
3.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 3: Processes

n Process Concept
n Process Scheduling
n Operations on Processes
n Interprocess Communication
n Examples of IPC Systems
n Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Objectives

n To introduce the notion of a process -- a
program in execution, which forms the basis
of all computation

n To describe the various features of
processes, including scheduling, creation and
termination, and communication

n To describe communication in client-server
systems

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

3.1 Process Concept

n An operating system executes a variety of programs:
l Batch system – jobs
l Time-shared systems – user programs or tasks

n Textbook uses the terms job and process almost
interchangeably

n Process – a program in execution; process execution
must progress in sequential fashion

n A process includes:
l program counter – next instruction to execute
l Stack – contains temporary data such as function

parameter
l data section – Function parameters, return address,

local variable

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process in Memory

A program becomes a process
when an executable file is loaded
into memory.

Dynamically allocated memory
during process run time

Program code

Function parameters, return
address, local variable.

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

3.1.2 Process State

n As a process executes, it changes state
l new: The process is being created
l running: Instructions are being executed
l waiting: The process is waiting for some event to

occur
l ready: The process is waiting to be assigned to a

processor
l terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

3.1.3 Process Control Block (PCB)

Information associated with each process
n Process state – new, ready, running, waiting, …
n Accounting information – account #, process #
n Program counter – address of the next instruction
n CPU registers – index register, stack pointer. Must be

saved when a interrupt occurs.
n CPU scheduling information – process priority
n Memory-management information – base and limit
n I/O status information – list of devices, open files

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Control Block (PCB)

index register, stack pointer.
Must be saved when a interrupt
occurs

address of the next instruction

new, ready, running, waiting

Accounting information

I/O status information

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

3.2 Process Scheduling Queues

n Job queue – set of all processes in the system
n Ready queue – set of all processes residing in

main memory, ready and waiting to execute
n Device queues – set of processes waiting for

an I/O device
n Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Ready Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Representation of Process Scheduling
Selected for

execution, dispatched

Issue I/O
request

Create sub-
process, wait for
its termination

Removed from
CUP because of
an interrupt

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

3.2.2 Schedulers

n Long-term scheduler (or job scheduler) –
selects which processes should be brought
into the ready queue

n Short-term scheduler (or CPU scheduler) –
selects which process should be executed
next and allocates CPU

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Addition of Medium Term Scheduling

• Sometimes it can be advantageous to remove
process from memory to reduce the degree of
multiprograming.
• Later, the process can be reintroduced into
memory to continue execution.

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Schedulers (Cont)

n Short-term scheduler is invoked very frequently
(milliseconds) Þ (must be fast)

n Long-term scheduler is invoked very infrequently
(seconds, minutes) Þ (may be slow)

n The long-term scheduler controls the degree of
multiprogramming

n Processes can be described as either:
l I/O-bound process – spends more time doing I/O

than computations, many short CPU bursts
l CPU-bound process – spends more time doing

computations; few very long CPU bursts

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Context Switch

n When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process via
a context switch

n Context of a process represented in the PCB
n Context-switch time is overhead; the system

does no useful work while switching
n Time dependent on hardware support

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Creation

n Parent process create children processes, which, in turn
create other processes, forming a tree of processes

n Generally, process identified and managed via a process
identifier (pid)

n Resource sharing
l Parent and children share all resources
l Children share subset of parent’s resources
l Parent and child share no resources

n Execution
l Parent and children execute concurrently
l Parent waits until children terminate

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Creation (Cont)

n Address space
l Child duplicate of parent
l Child has a program loaded into it

n UNIX examples
l fork system call creates new process
l exec system call used after a fork to replace

the process’ memory space with a new
program

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Creation

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

C Program Forking Separate Process
int main()
{
pid_t pid;

/* fork a child process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child
to complete */

wait (NULL);
printf ("Child Complete");
exit(0);

}
}

• child pid = 0
• parent pid > 0
• execlp replaces the process
memory with a new program
• the child process inherits
privilege, scheduling attributes,
and resources from the parent.

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Creation in Java

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

A tree of processes on a typical Solaris

Manage memory
and file system

Root parent process
for all user processes

Networking
service

User login

X-windows session

C-shell

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Termination
n Process executes last statement and asks the operating system

to delete it (exit)
l Output data from child to parent (via wait)
l Process’ resources are deallocated by operating system

n Parent may terminate execution of children processes (abort)
l Child has exceeded allocated resources
l Task assigned to child is no longer required
l If parent is exiting

4Some operating system do not allow child to continue if its
parent terminates. All children terminated - cascading
termination

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Interprocess Communication

n Independent process cannot affect or be
affected by the execution of another process

n Cooperating process can affect or be affected
by the execution of another process

n Advantages of process cooperation
l Information sharing
l Computation speed-up
l Modularity
l Convenience

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Interprocess Communication

n Cooperating processes need interprocess
communication (IPC)

n Two models of IPC
l Shared memory
l Message passing

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Communications Models

a.Message passing: small amount of data, easier to
implement

b.Shared memory: allow maximum speed,
convenience of communication.

