
CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Object-Oriented Design &
Patterns
2nd edition

Cay S. Horstmann

Chapter 6: Inheritance and
Abstract Classes

CPSC 2100
Software Design and Development

1

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Chapter Topics

• The Concept of Inheritance.
• Graphics Programming with Inheritance.
• Abstract Classes.
• The TEMPLATE METHOD Pattern.
• Protected Interfaces.
• The Hierarchy of Swing Components.
• The Hierarchy of Standard Geometrical Shapes.
• The Hierarchy of Exception Classes.
• When Not to Use Inheritance.

2

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Chapter Objective
• Discuss the important class relationship of inheritance.
• Examine how inheritance is used in Java class libraries.

3

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Inheritance
• Used to model relationship between classes.

o One class represents a more general concept (Superclass)
o Another class represents a more specialized concept

(Subclass).

4

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Modeling Specialization
• Start with simple Employee class

public class Employee
{

public Employee(String aName) { name = aName; }
public void setSalary(double aSalary) { salary =

aSalary; }
public String getName() { return name; }
public double getSalary() { return salary; }

private String name;
private double salary;

}

• Manager is a subclass

5

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Modeling Specialization
• Manager class adds new method: setBonus
• Manager class overrides existing method: getSalary

o Adds salary and bonus

public class Manager extends Employee
{

public Manager(String aName) { ... }

// new method
public void setBonus(double aBonus)

{
bonus = aBonus;

}

// overrides Employee method
public double getSalary() { ... }

private double bonus; // new field
}

6

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Modeling Specialization

Figure 1:
The Manager Class Inherits
from the Employee Class

7

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Manager Methods and Fields
• methods setSalary, getname (inherited from Employee).
• method getSalary (overridden in Manager).
• method setBonus (defined in Manager).
• fields name and salary (defined in Employee).
• field bonus (defined in Manager).

8

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

The Super/Sub Terminology
• Why is Manager a subclass?
• Isn't a Manager superior?
• Doesn't a Manager object have more fields?
• The set of managers is a subset of the set of employees

Figure 2:
The Set of
Managers is a
Subset of the Set
of Employee

9

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Inheritance Hierarchies
• Real world: Hierarchies

describe general/specific
relationships:
o General concept at root of

tree.
o More specific concepts are

children.

• Programming: Inheritance
hierarchy
o General superclass at root

of tree.
o More specific subclasses

are children.

Figure 3:
A Hierarchy of Employee Classes

10

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Liskov Substitution Principle
• Formulated by Barbara Liskov.

o You can use a subclass object whenever a superclass object is
expected.

• Example:

Employee e;
...

System.out.println(“name=" + e.getName());
System.out.println("salary=" + e.getSalary());

• Can set e to Manager reference.
e = new Manager(“Barbara”);
e.getName();
e.getSalary(); // JVM Polymorphism

• Polymorphism: Correct getSalary method is invoked.

11

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Invoking Superclass Methods
• Can't access private fields of superclass.

public class Manager extends Employee
{

public double getSalary()
{

return salary + bonus; // ERROR--private
field

}
...

}

• Be careful when calling superclass method.

public double getSalary()
{

return getSalary() + bonus; //ERROR--recursive call
}

12

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Invoking Superclass Methods
• Use super keyword

public double getSalary()
{

return super.getSalary() + bonus;
}

• super is not a reference.
• super turns off polymorphic call mechanism

ò

enforces the superclass method to be called.

13

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Invoking Superclass Constructors
• Use super keyword in subclass constructor:

public Manager(String aName)
{

super(aName); //calls super constructor
bonus = 0;

}

• Call to super must be first statement in subclass
constructor.

• If subclass constructor doesn't call super, superclass
must have constructor without parameters.

14

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Preconditions
• Precondition of redefined method at most as strong

public class Employee
{

/**
Sets the employee salary to a given value.
@param aSalary the new salary
@precondition aSalary > 0

*/
public void setSalary(double aSalary) { ... }

}

• Can we redefine Manager.setSalary with precondition
salary > 100000?

