Chapter 2: Operating-System Structures

Chapter 2: Operating-System Structures

- Operating System Services
- User Operating System Interface
- System Calls
- Types of System Calls
- System Programs
- Operating System Design and Implementation
- Operating System Structure
- Virtual Machines

Objectives

- To describe the services an operating system provides to users, processes, and other systems
- To discuss the various ways of structuring an operating system

2.1 Operating System Services

- One set of operating-system services provides functions that are helpful to the user:
 - User interface Almost all operating systems have a user interface (UI)
 - Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch
 - Program execution The system must be able to load a program into memory and to run that program, end execution, either normally or abnormally (indicating error)

A View of Operating System Services

- One set of operating-system services provides functions that are helpful to the user (Cont):
 - I/O operations A running program may require I/O, which may involve a file or an I/O device
 - File-system manipulation The file system is of particular interest. Obviously, programs need to read and write files and directories, create and delete them, search them, list file Information, permission management.
 - Communications Processes may exchange information, on the same computer or between computers over a network
 - Communications may be via shared memory or through message passing (packets moved by the OS)

- Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing
 - Error detection OS needs to be constantly aware of possible errors
 - May occur in the CPU and memory hardware, in I/O devices, in user program
 - For each type of error, OS should take the appropriate action to ensure correct and consistent computing
 - Debugging facilities can greatly enhance the user's and programmer's abilities to efficiently use the system

- Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing
 - Resource allocation When multiple users or multiple jobs running concurrently, resources must be allocated to each of them
 - Many types of resources Some (such as CPU cycles, main memory, and file storage) may have special allocation code, others (such as I/O devices) may have general request and release code
 - Accounting To keep track of which users use how much and what kinds of computer resources

- Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing
 - Protection and security The owners of information stored in a multiuser or networked computer system may want to control use of that information, concurrent processes should not interfere with each other
 - Protection involves ensuring that all access to system resources is controlled
 - Security of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid access attempts
 - If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as strong as its weakest link.

2.2 User Operating System Interface

- Command Line Interface (CLI) or command interpreter allows direct command entry
 - Sometimes implemented in kernel, sometimes by systems program
 - Sometimes multiple flavors implemented shells
 - Primarily fetches a command from user and executes it
- User-friendly desktop metaphor interface
 - Usually mouse, keyboard, and monitor
 - Icons represent files, programs, actions, etc
 - Various mouse buttons over objects in the interface cause various actions (provide information, options, execute function, open directory (known as a folder)

2.2 User Operating System Interface

- Many systems now include both CLI and GUI interfaces
 - Microsoft Windows is GUI with CLI "command" shell
 - Apple Mac OS X as "Aqua" GUI interface with UNIX kernel underneath and shells available
 - Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

					-	Tern	ninal				
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Terminal	Tabs	<u>H</u> elp						
fd0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
sd0		0.0	0.2	0.0	0.2	0.0	0.0	0.4	0	0	
sd1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
			exten	ded de	vice s	tatis	tics				
devic	e	r/s	w/s	kr/s	kw/s	wait	actv	svc_t	%w	%b	
fd0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
sd0		0.6	0.0	38.4	0.0	0.0	0.0	8.2	0	0	
sd1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
12:5 (root -(/va	3am @pbg ur/tm	up 9 -nv64- p/sys1	tem-cont min(s), -vm)-(13 tem-cont	3 us /pts)- ents/s	ers, (00:53 scripts	load 15-J)# w	averag un-200)7)-(g1	obal)		80) 5 118 2000 100 2000
4:0 Jser		up 17	day(s)		.4, 5 n@ id1				age: what	0.09	, 0.11, 8.66
root n/d		conso	le		718day		1			bin/	ssh-agent /usr/bi
root		pts/3		15Jun()7		18	4	W		15
root		pts/4		15Jun(718day	S		23	W		
			-vm)-(14 tem-cont	Share with the state of			u1-200)7)-(g1	obal)	ř. G	

