
Chapter 15 Dependability and Security Assurance

Lecture 1

1Chapter 15 Dependability and Security Assurance

Topics covered

² Static analysis

² Reliability testing
² Security testing

² Process assurance

² Safety and dependability cases

2Chapter 15 Dependability and Security Assurance

Validation of critical systems

² The verification and validation costs for critical systems
involves additional validation processes and analysis
than for non-critical systems:
§ The costs and consequences of failure are high so it is cheaper

to find and remove faults than to pay for system failure;
§ You may have to make a formal case to customers or to a

regulator that the system meets its dependability requirements.
This dependability case may require specific V & V activities to
be carried out.

3Chapter 15 Dependability and Security Assurance

Validation costs

² Because of the additional activities involved, the
validation costs for critical systems are usually
significantly higher than for non-critical systems.

² Normally, V & V costs take up more than 50% of the total
system development costs.

² The outcome of the validation process is a tangible body
of evidence that demonstrates the level of dependability
of a software system.

4Chapter 15 Dependability and Security Assurance

Static analysis

² Static analysis techniques are system verification
techniques that don’t involve executing a program.

² The work on a source representation of the software –
either a model or the program code itself.

² Inspections and reviews are a form of static analysis
² Techniques covered here:

§ Formal verification
§ Model checking
§ Automated program analysis

5Chapter 15 Dependability and Security Assurance

Verification and formal methods

² Formal methods can be used when a mathematical
specification of the system is produced.

² They are the ultimate static verification technique that
may be used at different stages in the development
process:
§ A formal specification may be developed and mathematically

analyzed for consistency. This helps discover specification errors
and omissions.

§ Formal arguments that a program conforms to its mathematical
specification may be developed. This is effective in discovering
programming and design errors.

6Chapter 15 Dependability and Security Assurance

Arguments for formal methods

² Producing a mathematical specification requires a
detailed analysis of the requirements and this is likely to
uncover errors.

² Concurrent systems can be analysed to discover race
conditions that might lead to deadlock. Testing for such
problems is very difficult.

² They can detect implementation errors before testing
when the program is analyzed alongside the
specification.

7Chapter 15 Dependability and Security Assurance

Arguments against formal methods

² Require specialised notations that cannot be understood
by domain experts.

² Very expensive to develop a specification and even more
expensive to show that a program meets that
specification.

² Proofs may contain errors.

² It may be possible to reach the same level of confidence
in a program more cheaply using other V & V
techniques.

8Chapter 15 Dependability and Security Assurance

Model checking

² Involves creating an extended finite state model of a
system and, using a specialized system (a model
checker), checking that model for errors.

² The model checker explores all possible paths through
the model and checks that a user-specified property is
valid for each path.

² Model checking is particularly valuable for verifying
concurrent systems, which are hard to test.

² Although model checking is computationally very
expensive, it is now practical to use it in the verification
of small to medium sized critical systems.

9Chapter 15 Dependability and Security Assurance

Model checking

10Chapter 15 Dependability and Security Assurance

Automated static analysis

² Static analysers are software tools for source text
processing.

² They parse the program text and try to discover
potentially erroneous conditions and bring these to the
attention of the V & V team.

² They are very effective as an aid to inspections - they
are a supplement to but not a replacement for
inspections.

11Chapter 15 Dependability and Security Assurance

Automated static analysis checks

Fault class Static analysis check

Data faults Variables used before initialization
Variables declared but never used
Variables assigned twice but never used between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignment

Interface faults Parameter-type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management faults Unassigned pointers
Pointer arithmetic
Memory leaks

12Chapter 15 Dependability and Security Assurance

Levels of static analysis

² Characteristic error checking
§ The static analyzer can check for patterns in the code that are

characteristic of errors made by programmers using a particular
language.

² User-defined error checking
§ Users of a programming language define error patterns, thus

extending the types of error that can be detected. This allows
specific rules that apply to a program to be checked.