• No--Could be defeated:
Manager m = new Manager();
Employee e = m;
e.setSalary(50000);

15

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Postconditions, Visibility, Exceptions

• Postcondition of redefined method at least as strong.

• Example: Employee.setSalary promises not to decrease
salary.
o Then Manager.setSalary must fulfill postcondition.

• Redefined method cannot be more private.
(Common error: omit public when redefining)

• Redefined method cannot throw more checked exceptions
than are already declared in the superclass method.

16

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Graphic Programming with Inheritance

• Chapter 4: Create drawings by implementing Icon
interface type.

• Now: Form subclass of JComponent

public class MyComponent extends JComponent
{

public void paintComponent(Graphics g)
{

drawing instructions go here
}
...

}

• Advantage: Inherit behavior from JComponent.
• Example: Can attach mouse listener to JComponent.

17

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Mouse Listeners
• Attach mouse listener to component.
• Can listen to mouse events (clicks) or mouse motion

events.
public interface MouseListener
{

void mouseClicked(MouseEvent event);
void mousePressed(MouseEvent event);
void mouseReleased(MouseEvent event);
void mouseEntered(MouseEvent event);
void mouseExited(MouseEvent event);

}

public interface MouseMotionListener
{

void mouseMoved(MouseEvent event);
void mouseDragged(MouseEvent event);

}

18

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Mouse Adapters
• To simplify the implementation of listeners

ð MouseAdaptor.
ð MouseMotionAdaptor.

• What if you just want to listen to mousePressed?

public class MouseAdapter implements MouseListener
{

public void mouseClicked(MouseEvent event) {}
public void mousePressed(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}

}

19

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Mouse Adapters
• Component constructor adds listener:

addMouseListener(new MouseAdapter()
{

public void mousePressed(MouseEvent event)
{

mouse action goes here

}

});

20

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Car Mover Program
• Use the mouse to drag a car shape.

• Car panel has mouse + mouse motion listeners.

• mousePressed remembers point of mouse press.

• mouseDragged translates car shape.

CarComponent.java
CarMover.java
CarShape.java

21

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Car Mover Program

Figure 4:
The Classes of the Car Mover Program

22

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Scene Editor
• Draws various shapes.

• User can add, delete, move shapes.

• User selects shape with mouse.
o Selected shape is highlighted (filled in).

Figure 5:
The Scene Editor

23

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

The SceneShape Interface Type
• keep track of selection state.

• draw plain or selected shape.

• move shape.

• testing: is a point (e.g.
mouse position) inside? Figure 6:

A CRC Card of the SceneShape
Interface Type

24

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

The SceneShape Interface Type
public interface SceneShape
{

void setSelected(boolean b);
boolean isSelected();
void draw(Graphics2D g2);
void drawSelection(Graphics2D g2);
void translate(int dx, int dy);
boolean contains(Point2D aPoint);

}

25

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

CarShape and HouseShape Classes
public class CarShape implements SceneShape
{

...
public void setSelected(boolean b) { selected = b; }
public boolean isSelected() { return selected; }
private boolean selected;

}

public class HouseShape implements SceneShape
{

...
public void setSelected(boolean b) { selected = b; }
public boolean isSelected() { return selected; }
private boolean selected;

}

26

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Abstract Classes
• It is better idea to design a class that expresses this

commonality.

• Factor out common behavior
(setSelected, isSelected)

• Subclasses inherit common behavior

• Some methods still undefined
(draw, drawSelection, translate, contains)

27

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Abstract Classes

Figure 7:
Relationship Between
SelectableShape Types

28

public abstract class SelectableShape implements
SceneShape
{

public void setSelected(boolean b) { selected = b; }
public boolean isSelected() { return selected; }

private boolean selected;
}

•Problem with the SelctableShape class !!!
• SelectableShape doesn't define all

SceneShape methods.

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Abstract Classes
• HouseShape and CarShape are concrete subclasses that

define the remaining methods.

• Can't instantiate abstract class:
SelectableShape s = new SelectableShape(); // ERROR

• Ok to have variables of abstract class type:
SelectableShape s = new HouseShape(); // OK

29

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Abstract Classes and Interface Types

30

Abstract class Interface
Abstract classes can have fields. Interface types can only have

constants
(public static final).