The Mac OS X GUI

2.3 System Calls

- Programming interface to the services provided by the OS
- Typically written in a high-level language (C or C++)
- Mostly accessed by programs via a high-level Application Program Interface (API) rather than direct system call use
- Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)
- Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are generic)

Example of System Calls

System call sequence to copy the contents of one file to another file

Example of Standard API

- Consider the ReadFile() function in the
- Win32 API—a function for reading from a file

- A description of the parameters passed to ReadFile()
 - HANDLE file—the file to be read
 - LPVOID buffer—a buffer where the data will be read into and written from
 - DWORD bytesToRead—the number of bytes to be read into the buffer
 - LPDWORD bytesRead—the number of bytes read during the last read
 - LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

- Typically, a number associated with each system call
 - System-call interface maintains a table indexed according to these numbers
- The system call interface invokes intended system call in OS kernel and returns status of the system call and any return values
- The caller need know **nothing** about how the system call is implemented
 - Just needs to obey API and understand what OS will do as a result call
 - Most details of OS interface hidden from programmer by API

API – System Call – OS Relationship

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

System Call Parameter Passing

- Often, more information is required than simply identity of desired system call
 - Exact type and amount of information vary according to OS and call
- Three general methods used to pass parameters to the OS
 - Simplest: pass the parameters in registers
 - In some cases, may be more parameters than registers
 - Parameters stored in a block, or table, in memory, and address of block passed as a parameter in a register
 - This approach taken by Linux and Solaris
 - <u>Parameters placed</u>, or <u>pushed</u>, onto the <u>stack</u> by the program and <u>popped</u> off the stack by the operating system
 - Block and stack methods do not limit the number or length of parameters being passed

Parameter Passing via Table

2.4 Types of System Calls

- Process control
- File management
- Device management
- Information maintenance
- Communications
- Protection

Examples of Windows and Unix System Calls

	Windows	Unix
Process Control	<pre>CreateProcess() ExitProcess() WaitForSingleObject()</pre>	<pre>fork() exit() wait()</pre>
File Manipulation	<pre>CreateFile() ReadFile() WriteFile() CloseHandle()</pre>	<pre>open() read() write() close()</pre>
Device Manipulation	SetConsoleMode() ReadConsole() WriteConsole()	<pre>ioctl() read() write()</pre>
Information Maintenance	<pre>GetCurrentProcessID() SetTimer() Sleep()</pre>	<pre>getpid() alarm() sleep()</pre>
Communication	<pre>CreatePipe() CreateFileMapping() MapViewOfFile()</pre>	<pre>pipe() shmget() mmap()</pre>
Protection	<pre>SetFileSecurity() InitlializeSecurityDescriptor() SetSecurityDescriptorGroup()</pre>	<pre>chmod() umask() chown()</pre>

MS-DOS execution

free memory command interpreter kernel (a)

free memory process command interpreter kernel (b)

(a) At system startup (b) running a program

FreeBSD Running Multiple Programs

process D

free memory

process C

interpreter

process B

kernel

- Example of multi-tasking system.
- Command interpreter may continue to running while another program is executed.
- fork(): start a new process
- exec(): load a selected program to memory

2.5 System Programs

- System programs (system utilities) provide a convenient environment for program development and execution. The can be divided into:
 - File manipulation
 - Status information
 - File modification
 - Programming language support
 - Program loading and execution
 - Communications
 - Application programs
- Most users' view of the operation system is defined by system programs, not the actual system calls

System Programs (cont'd)

- File management Create, delete, copy, rename, print, dump, list, and generally manipulate files and directories
- Status information
 - Some ask the system for info date, time, amount of available memory, disk space, number of users
 - Others provide <u>detailed performance</u>, <u>logging</u>, <u>and</u> <u>debugging information</u>
 - Typically, these programs format and print the output to the terminal or other output devices
 - Some systems implement a registry used to store and retrieve configuration information

System Programs (cont'd)

- File modification
 - Text editors to create and modify files
 - Special commands to search contents of files or perform transformations of the text
- Programming-language support Compilers, assemblers, debuggers and interpreters sometimes provided

