolute(x);

 printf("The absolute value of %d is %d\n", x, y);

}

int absolute(int num)

{

 if (num < 0)

 return (-num);

 else

 return (num);

}

2. Save the file and exit the editor.

3. Compile the program and store the executable code in a file named absolute.

4. Run the program. Your screen look like:

5. Type clear and press Enter to clear the screen.

Project 2-6

In this project, you create a C program that performs file input and output.

To perform input/output:

1. Use the editor of your choice to create the file buildfile.c. Enter the following code in the file:

#include <stdio.h>

int main(){

 FILE *out_file;

 int count = 0;

 char msg[] = "This was created by a C program. \n";

 if((out_file = fopen("testfile", "w")) == NULL)

 {

 printf("Error opening file. \n");

 return(1);

 }

 while(count < 33)

 {

 fputc(msg[count], out_file);

 count++;

 }

 fclose(out_file);

}

2. Save the file and exit the editor.

3. Compile the program and save the executable in a file named buildfile.

4. Run the ./buildfile program. The program creates another file, testfile.

CPSC2800 - Introduction to Operating System Linux Hands-on Series

10

5. To see the contents of testfile, type cat testfile and press Enter. Record your output:

6. Type clear and press Enter to clear the screen.

Project 2-7

In this project, you create two files and link them together into one executable file.

To compile and link to files:

1. Use the editor of your choice to create the file abs_func.c and enter the following code:

 int absolute(int num)

 {

 if (num < 0)

 return (-num);

 else

 return (num);

 }

2. Save the file.

3. Create the file abs_main.c. Enter this code:

 #include <stdio.h>

 int absolute(int num);

 int main(){

 int x = -12, y;

 y = absolute(x);

 printf("The absolute value of %d is %d\n", x, y);

 }

4. Save the file and exit the editor.

5. Compile and link the two programs by typing gcc abs_main.c abs_func.c –o abs and then press

Enter. The compiler separately compile abs_main.c and abs_func.c. Their object files are linked

together, and the executable code is stored in the file abs.

6. Run the ./abs program. Record your output:

7. Type clear and press Enter to clear the screen.

Project 2-8

In this project, you use the make utility and a makefile to create a multimodule C project.

To crate a simple multimodule C project.

1. Use the editor of your choice to create the file square_func.c and enter the following code in

the file:

 int square(int number)

 {

 return (number * number);

}

2. Save the file.

3. Next crate the file square_main.c. Enter the following code:

 #include <stdio.h>

 int main(){

 int count, sq;

 for (count = 1; count < 11; count++)

 {

CPSC2800 - Introduction to Operating System Linux Hands-on Series

11

 sq = square(count);

 printf("The square of %d is %d \n", count, sq);

 }

}

4. Save the file.

5. Next create a makefile named make_square. Enter the following text:

 square_func.o: square_func.c

 (press Tab) gcc -c square_func.c

 square_main.o: square_main.c

 (Tab) gcc -c square_main.c

 square: square_func.o square_main.o

(Tab)gcc square_func.o square_main.o -o square

6. Save the file and exit the editor.

7. Build the program by typing make –f make_square square and pressing Enter.

8. Run the program by typing ./square. Record your output:

9. Type clear and Enter to clear the screen.

Project 2-9

In this project you create a simple C++ program.

To write a C++ program:

1. If you do not have C++ complier (i.e., g++) installed, type sudo apt-get install g++ in a terminal

window.

2. Enter root password “123456” for old version of Linux or “12345678” for new version of Linux.

3. And type Y when it is asked.

4. Use the editor of your choice to create the simple.C file. Enter the following code:

//==

//Program Name: Simple.C

//By: your initials

//Purpose: Firsst program in C++ showing how to produce output

//==

#include <iostream>

using namespace std;

int main(void)

{

 cout << "C++ is a programming language. \n";

 cout << "Like C, C++ is compatible with UNIX/Linux. \n";

}

5. Save the simple.C and exit the editor.

6. Use the C++ compiler to create a programm called sim_plus by typing g++ simple.C –o sim_plus

and then press Enter.

7. Run sim_plus by typing ./sim_plus. What does your screen look like?

8. Type clear and Enter to clear the screen.

Project 2-10

CPSC2800 - Introduction to Operating System Linux Hands-on Series

12

Reading a file is important for C++ programming. In this project, you create a C++ program that reads

the contents of a file.

To create a C++ program that reads a text file:

1. Use the editor of your choice(such as gedit) to create the fileread.C file. Enter the following

code:

//==

//Program Name: fileread.C

//By: your initials

//Purpose: A C++ program reads the contents of a file

//==

#include <iostream>

#include <fstream>

using namespace std;

int main(void)

{

 ifstream file("testfile");

 char record_in[256];

 if (file.fail())

 cout << "Error opening file. \n";

 else

 {

 while(!file.eof())

 {

 file.getline(record_in, sizeof(record_in));

 if(file.good())

 cout << record_in <<endl;

 }

 }

}

2. Save the file and exit the editor.

3. Type g++ fileread.C –o fileread

4. Test the program by typing ./fileread. Record your output:

5. Type rm testfile to remove testfile.

6. Test the program again by typing ./fileread. Record your output:

7. Type clear and Enter to clear the screen.

Include your experiences and answers to all the underlying parts in your report. Include the following at

the beginning of your report.

• Name:

• UTC ID:

• Course Number and Name:

• Semester:

• Lab Name and Number:

CPSC2800 - Introduction to Operating System Linux Hands-on Series

13

• I spent hours and minutes to finish this hands-on lab.

• I have (percent) finish this lab.

• I expect (A, B, C, or F) of this lab.

• This lab helps me to master Java, C, and C++ compilation and execution under Linux Operating

System and environment. Choose a number to indicate how much the lab is helpful.

1 2 3 4 5

(less helpful) (more helpful)

