
5.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 5: CPU Scheduling

n Basic Concepts
n Scheduling Criteria
n Scheduling Algorithms
n Thread Scheduling
n Multiple-Processor Scheduling
n Operating Systems Examples
n Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Objectives

n To introduce CPU scheduling, which is the
basis for multiprogrammed operating systems

n To describe various CPU-scheduling algorithms
n To discuss evaluation criteria for selecting a

CPU-scheduling algorithm for a particular
system

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Basic Concepts

n Maximum CPU utilization obtained with
multiprogramming

n CPU–I/O Burst Cycle – Process execution consists
of a cycle of CPU execution and I/O wait (I/O
burst)

n CPU burst distribution
l An I/O bound program typically has many short CPU

bursts.
l A CPU-bound program might have a few long CUP

bursts.
l The distribution is important in selecting CPU-scheduling

algorithm.

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Histogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Alternating Sequence of CPU And I/O Bursts

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

CPU Scheduler

n Selects from among the processes in memory that
are ready to execute, and allocates the CPU to one of
them

n CPU scheduling decisions may take place when a
process:
1.Switches from running to waiting state
2.Switches from running to ready state
3.Switches from waiting to ready
4.Terminates

n Scheduling under 1 and 4 is nonpreemptive (there is
no choice in terms of scheduling)

n All other scheduling is preemptive

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Dispatcher

n Dispatcher module gives control of the CPU to
the process selected by the short-term scheduler;
this involves:
l switching context
l switching to user mode
l jumping to the proper location in the user

program to restart that program
n Dispatch latency – time it takes for the

dispatcher to stop one process and start another
running

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Scheduling Criteria

n CPU utilization – keep the CPU as busy as possible
n Throughput – # of processes that complete their

execution per time unit
n Turnaround time – amount of time to execute a

particular process
n Waiting time – amount of time a process has been

waiting in the ready queue
n Response time – amount of time it takes from when a

request was submitted until the first response is
produced, not output (for time-sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Scheduling Algorithm Optimization Criteria

n Max CPU utilization
n Max throughput
n Min turnaround time
n Min waiting time
n Min response time

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

n Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27
n Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

FCFS Scheduling (Cont)

Suppose that the processes arrive in ready queue in the order
P2 , P3 , P1

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time: (6 + 0 + 3)/3 = 3
n Much better than previous case
n Convoy effect short process behind long process

P1P3P2

63 300

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Shortest-Job-First (SJF) Scheduling

n Associate with each process the length of
its next CPU burst. Use these lengths to
schedule the process with the shortest time

n SJF is optimal – gives minimum average
waiting time for a given set of processes
l The difficulty is knowing the length of the

next CPU request

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Example of SJF

Process Arrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

n SJF scheduling chart

n Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Determining Length of Next CPU Burst

n Can only estimate the length
n Can be done by using the length of previous CPU bursts, using

exponential averaging

:Define 5.
10 , 4.

 3.
burst CPUnext for the valuepredicted 2.

ninformatiorecent most burst, CPU oflength actual 1.

1

££

=
=

+

aa
t
t

n

n

th
n nt

() nnn t taat -+=+ 1 1

Stores Past history
Most recent info

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Prediction of the Length of the Next CPU Burst

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Examples of Exponential Averaging

n a =0
l tn+1 = tn

l Recent history does not count
n a =1

l tn+1 = a tn
l Only the actual last CPU burst counts

n If we expand the formula, we get:
tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a)ja tn -j + …
+(1 - a)n +1 t0

n Since both a and (1 - a) are less than or equal to 1, each successive
term has less weight than its predecessor

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Priority Scheduling
n A priority number (integer) is associated with each

process
n The CPU is allocated to the process with the highest

priority (smallest integer º highest priority)
l Preemptive
l nonpreemptive

n SJF is a priority scheduling where priority is the
predicted next CPU burst time

n Problem º Starvation – low priority processes may
never execute

n Solution º Aging – as time progresses increase the
priority of the process

5.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Round Robin (RR)

n Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time has
elapsed, the process is preempted and added to the end
of the ready queue.

n If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

n Performance
l q large Þ FIFO
l q small Þ q must be large with respect to context

switch, otherwise overhead is too high

5.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

n The Gantt chart is:

n Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

5.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Time Quantum and Context Switch Time

5.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Turnaround Time Varies With The Time Quantum

5.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multilevel Queue

n Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

n Each queue has its own scheduling algorithm
l foreground – RR
l background – FCFS

n Scheduling must be done between the queues
l Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
l Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e., 80% to foreground in
RR, 20% to background in FCFS

5.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multilevel Queue Scheduling