System Programs (cont'd)

- Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, and overlayloaders, debugging systems for higher-level and machine language
- Communications Provide the mechanism for creating virtual connections among processes, users, and computer systems
 - Allow users to send messages to one another's screens, browse web pages, send electronic-mail messages, log in remotely, transfer files from one machine to another

2.6 Operating System Design and Implementation

- Design and Implementation of OS is not "solvable", but some approaches have proven successful
- Internal structure of different Operating Systems can vary widely
- Start by defining goals and specifications
- Affected by choice of hardware, type of system
- User goals and System goals
 - User goals operating system should be convenient to use, easy to learn, reliable, safe, and fast
 - System goals operating system should be easy to design, implement, and maintain, as well as flexible, reliable, error-free, and efficient

2.6 Operating System Design and Implementation (Cont)

Important principle to separate

Policy: What will be done?

Mechanism: How to do it?

- Mechanisms determine how to do something, policies decide what will be done
 - The separation of policy from mechanism is a very important principle, it allows maximum flexibility if policy decisions are to be changed later

Simple Structure

- MS-DOS written to provide the most functionality in the least space
 - Not divided into modules
 - Although MS-DOS has some structure, its interfaces and levels of functionality are not well separated

MS-DOS Layer Structure

Layered Approach

- The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.
- With modularity, layers are selected such that each uses functions (operations) and services of only lower-level layers

Traditional UNIX System Structure

UNIX

- UNIX limited by hardware functionality, the original UNIX operating system had limited structuring. The UNIX OS consists of two separable parts
 - Systems programs
 - The kernel
 - Consists of everything below the system-call interface and above the physical hardware
 - Provides the file system, CPU scheduling, memory management, and other operating-system functions; a large number of functions for one level

Layered Operating System

Microkernel System Structure

- Moves as much from the kernel into "user" space
- Communication takes place between user modules using message passing
- Benefits:
 - Easier to extend a microkernel
 - Easier to port the operating system to new architectures
 - More reliable (less code is running in kernel mode)
 - More secure
- Detriments:
 - Performance overhead of user space to kernel space communication

Mac OS X Structure

- Hybrid of layered system and microkernel.
- Mach provides memory management and interprocess communication
- BSC provide cli, networking, file system and POSIX APIs.

Modules

- Most modern operating systems implement kernel modules
 - Uses object-oriented approach
 - Each core component is separate
 - Each talks to the others over known interfaces
 - Each is loadable as needed within the kernel
- Overall, similar to layers but with more flexible

Solaris Modular Approach

Virtual Machines

- A virtual machine takes the layered approach to its logical conclusion. It treats <u>hardware and the</u> <u>operating system kernel</u> as though they were all hardware
- A virtual machine provides an interface identical to the underlying bare hardware
- The operating system host creates the illusion that a process has its own processor and (virtual memory)
- Each guest provided with a (virtual) copy of underlying computer

Virtual Machines History and Benefits

- First appeared commercially in IBM mainframes in 1972
- Fundamentally, multiple execution environments (different operating systems) can share the same hardware
- Protect from each other
- Some sharing of file can be permitted, controlled
- Commutate with each other, other physical systems via networking
- Useful for development, testing
- Consolidation of many low-resource use systems onto fewer busier systems
- "Open Virtual Machine Format", standard format of virtual machines, allows a VM to run within many different virtual machine (host) platforms

Virtual Machines (Cont)

(a) Nonvirtual machine (b) virtual machine

Para-virtualization

- Presents guest with system similar but not identical to hardware
- Guest must be modified to run on paravirtualized hardwareF
- Guest can be an OS, or in the case of Solaris 10 applications running in containers

Solaris 10 with Two Containers

VMware Architecture

Java

- Java consists of
 - 1. Programming language specification
 - 2. Application programming interface (API)
 - 3. Virtual machine specification

The Java Virtual Machine

The Java Virtual Machine

Java portability across platforms.

The Java Development Kit

Java Operating Systems

The JX operating system

End of Chapter 2

