
Object-Oriented Design &
Patterns
2nd edition

Cay S. Horstmann

Chapter 5: Patterns and GUI
Programming

CPSC 2100
Software Design and Development

1

Chapter Topics
• The Iterators as Patterns.
• The Pattern Concept.
• The OBSERVER Pattern.
• Layout Managers and the STRATEGY Pattern.
• Components, Containers, and the COMPOSITE Pattern.
• Scroll Bars and the DECORATOR Pattern.
• How to Recognize Patterns.
• Putting Patterns to Work.

2
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Chapter Objective
• Introduce the concept of Patterns.
• Explain Patterns with examples from the Swing user

interface toolkit, to learn about Patterns and GUI
programming at the same time.

3
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

List Iterators
LinkedList<String> list = . . .;
ListIterator<String> iterator = list.listIterator();
while (iterator.hasNext())
{

String current = iterator.next();
. . .

}

Why iterators?

4
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Classical List Data Structure
• Traverse links directly

Link currentLink = list.head;
while (currentLink != null)
{

Object current = currentLink.data;
currentLink = currentLink.next;

}

• Problems:
o Exposes implementation of the links to the users.
o Error-prone.

5
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

High-Level View of Data Structures

• Queue
void add(E x)
E peek()
E remove()
int size()

• Array with random access
E get(int i)
void set(int i, E x)
void add(E x)
int size()

6

Figure 1: The Queue Interface

Figure 2: The Array Interface
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

List with Cursor
• Able to add and remove elements in the middle

of the linked list.

• List with a Curser:
E getCurrunt() // Get element at cursor

void set(E x) // Set element at cursor x

E remove() // Remove element at cursor

void insert(E x) // Insert x before cursor

void reset() // Reset cursor to head

void next() // Advance cursor

boolean hasNext() // Check if cursor can be advanced

7

Figure 3: A
List with a
Cursor

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

List with Cursor
for (list.reset(); list.hasNext(); list.next())
{

Object x = list.get();
. . .

}

• Disadvantage: Only one cursor per list.
o cannot compare different list elements.
o cannot print the contents of the list for debugging

purposes(side effect of moving the curser to the end).

• Iterator is superior concept.
o A list can have any number of iterators attached to it.

8
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

The Pattern Concept

9

• History: Architectural Patterns
• Christopher Alexander (A pattern language: Towns,

Building, Construction, Oxford University Press,
1977).

• Each pattern has
o a short name.
o a brief description of the context.
o a lengthy description of the problem.
o a prescription for the solution.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Short Passages Pattern

10

• Context
o “ . . . long sterile corridors set the scene for

everything bad about modern architecture.”

• Problem
o This section contains a lengthy description of the

problem of long corridors, with a depressing picture
of a long, straight, narrow corridor with closed
doors.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Short Passages Pattern

11

• Solution
o Keep passages short. Make them as much like rooms as

possible, with carpets or wood on the floor,
furniture, bookshelves, beautiful windows. Make them
generous in shape and always give them plenty of
light; the best corridors and passages of all are
those which have windows along an entire wall.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Patterns Summary

• Pattern distills a design rule into a simple format.

• Check weather the pattern is useful to you?

o If so, follow the recipe for the solution.
• Solution succeeded in the past.
• You will benefit from it as well.

12
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Iterator Pattern

• Context
1. An object (aggregate) contains other objects

(elements).
2. Clients (methods) need access to the element

objects.
3. The aggregate object should not expose its internal

structure.
4. Multiple clients may want independent

(simultaneous) access.

13
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Iterator Pattern
• Solution

1. Define an iterator that fetches one element at a time.
2. Each iterator object keeps track of the position of the next

element.
3. If there are several aggregate/iterator variations, it is best

if the aggregate and iterator classes realize common interface
types.

14
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Name in Design Pattern Actual Name (linked lists)

Aggregate List

ConcreteAggregate LinkedList

Iterator ListIterator

ConcreteIterator
anonymous class
implementing
ListIterator

createIterator() listIterator()

next() next()

isDone() opposite of hasNext()

currentItem()
return value of
hasNext()

Names differ in each occurrence of pattern

Names in pattern are examples.

