
6.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 6: Process Synchronization

6.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Module 6: Process Synchronization

n Background
n The Critical-Section Problem
n Peterson’s Solution
n Synchronization Hardware
n Semaphores
n Classic Problems of Synchronization
n Monitors
n Synchronization Examples
n Atomic Transactions

6.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Objectives

n To introduce the critical-section problem,
whose solutions can be used to ensure the
consistency of shared data

n To present both software and hardware
solutions of the critical-section problem

n To introduce the concept of an atomic
transaction and describe mechanisms to
ensure atomicity

6.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Background

n Concurrent access to shared data may result in data
inconsistency

n Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating
processes

n Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We
can do so by having an integer count that keeps track
of the number of full buffers. Initially, count is set to 0. It
is incremented by the producer after it produces a new
buffer and is decremented by the consumer after it
consumes a buffer.

6.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Producer

while (true) {
/* produce an item and put in nextProduced */

while (count == BUFFER_SIZE)
; // do nothing

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

6.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Consumer

while (true) {
while (count == 0)

; // do nothing
/* consume the item in nextConsumed */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

}

6.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Race Condition
n count++ could be implemented as (producer)

register1 = count
register1 = register1 + 1
count = register1

n count-- could be implemented as (consumer)

register2 = count
register2 = register2 - 1
count = register2

n Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

6.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted
� Assume that each process executes at a nonzero speed
� No assumption concerning relative speed of the N processes

6.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Peterson’s Solution

n Two process solution
n Assume that the LOAD and STORE instructions are atomic;

that is, cannot be interrupted.
n The two processes share two variables:

l int turn;
l Boolean flag[2]

n The variable turn indicates whose turn it is to enter the critical
section.

n The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is ready!

6.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

do {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);

critical section
flag[i] = FALSE;

remainder section
} while (TRUE);

Algorithm for Process Pi

6.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition 11

Synchronization Hardware

n Many systems provide hardware support for
critical section code

n Uniprocessors – could disable interrupts
l Currently running code would execute without

preemption
l Generally too inefficient on multiprocessor

systems
4 Operating systems using this not broadly scalable

n Modern machines provide special atomic
hardware instructions

4 Atomic = non-interruptable

l Either test memory word and set value
l Or swap contents of two memory words

6.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition 12

Data Structure for Hardware Solutions

!"#$%&'&$())'*(+,-(+./(0(
1'
!+%2(0.'#33$.(4',(0(5
!"#$%&'*(+,-(+./(0(6#33$.(4',(0(7'1'

08%)9,(0(':',(0(5
;
!"#$%&'#33$.(4'<.067'1'

+.0"+4',(0(5
;
!"#$%&'23%,').06#33$.(4',(0(7'1'

08%)9,(0(':',(0(5
;
=='>340%4".,'34'?.@0'A$%,.

6.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition 13

Data Structure for Hardware Solutions

public boolean getAndSet(boolean data) {
boolean oldValue = this.get();
this.set(data);
return oldValue;

}
public void swap(HardwareData other) {

boolean temp = this.get();
this.set(other.get());
other.set(temp);

}
}

Atomic instruction

Atomic instruction
(read-modify-write)

6.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Using get-and-set Lock

while (true) {
acquire lock

critical section
release lock

remainder section
}

// lock is shared by all threads
HardwareData lock = new HardwareData(false);

while (true) {
//acquire lock, get and set lock true
while (lock.getAndSet(true))

Thread.yield();

//criticalSection
lock.set(false); //release lock

//remainder section
}

6.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Using swap Instruction

// lock is shared by all threads
HardwareData lock = new HardwareData(false);
// each thread has a local copy of key
HardwareData key = new HardwareData(true);

while (true) {
key.set(true);
do {

lock.swap(key); //acquire lock
}
while (key.get() == true);

// criticalSection
lock.set(false); //release lock

//remainder section
}

0

1 1 1 1

6.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Using swap Instruction

// lock is shared by all threads
HardwareData lock = new HardwareData(false);
// each thread has a local copy of key
HardwareData key = new HardwareData(true);

while (true) {
key.set(true);
do {

lock.swap(key); //acquire lock
}
while (key.get() == true);

