
Chapter 17 Component-based software engineering

Lecture 1

1Chapter 17 Software reuse

Topics covered

² Components and component models

² CBSE processes
² Component composition

2Chapter 17 Software reuse

Component-based development

² Component-based software engineering (CBSE) is an
approach to software development that relies on the
reuse of entities called ‘software components’.

² It emerged from the failure of object-oriented
development to support effective reuse. Single object
classes are too detailed and specific.

² Components are more abstract than object classes and
can be considered to be stand-alone service providers.
They can exist as stand-alone entities.

3Chapter 17 Software reuse

CBSE essentials

² Independent components specified by their interfaces.

² Component standards to facilitate component
integration.

² Middleware that provides support for component inter-
operability.

² A development process that is geared to reuse.

4Chapter 17 Software reuse

CBSE and design principles

² Apart from the benefits of reuse, CBSE is based on
sound software engineering design principles:
§ Components are independent so do not interfere with each

other;
§ Component implementations are hidden;
§ Communication is through well-defined interfaces;
§ Component platforms are shared and reduce development

costs.

5Chapter 17 Software reuse

Component standards

² Standards need to be established so that components
can communicate with each other and inter-operate.

² Unfortunately, several competing component standards
were established:
§ Sun’s Enterprise Java Beans
§ Microsoft’s COM and .NET
§ CORBA’s CCM

² In practice, these multiple standards have hindered the
uptake of CBSE. It is impossible for components
developed using different approaches to work together.

6Chapter 17 Software reuse

CBSE problems

² Component trustworthiness - how can a component with
no available source code be trusted?

² Component certification - who will certify the quality of
components?

² Emergent property prediction - how can the emergent
properties of component compositions be predicted?

² Requirements trade-offs - how do we do trade-off
analysis between the features of one component and
another?

7Chapter 17 Software reuse

Components

² Components provide a service without regard to where
the component is executing or its programming
language
§ A component is an independent executable entity that can be

made up of one or more executable objects;
§ The component interface is published and all interactions are

through the published interface;

8Chapter 17 Software reuse

Component definitions

² Councill and Heinmann:
§ A software component is a software element that conforms to a

component model and can be independently deployed and
composed without modification according to a composition
standard.

² Szyperski:
§ A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is
subject to composition by third-parties.

9Chapter 17 Software reuse

Component characteristics

Component
characteristic

Description

Standardized Component standardization means that a component used in a CBSE
process has to conform to a standard component model. This model
may define component interfaces, component metadata,
documentation, composition, and deployment.

Independent A component should be independent—it should be possible to
compose and deploy it without having to use other specific
components. In situations where the component needs externally
provided services, these should be explicitly set out in a ‘requires’
interface specification.

Composable For a component to be composable, all external interactions must
take place through publicly defined interfaces. In addition, it must
provide external access to information about itself, such as its
methods and attributes.

10Chapter 17 Software reuse

Component characteristics

Component
characteristic

Description

Deployable To be deployable, a component has to be self-contained. It must be
able to operate as a stand-alone entity on a component platform that
provides an implementation of the component model. This usually
means that the component is binary and does not have to be
compiled before it is deployed. If a component is implemented as a
service, it does not have to be deployed by a user of a component.
Rather, it is deployed by the service provider.

Documented Components have to be fully documented so that potential users can
decide whether or not the components meet their needs. The syntax
and, ideally, the semantics of all component interfaces should be
specified.

11Chapter 17 Software reuse

Component as a service provider

² The component is an independent, executable entity. It
does not have to be compiled before it is used with other
components.

² The services offered by a component are made available
through an interface and all component interactions take
place through that interface.

² The component interface is expressed in terms of
parameterized operations and its internal state is never
exposed.

12Chapter 17 Software reuse

Component interfaces

² Provides interface
§ Defines the services that are provided by the component to other

components.
§ This interface, essentially, is the component API. It defines the

methods that can be called by a user of the component.

² Requires interface
§ Defines the services that specifies what services must be made

available for the component to execute as specified.
§ This does not compromise the independence or deployability of

a component because the ‘requires’ interface does not define
how these services should be provided.

13Chapter 17 Software reuse

Component interfaces

Note UML notation. Ball and sockets can fit together.

14Chapter 17 Software reuse

A model of a data collector component

15Chapter 17 Software reuse

Component models

² A component model is a definition of standards for
component implementation, documentation and
deployment.

² Examples of component models
§ EJB model (Enterprise Java Beans)
§ COM+ model (.NET model)
§ Corba Component Model

² The component model specifies how interfaces should
be defined and the elements that should be included in
an interface definition.

16Chapter 17 Software reuse

Basic elements of a component model

17Chapter 17 Software reuse

Elements of a component model

² Interfaces
§ Components are defined by specifying their interfaces. The

component model specifies how the interfaces should be defined
and the elements, such as operation names, parameters and
exceptions, which should be included in the interface definition.

² Usage
§ In order for components to be distributed and accessed remotely,

they need to have a unique name or handle associated with
them. This has to be globally unique.

² Deployment
§ The component model includes a specification of how

components should be packaged for deployment as
independent, executable entities.