5.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multilevel Feedback Queue

n A process can move between the various queues; aging can be
implemented this way

n Multilevel-feedback-queue scheduler defined by the following
parameters:
l number of queues
l scheduling algorithms for each queue
l method used to determine when to upgrade a process
l method used to determine when to demote a process
l method used to determine which queue a process will enter

when that process needs service

5.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Example of Multilevel Feedback Queue

n Three queues:
l Q0 – RR with time quantum 8 milliseconds
l Q1 – RR time quantum 16 milliseconds
l Q2 – FCFS

n Scheduling
l A new job enters queue Q0 which is served FCFS. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

l At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

5.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multilevel Feedback Queues

5.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Scheduling

n Distinction between user-level and kernel-level threads
n Many-to-one and many-to-many models, thread library

schedules user-level threads to run on LWP
l Known as process-contention scope (PCS) since

scheduling competition is within the process
n Kernel thread scheduled onto available CPU is system-

contention scope (SCS) – competition among all
threads in system

5.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Pthread Scheduling

n API allows specifying either PCS or SCS during
thread creation
l PTHREAD SCOPE PROCESS schedules

threads using PCS scheduling
l PTHREAD SCOPE SYSTEM schedules

threads using SCS scheduling.

5.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multiple-Processor Scheduling

n CPU scheduling more complex when multiple CPUs are available
n Homogeneous processors within a multiprocessor
n Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing
n Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has its
own private queue of ready processes

n Processor affinity – process has affinity for processor on which it is
currently running
l soft affinity
l hard affinity

5.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Non-uniform memory access (NUMA) and CPU
Scheduling

Processor affinity. Most SMP systems try to avoid migration of
processes from one processor to another, and instead attempt to
keep a process running on the same processor.

5.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multicore Processors

n Recent trend to place multiple processor cores on same physical chip
n Faster and consume less power
n Multiple threads per core also growing

l Takes advantage of memory stall to make progress on another
thread while memory retrieve happens

Memory Stall

5.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Operating System Examples

n Solaris scheduling
n Windows XP scheduling
n Linux scheduling

5.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solaris Dispatch Table
1. priority: Higher number
indicates higher priority

2. Time quantum: Higher
priority with smaller time slice

3. Time quantum expired:
Priority after using its entire
time slice,
Priority is lowered

4. Return from sleep:
Priority of a thread that is
returning from sleeping.
Priority is boosted, which is
important for good
responsive time. Solaris dispatch table for time-sharing and

interactive threads

5.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solaris Scheduling

The kernel maintains 10
threads for servicing
interrupts, which does
NOT belong to one of six
scheduling classes.

The six classes are real-
time, system, fair share,
fixed priority, timeshare,
and interactive threads.

5.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Windows XP Priorities
Priority classes

Relative
priority

• The initial priority of a thread is typically the base priority of the
process the thread belongs to.

• The priority is boosted when a thread is released from a wait
operation. Waiting for keyboard gets more increase, and for disk
gets moderate increase.

• XP distinguishes foreground and background processes.
Quantum of foreground process is increased by 3.

5.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Linux Scheduling

n Constant order O(1) scheduling time
n Two priority ranges: time-sharing and real-time
n Real-time range from 0 to 99 and nice value from

100 to 140
n Two ranges map into a global priority scheme

wherein numerically lower values indicate higher
priorities.

5.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Priorities and Time-slice length

Unlike Solaris and XP, Linux assigns higher priority tasks
longer time quanta and lower priority task shorter time quanta.

5.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

List of Tasks Indexed According to Priorities

All runnable tasks are stored in run queue which has two priority
arrays: active and expired.
The schedule chooses the task with highest priority from the
active array for execution.
The two priority arrays are exchanged when all tasks in active
arrays have exhausted their time slice.

5.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Algorithm Evaluation

n Deterministic modeling – takes a particular
predetermined workload and defines the
performance of each algorithm for that workload

n Queueing models.
l Processes vary from day to day, so there is no static set of

processes to use for deterministic modeling.
l Distribution of CPU and I/O bursts can be determined.
l Determine if the system is stable by checking if the number

of process leaving the queue is equal to the number of
processes that arrive.

n Implementation
l High cost, environment changes, can be altered by system

managers or users

5.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Evaluation of CPU schedulers by Simulation

• Software data structure to represent the major components of
the system.

• As value of a clock increases, the simulator modify the system
state to reflect activates of the devices, the processes, and the
scheduler.

• The statistics will be gathered for performance of the
algorithm.

5.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

End of Chapter 5

5.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

5.08

5.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

In-5.7

5.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

In-5.8

5.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

In-5.9

5.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Dispatch Latency

5.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Java Thread Scheduling

n JVM Uses a Preemptive, Priority-Based Scheduling
Algorithm

n FIFO Queue is Used if There Are Multiple Threads
With the Same Priority

5.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or
Not

5.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
// perform CPU-intensive task
. . .
Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

5.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Priorities

Priority Comment
Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

5.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solaris 2 Scheduling

5.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

End of Chapter 5