// criticalSection
lock.set(false); //release lock

//remainder section
}

1

1 0 1 1

6.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Semaphore
n Synchronization tool that does not require busy waiting
n Semaphores are like integers, except NO negative values
n Accessed only through two standard operations acquire() and

release() or wait() and signal(). Originally called P() –to test and
V() – to increment

n Can only be accessed via two indivisible (atomic) operations
l acquire () {

while (value <=0)
; // no-op

value--;
}

l release () {
value ++;

}

6.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Value=2Value=1Value=0

Semaphores Like Integers Except
n Semaphore from railway analogy

l Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

6.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Semaphore as General Synchronization Tool

n Counting semaphore – integer value can range over an unrestricted
domain

n Binary semaphore – integer value can range only between 0 and 1;
can be simpler to implement
l Also known as mutex locks

n Can implement a counting semaphore S as a binary semaphore
n Provides mutual exclusion

Semaphore sem = new Semaphore(1); // initialized to 1
do {

sem.acquire();
// Critical Section

sem.release();
// remainder section

} while (TRUE);

6.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Example: Use Semaphore to enforce order

n Consider two concurrently running processes P1 with statement S1 and P2 with
statement S2.

n If we require that S2 be executed only after S1 has completed.
n We let P1 and P2 share a common semaphore synch, initialized to 0.

In process P1:
S1;
synch.release();

In process P2:
synch.acquire();
S2;

6.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Using Semaphore

BeeBee
Bee
Bee
Bee

A R

public class Worker implements Runnable {
private Semaphore sem;
private String name;
public Worker(Semaphore sem, String name) {

this.sem = sem;
this.name = name;

}
public void run() {

while (true) {
sem.acquire();
MutualExclusionUtilities.criticalSection(name);
sem.release();
MutualExclusionUtilities.nonCriticalSection(name);

} } }

public class SemaphoreFactory {
public static void main(String args[]) {

Semaphore sem = new Semaphore(1);
Thread[] bees = new Thread[5];
for (int i = 0; i < 5; i++)

bees[i] = new Thread(
new Worker(sem,
"Worker " + (new Integer(i)).toString()));

for (int i = 0; i < 5; i++)
bees[i].start();

} }

6.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Semaphore Implementation

n Main disadvantage of the semaphore definition given
here is that it requires busy waiting.

n While a process is in its critical section, any other
process that tries to enter its critical section must loop
continuously in the entry code.

n Busy waiting wastes CPU cycles. This type of
semaphore is also called spinlock.

n Advantage is that no context switch. Used on
multiprocessor system.

6.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Semaphore Implementation with no Busy waiting

n With each semaphore there is an associated waiting queue.
Each entry in a waiting queue has two data items:
l an integer value
l a list of processes

n Two operations:
l block – place a process into a waiting queue associated

with the semaphore.
l wakeup – changes the process from the waiting state to

ready state.

6.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Semaphore Implementation with no Busy waiting (Cont.)

n Implementation of wait:
acquire () {

value--;
if (value < 0) {

add this process to list;
block(); }

}
n Implementation of signal:

release () {
value++;
if (value <= 0) {

remove a process P from list;
wakeup(P); }

}

BeeBee
Bee
Bee
Bee

A R

BeeBee
Bee
Bee
Bee

A R

Waiting List

Waiting List

Wake up one

6.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Deadlock and Starvation
n Deadlock – two or more processes are waiting indefinitely for an event that

can be caused by only one of the waiting processes
n Let S and Q be two semaphores initialized to 1

P0 P1
S.acquire(); Q.acquire();
Q.acquire(); S.acquire();

. .

. .

. .
S.release(); Q.release();

W.release(); S.release();

• P0 executes S.acquire() and then P1 executes Q.acquire().
• When P0 executes Q.acquire(), it must wait until P1 executes

Q.release().
• Similarly, when P1 execute S.acquire(), it must wait until P0

executes S.release()
• Since these signal operations cannot be executed, P0 and P1 are

deadlocked.