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Producer-Consumer Problem

n Paradigm for cooperating processes, producer
process produces information that is
consumed by a consumer process
l unbounded-buffer places no practical limit

on the size of the buffer
l bounded-buffer assumes that there is a

fixed buffer size

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Simulating Shared Memory in Java

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Bounded-Buffer – Shared-Memory Solution

n Shared data
#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE]; // a circular array
int in = 0; // the next free position in the buffer
int out = 0; //the first full position

n Solution is correct, but can only use BUFFER_SIZE-1
elements, how to have BUFFER_SIZE items in the buffer?

3.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Bounded-Buffer – Producer

item nextProduced;
while (true) {

/* Produce an item in nextProduced */
while (((in = (in + 1) % BUFFER

SIZE count) == out)
; /* do nothing -- no free buffers

*/
buffer[in] = nextProduced;
in = (in + 1) % BUFFER SIZE;
}

3.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Bounded Buffer – Consumer

item nextConsumed;
while (true) {

while (in == out)
; // do nothing --

nothing to consume

/*consume the item in
nextConsumed */

nextConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

}

3.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Interprocess Communication – Message Passing

n Message system – processes communicate with each other
without resorting to shared variables

n IPC facility provides two operations:
l send(message) – message size fixed or variable
l receive(message)

n If P and Q wish to communicate, they need to:
l establish a communication link between them
l exchange messages via send/receive

n Implementation of communication link
l physical (e.g., shared memory, hardware bus)
l logical (e.g., logical properties)

3.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Implementation Questions

n How are links established?
n Can a link be associated with more than two processes?
n How many links can there be between every pair of

communicating processes?
n What is the capacity of a link?
n Is the size of a message that the link can accommodate

fixed or variable?
n Is a link unidirectional or bi-directional?

3.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Direct Communication

n Processes must name each other explicitly:
l send (P, message) – send a message to process P
l receive(Q, message) – receive a message from

process Q
n Properties of communication link

l Links are established automatically
l A link is associated with exactly one pair of

communicating processes
l Between each pair there exists exactly one link
l The link may be unidirectional, but is usually bi-

directional

3.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Indirect Communication

n Messages are directed and received from mailboxes (also
referred to as ports)
l Each mailbox has a unique id
l Processes can communicate only if they share a mailbox

n Properties of communication link
l Link established only if processes share a common mailbox
l A link may be associated with many processes
l Each pair of processes may share several communication

links
l Link may be unidirectional or bi-directional

3.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Indirect Communication

n Operations
l create a new mailbox
l send and receive messages through mailbox
l destroy a mailbox

n Primitives are defined as:
send(A, message) – send a message to mailbox
A
receive(A, message) – receive a message from
mailbox A

3.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Indirect Communication

n Mailbox sharing
l P1, P2, and P3 share mailbox A
l P1, sends; P2 and P3 receive
l Who gets the message?

n Solutions
l Allow a link to be associated with at most two

processes
l Allow only one process at a time to execute a

receive operation
l Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Synchronization

n Message passing may be either blocking or non-blocking
n Blocking is considered synchronous

l Blocking send has the sender block until the message is
received

l Blocking receive has the receiver block until a message is
available

n Non-blocking is considered asynchronous
l Non-blocking send has the sender send the message and

continue
l Non-blocking receive has the receiver receive a valid

message or null

3.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Buffering

n Queue of messages attached to the link; implemented
in one of three ways
1.Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2.Bounded capacity – finite length of n messages

Sender must wait if link full
3.Unbounded capacity – infinite length

Sender never waits

3.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Examples of IPC Systems - POSIX

n POSIX Shared Memory
l Process first creates shared memory segment
Segment_id = shmget(IPC_PRIVATE, size,
S_IRUSR|S_IWUSR);

l Process wanting access to that shared memory must attach to it
shared _memory = (char *) shmat(id, NULL, 0);

l Now the process could write to the shared memory
sprintf(shared_memory, "Writing to shared
memory");

l When done a process can detach the shared memory from its
address space

shmdt(shared_memory);

3.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Examples of IPC Systems - Mach

n Mach communication is message based
l Even system calls are messages
l Each task gets two mailboxes at creation- Kernel

and Notify
l Only three system calls needed for message

transfer
msg_send(), msg_receive(), msg_rpc()

l Mailboxes needed for commuication, created via
port_allocate()

3.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Examples of IPC Systems – Windows XP

n Message-passing centric via local procedure call (LPC) facility
l Only works between processes on the same system
l Uses ports (like mailboxes) to establish and maintain

communication channels
l Communication works as follows:

4The client opens a handle to the subsystem’s connection
port object

4The client sends a connection request
4The server creates two private communication ports and

returns the handle to one of them to the client
4The client and server use the corresponding port handle to

send messages or callbacks and to listen for replies

3.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Local Procedure Calls in Windows XP