18Chapter 17 Software reuse

Middleware support

² Component models are the basis for middleware that
provides support for executing components.

² Component model implementations provide:
§ Platform services that allow components written according to the

model to communicate;
§ Support services that are application-independent services used

by different components.
² To use services provided by a model, components are

deployed in a container. This is a set of interfaces used
to access the service implementations.

19Chapter 17 Software reuse

Middleware services defined in a component
model

20Chapter 17 Software reuse

CBSE processes

² CBSE processes are software processes that support
component-based software engineering.
§ They take into account the possibilities of reuse and the different

process activities involved in developing and using reusable
components.

² Development for reuse
§ This process is concerned with developing components or

services that will be reused in other applications. It usually
involves generalizing existing components.

² Development with reuse
§ This process is the process of developing new applications using

existing components and services.

21Chapter 17 Software reuse

CBSE processes

22Chapter 17 Software reuse

Supporting processes

² Component acquisition is the process of acquiring
components for reuse or development into a reusable
component.
§ It may involve accessing locally- developed components or

services or finding these components from an external source.

² Component management is concerned with managing a
company’s reusable components, ensuring that they are
properly catalogued, stored and made available for
reuse.

² Component certification is the process of checking a
component and certifying that it meets its specification.

Chapter 17 Software reuse 23

Key points

² CBSE is a reuse-based approach to defining and
implementing loosely coupled components into systems.

² A component is a software unit whose functionality and
dependencies are completely defined by its interfaces.

² A component model defines a set of standards that
component providers and composers should follow.

² The key CBSE processes are CBSE for reuse and
CBSE with reuse.

24Chapter 17 Software reuse

Chapter 17 Component-based software engineering

Lecture 2

25Chapter 17 Software reuse

CBSE for reuse

² CBSE for reuse focuses on component development.

² Components developed for a specific application usually
have to be generalised to make them reusable.

² A component is most likely to be reusable if it associated
with a stable domain abstraction (business object).

² For example, in a hospital stable domain abstractions
are associated with the fundamental purpose - nurses,
patients, treatments, etc.

26Chapter 17 Software reuse

Component development for reuse

² Components for reuse may be specially constructed by
generalising existing components.

² Component reusability
§ Should reflect stable domain abstractions;
§ Should hide state representation;
§ Should be as independent as possible;
§ Should publish exceptions through the component interface.

² There is a trade-off between reusability and usability
§ The more general the interface, the greater the reusability but

it is then more complex and hence less usable.

27Chapter 17 Software reuse

Changes for reusability

² Remove application-specific methods.

² Change names to make them general.
² Add methods to broaden coverage.

² Make exception handling consistent.

² Add a configuration interface for component adaptation.
² Integrate required components to reduce dependencies.

28Chapter 17 Software reuse

Exception handling

² Components should not handle exceptions themselves,
because each application will have its own requirements
for exception handling.
§ Rather, the component should define what exceptions can arise

and should publish these as part of the interface.

² In practice, however, there are two problems with this:
§ Publishing all exceptions leads to bloated interfaces that are

harder to understand. This may put off potential users of the
component.

§ The operation of the component may depend on local exception
handling, and changing this may have serious implications for
the functionality of the component.

Chapter 17 Software reuse 29

Legacy system components

² Existing legacy systems that fulfil a useful business
function can be re-packaged as components for reuse.

² This involves writing a wrapper component that
implements provides and requires interfaces then
accesses the legacy system.

² Although costly, this can be much less expensive than
rewriting the legacy system.

30Chapter 17 Software reuse

Reusable components

² The development cost of reusable components may be
higher than the cost of specific equivalents. This extra
reusability enhancement cost should be an organization
rather than a project cost.

² Generic components may be less space-efficient and
may have longer execution times than their specific
equivalents.

31Chapter 17 Software reuse

Component management

² Component management involves deciding how to
classify the component so that it can be discovered,
making the component available either in a repository or
as a service, maintaining information about the use of
the component and keeping track of different component
versions.

² A company with a reuse program may carry out some
form of component certification before the component is
made available for reuse.
§ Certification means that someone apart from the developer

checks the quality of the component.

Chapter 17 Software reuse 32

CBSE with reuse

² CBSE with reuse process has to find and integrate
reusable components.

² When reusing components, it is essential to make trade-
offs between ideal requirements and the services
actually provided by available components.

² This involves:
§ Developing outline requirements;
§ Searching for components then modifying requirements

according to available functionality.
§ Searching again to find if there are better components that meet

the revised requirements.
§ Composing components to create the system.

33Chapter 17 Software reuse

CBSE with reuse

34Chapter 17 Software reuse

The component identification process

35Chapter 17 Software reuse

Component identification issues

² Trust. You need to be able to trust the supplier of a
component. At best, an untrusted component may not
operate as advertised; at worst, it can breach your
security.

² Requirements. Different groups of components will
satisfy different requirements.

² Validation.
§ The component specification may not be detailed enough to

allow comprehensive tests to be developed.
§ Components may have unwanted functionality. How can you test

this will not interfere with your application?