Model/View/Controller
• Some programs have multiple editable views.
• Example: HTML Editor

o WYSIWYG view
o structure view
o source view

• Editing one view updates the other.
• Updates seem instantaneous.

15CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Figure 4:
WYSIWYG
and a Structural View of the
Same HTML Page

Model/View/Controller

• Model: raw data in a data structure, no visual
representation.

• Views: visual representations (table, graph, ...).
• Controllers: user interaction.

16
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Model/View/Controller
• What happened when a user types text into one of

the windows:
1. The controller tells the model to insert the text that the user

typed.
2. The model notifies all views of a change in the model.
3. All views repaint themselves.
4. During painting, each view asks the model for the current text.

17

Figure 5: Sequence Diagram
Inserting Text into a View

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Observer Pattern

• Model notifies views when something interesting
happens.
o Button notifies action listeners when something

interesting happens.

• Views attach themselves to model in order to be
notified.
o Action listeners attach themselves to button in order

to be notified.

• Generalize: Observers attach themselves to subject.

18
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Observer Pattern

• Context
1. An object, called the subject, is source of events.
2. One or more observer objects want to be notified

when such an event occurs.

19
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Observer Pattern

20

• Solution
1. Define an observer interface type. All concrete observers

implement it.
2. The subject maintains a collection of observers.
3. The subject supplies methods for attaching and detaching

observers.
4. Whenever an event occurs, the subject notifies all

observers.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Name in Design Pattern Actual Name (Swing buttons)

Subject JButton

Observer ActionListener

ConcreteObserver the class that implements
the ActionListener interface
type

attach() addActionListener()

notify() actionPerformed()

Layout Managers

• User interfaces made up of components (buttons,
text fields, sliders, ...)

• Components placed in containers (frames)
• Container needs to arrange components.

• Swing doesn't use hard-coded pixel coordinates.
o Advantages:

• Can switch "look and feel"
• Can internationalize strings.

• Layout manager controls arrangement.

21
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Layout Managers
Predefined in Java

• FlowLayout
o left to right, start new row when full.

• BoxLayout
o left to right or top to bottom.

• BorderLayout
o 5 areas, Center, North, South, East, West.

• GridLayout
o grid, all components have same size.

• GridBagLayout
o complex, like HTML table, grid but rows and columns can

have different sizes and components can span multiple rows
and columns.

22
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Layout Managers

23Figure 6: Layout Managers
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Layout Managers

24

Figure 7: Layout Management Classes
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Custom Layout Manager

• Form layout.
• Odd-numbered components right aligned.
• Even-numbered components left aligned.
• Implement LayoutManager interface type.

25

Figure 12: The FormLayout
Custom Layout Manager

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Note: Can use GridBagLayout to achieve the same
effect.

The LayoutManager Interface Type

26

public interface LayoutManager
{

void layoutContainer(Container parent);
Dimension minimumLayoutSize(Container parent);
Dimension preferredLayoutSize(Container parent);
void addLayoutComponent(String name, Component comp);
void removeLayoutComponent(Component comp);

}

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Strategy Pattern

• Standard layout managers can be used to provide a
custom layout manager:
1. Make an object of the layout manager class and give

it to the container.
2. When the container needs to execute the layout

algorithm, it calls the appropriate methods of the
layout manager object.

• Strategy Design Pattern.

27
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Strategy Pattern

• Context
1. A class (context class) can benefit from different

variants for an algorithm.
2. Clients sometimes want to replace standard

algorithms with custom versions.

