
14.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 4: Threads

14.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 4: Threads

nOverview
nMultithreading Models
nThread Libraries
nThreading Issues
nOperating System Examples
nWindows XP Threads
nLinux Threads

14.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Objectives

n To introduce the notion of a thread — a
fundamental unit of CPU utilization that forms
the basis of multithreaded computer systems

n To discuss the APIs for the Pthreads, Win32,
and Java thread libraries

n To examine issues related to multithreaded
programming

14.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Single and Multithreaded Processes

14.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multithreaded Server Architecture

14.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Benefits

n Responsiveness
l Allows a program continue running if part of it is

blocked or its is performing a lengthy operation
n Resource Sharing

l Threads share the memory and the resources of the
parent process

n Economy
l In Solaris, creating a process is 30 times slower than

creating a thread, context switching is 5 times slower.
n Scalability

l Multithreading on a multi-CPU machine increase
parallelism

14.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multicore Programming

n Multicore systems putting pressure on programmers,
challenges include
l Dividing activities

4 Find area that can be divided into separate, concurrent
tasks

l Balance
4 Ensure concurrent tasks perform equal work of equal value

l Data splitting
4 Data accessed must be divided to run on speparate cores.

l Data dependency
4 One task depends on data from another, ensure

synchrornization
l Testing and debugging

4 Test many execution path

14.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

14.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

User Threads

nThread management done by user-level
threads library

nThree primary thread libraries:
l POSIX Pthreads
l Win32 threads
l Java threads

14.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Kernel Threads

n Supported by the Kernel/OS
n All contemporary OS support kernel

threads
n Examples

lWindows XP/2000
lSolaris
lLinux
lTru64 UNIX
lMac OS X

14.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Multithreading Models

n Many-to-One: map many user-level threads
to one kernel thread

n One-to-One: map each user-level thread to a
kernel thread

n Many-to-Many: multiplexes many user-level
threads to a smaller or equal number of
kernel theads

14.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Many-to-One Model

nMany user-level
threads mapped to
single kernel
thread

nExamples:
lSolaris Green

Threads
lGNU Portable

Threads

14.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

One-to-One

n Each user-level thread maps to kernel thread
n Examples

l Windows NT/XP/2000
l Linux
l Solaris 9 and later

14.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Many-to-Many Model

n Allows many user level
threads to be mapped to
many kernel threads

n Allows the operating
system to create a
sufficient number of
kernel threads

n Solaris prior to version 9
n Windows NT/2000 with

the ThreadFiber
package

14.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Two-level Model

n Similar to M:M, except that
it allows a user thread to
be bound to kernel thread

n Examples
l IRIX
l HP-UX
l Tru64 UNIX
l Solaris 8 and earlier

14.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Libraries

nThread library provides programmer with
API for creating and managing threads

nTwo primary ways of implementing
lLibrary entirely in user space
lKernel-level library supported by the OS

14.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Pthreads

n May be provided either as user-level or kernel-
level

n A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization

n API specifies behavior of the thread library,
implementation is up to development of the
library

n Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

14.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Java Threads

n Java threads are managed by the JVM
nTypically implemented using the threads

model provided by underlying OS
n Java threads may be created by:

lExtending Thread class
l Implementing the Runnable interface

14.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Threading Issues

n Semantics of fork() and exec() system calls
n Thread cancellation of target thread

l Asynchronous or deferred
n Signal handling
n Thread pools
n Thread-specific data
n Scheduler activations

14.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Threading Issues-Semantics of fork() and exec()

nDoes fork() duplicate only the calling
thread or all threads?

nOne that duplication all threads – the
child thread does not call exec() after
forking

nOnly the thread that invoked the fork()
system call is duplicated – exec() is
called immediately after forking

14.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Threading Issues-Thread Cancellation

n Terminating a thread before it has finished
n Two general approaches:

l Asynchronous cancellation terminates the
target thread immediately – it is troublesome
if a thread to be canceled is in the middle of
updating shared data

l Deferred cancellation allows the target
thread to periodically check if it should be
cancelled – allow threads to be canceled
safely

14.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Threading Issues-Signal Handling

n Signals are used in UNIX systems to notify a process that a
particular event has occurred

n A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

n Options:
l Deliver the signal to the thread to which the signal applies
l Deliver the signal to every thread in the process
l Deliver the signal to certain threads in the process
l Assign a specific thread to receive all signals for the process

14.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Pools

n Create a number of threads in a pool where
they await work

n Advantages:
l Usually slightly faster to service a request

with an existing thread than create a new
thread

l Allows the number of threads in the
application(s) to be bound to the size of
the pool

14.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thread Specific Data

nAllows each thread to have its own copy
of data

nUseful when you do not have control
over the thread creation process (i.e.,
when using a thread pool)

14.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Scheduler Activations

nBoth M:M and Two-level models require
communication to maintain the
appropriate number of kernel threads
allocated to the application

nScheduler activations provide upcalls - a
communication mechanism from the kernel
to the thread library

nThis communication allows an application to
maintain the correct number kernel threads

14.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Operating System Examples

n A lightweight process (LWP) – an
intermediate data structure

n To the user thread, it is a virtual
processor that schedule a user thread to
run.

n Each LWP is attached to a kernel thread,
and OS schedules kernel thread to run.

n Example:
l Windows XP Threads
l Linux Thread, not distinguish b/w processes and

threads

14.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Windows XP Threads

n Implements the one-to-one mapping, kernel-level
n Each thread contains

l A thread id
l Register set
l Separate user and kernel stacks
l Private data storage area

n The register set, stacks, and private storage area are known as
the context of the threads

n The primary data structures of a thread include:
l ETHREAD (executive thread block)
l KTHREAD (kernel thread block) - LWP
l TEB (thread environment block)

14.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Windows XP Threads

14.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Linux Threads

nLinux refers to them as tasks rather
than threads

nThread creation is done through
clone() system call

nclone() allows a child task to share
the address space of the parent task
(process)

14.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Linux Threads

14.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

End of Chapter 14