6.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Deadlock and Starvation

n Starvation – indefinite blocking. A process may never
be removed from the semaphore queue in which it is
suspended

n Priority Inversion - Scheduling problem when lower-
priority process holds a lock needed by higher-priority
process

6.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Classical Problems of Synchronization

n Bounded-Buffer Problem
n Readers and Writers Problem
n Dining-Philosophers Problem

6.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Bounded-Buffer Problem
public class BoundedBuffer {

public BoundedBuffer() {
// buffer is initially empty
in = 0; out = 0;
buffer = new Object[BUFFER_SIZE]; // Shared buffer can store five objects.
mutex = new Semaphore(1); // mutex allows only one thread to enter
empty = new Semaphore(BUFFER_SIZE); // empty blocks producer while empty=0
full = new Semaphore(0); // full blocks consumer while full=0

}
public void insert() { /* see next slides */ }
public Object remove() { /* see next slides */ }
private static final int BUFFER_SIZE = 5;
private Semaphore mutex, empty, full;
private int in, out;
private Object[] buffer;

}

empty.acquire()
(empty--)
mutex.acquire()

mutex.release()
empty.release()
(empty++)

full.acquire()
(full--)
Mutex.acquire()

mutex.release()
full.release()
(full++)

remove an itemadd an item

producer consumer

6.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

BoundedBuffer.insert(Object item)

public void insert(Object item) {
// blocked while empty = 0, check if there are empty buffers
empty.acquire();

// blocked while someone is using mutex, (i.e., in CS)
mutex.acquire();

// add an item to the buffer, this is CS
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;

// releasing mutex, (i.e., exited from CS)
mutex.release();

full.release(); // increment full
}

6.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

BoundedBuffer.remove()

public Object remove() {
// block consumer while full = 0, check if there are items in the buffer
full.acquire();

// blocked while someone is using mutex, (i.e., in CS)
mutex.acquire();

// remove an item from the buffer, this is CS
Object item = buffer[out];
out = (out + 1) % BUFFER_SIZE;

mutex.release(); // releasing mutex, (i.e., exited from CS)
empty.release(); // increment empty
return item; }

6.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Producer Threads
import java.util.Date;
public class Producer implements Runnable {

private Buffer buffer;

public Producer(Buffer buffer) {
this.buffer = buffer;

}

public void run() {
Date message;
while (true) {

// nap for awhile
SleepUtilities.nap();
// produce an item & enter it into the buffer
message = new Date();
buffer.insert(message);

} } }

6.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Consumer Threads
public class Consumer implements Runnable {

private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

public void run() {
Date message;
while (true) {

// nap for awhile
SleepUtilities.nap();
// consume an item from the buffer
message = (Date)buffer.remove();

} } }

6.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Bounded Buffer Problem: Factory

public class Factory

{

public static void main(String args[]) {

Buffer buffer = new BoundedBuffer();

// now create the producer and consumer threads

Thread producer = new Thread(new Producer(buffer));
Thread consumer = new Thread(new Consumer(buffer));
producer.start();
consumer.start();

}

}

6.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Readers-Writers Problem

n A data set is shared among a number of concurrent processes
l Readers – only read the data set; they do not perform any

updates
l Writers – can both read and write

n Problem – allow multiple readers to read at the same time. Only
one single writer can access the shared data at the same time

n Shared Data
l Data set
l Semaphore mutex initialized to 1 to protect update of readcount
l Semaphore wrt initialized to 1
l Integer readcount initialized to 0

6.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

The Readers-Writers Problem

n Multiple readers or a single writer can use DB.

writer

writer
reader

reader

reader

reader writer

writer

reader

reader

reader

reader

X XX

6.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Database
public class Database implements ReadWriteLock {

public Database() {
readerCount = 0; // # readers in database access
// ensure mutual exclusion when reader count is updated
mutex = new Semaphore(1);
//mutual exclusion for writers and prevent writers from enter database when

//readers are reading
db = new Semaphore(1);