28
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Strategy Pattern

29

• Solution
1. Define an interface type that is an abstraction for the

algorithm.
2. Actual strategy classes realize this interface type.
3. Clients can supply strategy objects.
4. Whenever the algorithm needs to be executed, the context class

calls the appropriate methods of the strategy object.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Name in Design
Pattern Actual Name (layout management)

Context Container

Strategy LayoutManager

ConcreteStrategy a layout manager such as BorderLayout

doWork() a method such as layoutContainer

• Other manifestation: Comparators

Comparator<Country> comp = new CountryComparatorByName();
Collections.sort(countries, comp);

• The comparator object encapsulates the comparison algorithm.
• By varying the comparator, you can sort by different criteria.

30

Name in Design Pattern Actual Name (sorting)

Context Collections

Strategy Comparator

ConcreteStrategy a class that implements Comparator

doWork() compare

Strategy Pattern
Sorting

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Composite Pattern
• Telephone example:

o Group components into a panel in order to achieve a
satisfactory layout.

• Technical issue:
o User interface components are contained in a containers.
o JPanel can contain other components ð JPanel is a container.
o Add the panel to the frame ð JPanel is a component.

o Can a container itself be a component?

• Context
1. Primitive objects can be combined to composite objects.
2. Clients treat a composite object as a primitive object.

31
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Composite Pattern
• Solution

1. Define an interface type that is an abstraction for the primitive
objects.

2. Composite object collects primitive objects.
3. Composite and primitive classes implement same interface type.
4. When implementing a method from the interface type, the composite

class applies the method to its primitive objects and combines the
results.

32
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Name in Design Pattern Actual Name (AWT components)

Primitive Component

Composite Container

Leaf a component without children (e.g. Jbutton)

method() A method of Component(e.g. getPreferredSize)

Decorator Pattern
• Decorator Pattern applies whenever a class enhances the

functionality of another class while preserving its
interface.

• Context
1. Component objects can be decorated (visually or behaviorally

enhanced)
2. The decorated object can be used in the same way as the

undecorated object.
3. The component class does not want to take on the responsibility

of the decoration.
4. There may be an open-ended set of possible decorations.

33
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Decorator Pattern
• Solution

1. Define an interface type that is an abstraction for the component.
2. Concrete component classes realize this interface type.
3. Decorator classes also realize this interface type.
4. A decorator object manages the component object that it decorates.
5. When implementing a method from the component interface type, the

decorator class applies the method to the decorated component and
combines the result with the effect of the decoration.

34
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Name in Design Pattern Actual Name (scroll bars)

Component Component

ConcreteComponent JTextArea

Decorator JScrollPane

method() A method of Component(e.g. paint)

Scroll Bars
• Scroll bars can be attached to (decorate) components.

JTextArea area = new JTextArea(10, 25);

JScrollPane scroller = new JScrollPane(area);

35

Figure 13: Scroll Bars Figure 14: Adding a Scroll Bar to a Text Area

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Streams

36

• The Reader class supports basic input operations: reading a
single character or an array of characters.

• FileReader subclass implements these methods, reading
characters from a file.
o No method for reading a line of input.

• BufferedReader takes a Reader and adds buffering.

InputStreamReader reader = new InputStreamReader(System.in);
BufferedReader console = new BufferedReader(reader);

• Result is another Reader: Decorator pattern.
• Many other decorators in stream library, e.g. PrintWriter.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Decorator Pattern: Input Streams

37

Name in Design Pattern Actual Name (input streams)

Component Reader
ConcreteComponent InputStreamReader
Decorator BufferedReader
method() read

• The BufferedReader class is a decorator. It takes an
arbitrary reader and yields a reader with additional
capabilities.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

How to Recognize Patterns

1. Look at the intent of the pattern.
o E.g. COMPOSITE has different intent than DECORATOR.

2. Remember common uses (e.g. STRATEGY for layout
managers)
o Not everything that is strategic is an example of

STRATEGY pattern.

3. Use context and solution as "litmus test"

38
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Litmus Test

• Can add border to Swing component
Border b = new EtchedBorder()
component.setBorder(b);

• Undeniably decorative.
• Is it an example of DECORATOR?