Abstract classes can define
methods.

Interface types can only declare
methods.

In Java, a class can extend
ONLY one other class.

A class can implement any
number of interface types.

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Scene Editor
• Mouse listener selects/unselects item
• Mouse motion listener drags item
• Remove button removes selected items

SceneComponent.java
SceneEditor.java
HouseShape.java

31

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Uniform Highlighting Technique
• Old approach: each shape draws its selection state.

o Inconsistent.

• Better approach: shift, draw, shift, draw, restore to
original position.

• Define in SelectableShape

public void drawSelection(Graphics2D g2)
{

translate(1, 1);
draw(g2);
translate(1, 1);
draw(g2);
translate(-2, -2);

}

32

Figure 8:
Highlighting a Shape

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Template Method

• draw Defined in CarShape, HouseShape

• drawSelection method calls draw.

• drawSelection doesn't know which methods —
polymorphism

• drawSelection is a TEMPLATE method.

33

SelectableShape.java
HouseShape.java

code%5Cscene2%5CSelectableShape.java.html
code%5Cscene2%5CHouseShape.java.html

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

TEMPLATE METHOD Pattern
• Context:

1. An algorithm is applicable for multiple types.
2. The algorithm can be broken down into primitive

operations. The primitive operations can be different for
each type.

3. The order of the primitive operations doesn't depend on
the type.

34

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

TEMPLATE METHOD Pattern
• Solution:

1. Define a superclass that has a method for the algorithm
and abstract methods for the primitive operations.

2. Implement the algorithm to call the primitive operations
in the appropriate order.

3. Do not define the primitive operations in the superclass,
or define them to have appropriate default behavior.

4. Each subclass defines the primitive operations but not
the algorithm.

35

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

TEMPLATE METHOD Pattern

Name in Design Pattern Actual Name (Selectable shapes)

AbstractClass SelectableShape

ConcreteClass CarShape, HouseShape

templateMethod() drawSelection

primitiveOp1(), primitiveOp2() translate, draw

36

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

Compound Shapes
• GeneralPath: sequence of shapes.

java.awt.geom.GeneralPath

GeneralPath path = new GeneralPath();
path.append(new Rectangle(...), false);
path.append(new Triangle(...), false);
g2.draw(path);

• Advantage: Containment test is free
path.contains(aPoint);

CompoundShape.java
HouseShape.java

37

Figure 9:
Inheritance Diagram
of the HouseShape
Class

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

When Not to Use Inheritance
• Inheritance is used to model an is-a relationship.

o Car is a Vehicle.

• Aggregation is used to modes has- a relationship.
o Car has a tire.

38

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

When Not to Use Inheritance
• From a tutorial for a C++ compiler:

public class Point
{

public Point(int anX, int aY) { ... }
public void translate(int dx, int dy) { ... }
private int x;
private int y;

}

public class Circle extends Point // DON'T
{

public Circle(Point center, int radius) { ... }
public void draw(Graphics g) { ... }
private int radius;

}

39

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

When Not to Use Inheritance
• Huh? A circle isn't a point.
• By accident, inherited translate works for circles
• Same tutorial makes Rectangle a subclass of Point:

public class Rectangle extends Point // DON'T
{

public Rectangle(Point corner1, Point corner2) { ... }
public void draw(Graphics g) { ... }
public void translate(int dx, int dy) { ... }

private Point other;
}

• That's even weirder:
public void translate(int dx, int dy)
{

super.translate(dx, dy);
other.translate(dx, dy);

}

40

Remedy: Use aggregation.

Circle, Rectangle
classes have points

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

When Not to Use Inheritance
• Java standard library:

public class Stack<T> extends Vector<T> // DON'T
{

T pop() { ... }
void push(T item) { ... }
...

}

• Bad idea: Inherit all Vector methods
• Can insert/remove in the middle of the stack
• Remedy: Use aggregation

public class Stack<T>
{

...
private ArrayList<T> elements;

}

41

CPSC 2100
University of Tennessee at Chattanooga – Spring 2013

End of Chapter 6

42