}
public void acquireReadLock() { }
public void releaseReadLock() { }
public void acquireWriteLock() { }
public void releaseWriteLock() { }
private int readerCount;
private Semaphore mutex;
private Semaphore db;

}

6.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Readers

Public void acquireReadLock() {
mutex.acquire();
/* the first reader indicates that

the database is being read */
++readerCount;
if (readerCount == 1)

db.acquire();

mutex.release();
}

Public void releaseReadLock() {
mutex.acquire();
/* the last reader indicates that

the database is no longer being read */
--readerCount;

if (readerCount == 0)
db.release();

mutex.release();
}

6.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition 38

Writers
public void acquireWriteLock() {

db.acquire();
}

public void releaseWriteLock() {
db.release();

}

If a writer is active in the database and n readers are waiting,
then one reader is queued on db and n-1 readers are queued on
mutes.
If a writer executes db.release(), we may resume the execution
of either the waiting readers or a single waiting writer.

6.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Dining Philosophers Problem

n Shared data
l Bowl of rice (data set)
l Semaphore chopStick[] = new Semaphore[5];
l Semaphore chopStick [i] initialized to 1

Thinking
Hungry
Eating

• A hungry philosopher picks
up two chopsticks closest to
her to eat.

• A philosopher picks one
chopstick at a time.

• Can not pick up a chopstick
that is already in the hand of
a neighbor.

6.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Dining Philosophers Problem
n Significance

l Is an examples of a large class of concurrency-control
problems.

l Is a simple representation of the need to allocate several
resources among several processes in a deadlock-free and
starvation-free manner.

l Simple solution is to represent each chopstick with a
semaphore
Semaphore chopStick[] = new Semaphore[5];

for (int i = 0; i < 5; i++)

chopStick [i] = new Semaphore(1);

6.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

The Structure of Philosopher i

n Philosopher i

while (true) {
// get left chopstick
chopStick[i].acquire();
// get right chopstick
chopStick[(i + 1) % 5].acquire();

eating();

//return left chopstick
chopStick[i].release();
// return right chopstick
chopStick[(i + 1) % 5].release();

thinking();
}

Picked upWaiting

A deadlock occurs!

If all five philosophers
grabs her left chopsticks
simultaneously.

6.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Possible Remedies

nPlacing restrictions on the philosophers
l Allow at most four philosophers to be

sitting simultaneously at the table
l Allow a philosopher to pick up her

chopsticks only if both are available
l An odd philosopher picks up first her left

chopsticks and even philosopher picks up
her right chopstick and then right

6.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Synchronization Examples

nSolaris
nWindows XP
nLinux
nPthreads

6.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solaris Synchronization

n Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing

n For short code-segment
l Uses adaptive mutexes for efficiency when protecting data from

short code segments
l In multiple CPUs, the thread spin-and-wait if lock is held by a

thread running in another CPU; the thread block-and-sleep if
the thread holding the lock is not in run state.

l In single CPU, the thread always sleep rather than spin

6.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solaris Synchronization

n For longer code segment
l Uses condition variables and readers-writers locks when longer

sections of code need access to data
l Read-writer locks are more efficient than semaphores because

multiple threads can read data concurrently whereas
semaphores always serialize access to the data.

l Uses turnstile which is a queue structure containing threads
blocked on a lock.

6.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Windows XP Synchronization

n Uses interrupt masks to protect access to global
resources on uniprocessor systems

n Uses spinlocks on multiprocessor systems
n Also provides dispatcher objects which may act as

either mutexes and semaphores
n Dispatcher objects may also provide events

l An event acts much like a condition variable

6.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Linux Synchronization

n Linux:
l Prior to kernel Version 2.6, disables interrupts

to implement short critical sections
l Version 2.6 and later, fully preemptive

n Linux provides:
l semaphores
l spin locks

6.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Pthreads Synchronization

n Pthreads API is OS-independent
n It provides:

l mutex locks
l condition variables

n Non-portable extensions include:
l read-write locks
l spin locks

6.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

End of Chapter 16