39

Figure 15: Borders Around Panels

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Litmus Test
1. Component objects can be decorated (visually or

behaviorally enhanced)
PASS

2. The decorated object can be used in the same way
as the undecorated object.
PASS

3. The component class does not want to take on the
responsibility of the decoration.
FAIL--the component class has setBorder method

4. There may be an open-ended set of possible
decorations

40
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Putting Patterns to Work

• invoice.jar
• Invoice contains line items.
• Line item has a description and a price.
• Interface type LineItem:

LineItem.java

• Product is a concrete class that implements this
interface:

Product.java

41
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Invoice.jar
code%5Cinvoice%5CLineItem.java.html
code%5Cinvoice%5CProduct.java.html

Bundles
• Bundle = set of related items with description and

price.
o E.g. stereo system with tuner, amplifier, CD player and

speakers.
• A bundle has line items.
• A bundle is a line item.

Bundle.java (look at getPrice)

42

Figure 16: A
Bundle of Line
Items

COMPOSITE
pattern

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

code%5Cinvoice%5CBundle.java.html

Discounted Items

• Store may give discount for an item.
• Discounted item is again an item.

DiscountedItem.java (look at getPrice)
• Alternative design: add discount to LineItem.

43

Figure 17: The
DiscountItem Decorator

DECORATOR
pattern

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

code%5Cinvoice%5CDiscountedItem.java.html

Model/View Separation

• GUI has commands to add items to invoice.
• GUI displays invoice.
• Decouple input from display.
• Display wants to know when invoice is modified.
• Display doesn't care which command modified

invoice.
• OBSERVER pattern.

44
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Model/View Separation

• OBSERVER pattern:
1. Define an observer interface type. Observer classes

must implement this interface type.
2. The subject maintains a collection of observer

objects.
3. The subject class supplies methods for attaching

observers.
4. Whenever an event occurs, the subject notifies all

the observers.

45
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Change Listeners
• Use standard ChangeListener interface type

public interface ChangeListener
{

void stateChanged(ChangeEvent event);
}

• Invoice collects ArrayList of change listeners.
• When the invoice changes, it notifies all listeners:

ChangeEvent event = new ChangeEvent(this);
for (ChangeListener listener : listeners)

listener.stateChanged(event);

46

Figure 18: Observing the
Invoice

OBSERVER
pattern

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Change Listeners
• Display adds itself as a change listener to the

invoice.
• Display updates itself when invoice object changes

state.

final Invoice invoice = new Invoice();
final JTextArea textArea = new JTextArea(20, 40);
ChangeListener listener = new
ChangeListener()
{

public void stateChanged(ChangeEvent event)
{

textArea.setText(...);
}

};
invoice.addChangeListener(listener);

47
CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Iterating Through Invoice Items

48

• Invoice collect line items.

• Clients need to know the line items inside an
invoice.

• Don't want to expose ArrayList.

• May change (e.g. if storing invoices in database).
• ITERATOR pattern.

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Iterators
• Use standard Iterator interface type

public interface Iterator<LineItem>
{

boolean hasNext();
LineItem next();
void remove();

}

• remove is "optional operation".
• implement to throw UnsupportedException

Invoice.java

49

Figure 19: Iterating Through
the Items in an Invoice

ITERATOR

pattern

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

code%5Cinvoice%5CInvoice.java.html

Formatting Invoices

50

• Simple format: dump into text area.
o May not be good enough, HTML tags for display in

browser.
• Want to allow for multiple formatting algorithms.
• STRATEGY pattern

Figure 20: The InvoiceTester ProgramCPSC 2100
University of Tennessee at Chattanooga –Fall 2013

Formatting Invoices

InvoiceFormatter.java
SimpleFormatter.java
InvoiceTester.java

51

Figure 21: Formatting
an Invoice

STRATEGY
pattern

CPSC 2100
University of Tennessee at Chattanooga –Fall 2013

code%5Cinvoice%5CInvoiceFormatter.java.html
code%5Cinvoice%5CSimpleFormatter.java.html
code%5Cinvoice%5CInvoiceTester.java.html

End of Chapter 5

52