36Chapter 17 Software reuse

Component validation

² Component validation involves developing a set of test
cases for a component (or, possibly, extending test
cases supplied with that component) and developing a
test harness to run component tests.
§ The major problem with component validation is that the

component specification may not be sufficiently detailed to allow
you to develop a complete set of component tests.

² As well as testing that a component for reuse does what
you require, you may also have to check that the
component does not include any malicious code or
functionality that you don’t need.

Chapter 17 Software reuse 37

Ariane launcher failure – validation failure?

² In 1996, the 1st test flight of the Ariane 5 rocket ended in
disaster when the launcher went out of control 37
seconds after take off.

² The problem was due to a reused component from a
previous version of the launcher (the Inertial Navigation
System) that failed because assumptions made when
that component was developed did not hold for Ariane 5.

² The functionality that failed in this component was not
required in Ariane 5.

38Chapter 17 Software reuse

Component composition

² The process of assembling components to create a
system.

² Composition involves integrating components with each
other and with the component infrastructure.

² Normally you have to write ‘glue code’ to integrate
components.

39Chapter 17 Software reuse

Types of composition

² Sequential composition where the composed
components are executed in sequence. This involves
composing the provides interfaces of each component.

² Hierarchical composition where one component calls on
the services of another. The provides interface of one
component is composed with the requires interface of
another.

² Additive composition where the interfaces of two
components are put together to create a new
component. Provides and requires interfaces of
integrated component is a combination of interfaces of
constituent components.

40Chapter 17 Software reuse

Types of component composition

41Chapter 17 Software reuse

Interface incompatibility

² Parameter incompatibility where operations have the
same name but are of different types.

² Operation incompatibility where the names of operations
in the composed interfaces are different.

² Operation incompleteness where the provides interface
of one component is a subset of the requires interface of
another.

42Chapter 17 Software reuse

Components with incompatible interfaces

43Chapter 17 Software reuse

Adaptor components

² Address the problem of component incompatibility by
reconciling the interfaces of the components that are
composed.

² Different types of adaptor are required depending on the
type of composition.

² An addressFinder and a mapper component may be
composed through an adaptor that strips the postal code
from an address and passes this to the mapper
component.

44Chapter 17 Software reuse

Composition through an adaptor

² The component postCodeStripper is the adaptor that
facilitates the sequential composition of addressFinder
and mapper components.

45Chapter 17 Software reuse

An adaptor linking a data collector and a sensor

46Chapter 17 Software reuse

Photo library composition

47Chapter 17 Software reuse

Interface semantics

² You have to rely on component documentation to decide
if interfaces that are syntactically compatible are actually
compatible.

² Consider an interface for a PhotoLibrary component:

48Chapter 17 Software reuse

Photo Library documentation

“This method adds a photograph to the library and associates the
photograph identifier and catalogue descriptor with the photograph.”

“what happens if the photograph identifier is already associated with a
photograph in the library?”

“is the photograph descriptor associated with the catalogue entry as well
as the photograph i.e. if I delete the photograph, do I also delete the
catalogue information?”

49Chapter 17 Software reuse

The Object Constraint Language

² The Object Constraint Language (OCL) has been
designed to define constraints that are associated with
UML models.

² It is based around the notion of pre and post condition
specification – common to many formal methods.

50Chapter 17 Software reuse

The OCL description of the Photo Library
interface

-- The context keyword names the component to which the conditions apply

context addItem

-- The preconditions specify what must be true before execution of addItem
pre: PhotoLibrary.libSize() > 0
PhotoLibrary.retrieve(pid) = null

-- The postconditions specify what is true after execution
post:libSize () = libSize()@pre + 1
PhotoLibrary.retrieve(pid) = p
PhotoLibrary.catEntry(pid) = photodesc

context delete

pre: PhotoLibrary.retrieve(pid) <> null ;

post: PhotoLibrary.retrieve(pid) = null
PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
PhotoLibrary.libSize() = libSize()@pre—1

51Chapter 17 Software reuse

Photo library conditions

² As specified, the OCL associated with the Photo Library
component states that:
§ There must not be a photograph in the library with the same

identifier as the photograph to be entered;
§ The library must exist - assume that creating a library adds a

single item to it;
§ Each new entry increases the size of the library by 1;
§ If you retrieve using the same identifier then you get back the

photo that you added;
§ If you look up the catalogue using that identifier, then you get

back the catalogue entry that you made.

52Chapter 17 Software reuse

Composition trade-offs

² When composing components, you may find conflicts
between functional and non-functional requirements, and
conflicts between the need for rapid delivery and system
evolution.

² You need to make decisions such as:
§ What composition of components is effective for delivering the

functional requirements?
§ What composition of components allows for future change?
§ What will be the emergent properties of the composed system?

53Chapter 17 Software reuse

Data collection and report generation
components

54Chapter 17 Software reuse

Key points

² During the CBSE process, the processes of
requirements engineering and system design are
interleaved.

² Component composition is the process of ‘wiring’
components together to create a system.

² When composing reusable components, you normally
have to write adaptors to reconcile different component
interfaces.

² When choosing compositions, you have to consider
required functionality, non-functional requirements and
system evolution.

55Chapter 17 Software reuse