² Assertion checking
§ Developers include formal assertions in their program and

relationships that must hold. The static analyzer symbolically
executes the code and highlights potential problems.

13Chapter 15 Dependability and Security Assurance

Use of static analysis

² Particularly valuable when a language such as C is used
which has weak typing and hence many errors are
undetected by the compiler.

² Particularly valuable for security checking – the static
analyzer can discover areas of vulnerability such as
buffer overflows or unchecked inputs.

² Static analysis is now routinely used in the development
of many safety and security critical systems.

14Chapter 15 Dependability and Security Assurance

Reliability testing

² Reliability validation involves exercising the program to
assess whether or not it has reached the required level
of reliability.

² This cannot normally be included as part of a normal
defect testing process because data for defect testing is
(usually) atypical of actual usage data.

² Reliability measurement therefore requires a specially
designed data set that replicates the pattern of inputs to
be processed by the system.

15Chapter 15 Dependability and Security Assurance

Reliability validation activities

² Establish the operational profile for the system.
² Construct test data reflecting the operational profile.
² Test the system and observe the number of failures and

the times of these failures.
² Compute the reliability after a statistically significant

number of failures have been observed.

16Chapter 15 Dependability and Security Assurance

Reliability measurement

17Chapter 15 Dependability and Security Assurance

Statistical testing

² Testing software for reliability rather than fault detection.

² Measuring the number of errors allows the reliability of
the software to be predicted. Note that, for statistical
reasons, more errors than are allowed for in the reliability
specification must be induced.

² An acceptable level of reliability should be
specified and the software tested and amended until that
level of reliability is reached.

18Chapter 15 Dependability and Security Assurance

Reliability measurement problems

² Operational profile uncertainty
§ The operational profile may not be an accurate reflection of the

real use of the system.
² High costs of test data generation

§ Costs can be very high if the test data for the system cannot be
generated automatically.

² Statistical uncertainty
§ You need a statistically significant number of failures to compute

the reliability but highly reliable systems will rarely fail.
² Recognizing failure

§ It is not always obvious when a failure has occurred as there
may be conflicting interpretations of a specification.

19Chapter 15 Dependability and Security Assurance

Operational profiles

² An operational profile is a set of test data whose
frequency matches the actual frequency of these inputs
from ‘normal’ usage of the system. A close match with
actual usage is necessary otherwise the measured
reliability will not be reflected in the actual usage of the
system.

² It can be generated from real data collected from an
existing system or (more often) depends on assumptions
made about the pattern of usage of a system.

20Chapter 15 Dependability and Security Assurance

An operational profile

21Chapter 15 Dependability and Security Assurance

Operational profile generation

² Should be generated automatically whenever possible.

² Automatic profile generation is difficult for interactive
systems.

² May be straightforward for ‘normal’ inputs but it is difficult
to predict ‘unlikely’ inputs and to create test data for
them.

² Pattern of usage of new systems is unknown.
² Operational profiles are not static but change as users

learn about a new system and change the way that they
use it.

22Chapter 15 Dependability and Security Assurance

Key points

² Static analysis is an approach to V & V that examines
the source code (or other representation) of a system,
looking for errors and anomalies. It allows all parts of a
program to be checked, not just those parts that are
exercised by system tests.

² Model checking is a formal approach to static analysis
that exhaustively checks all states in a system for
potential errors.

² Statistical testing is used to estimate software reliability.
It relies on testing the system with a test data set that
reflects the operational profile of the software.

23Chapter 15 Dependability and Security Assurance

Chapter 15 Dependability and Security Assurance

Lecture 2

24Chapter 15 Dependability and Security Assurance

Security testing

² Testing the extent to which the system can protect itself
from external attacks.

² Problems with security testing
§ Security requirements are ‘shall not’ requirements i.e. they

specify what should not happen. It is not usually possible to
define security requirements as simple constraints that can be
checked by the system.

§ The people attacking a system are intelligent and look for
vulnerabilities. They can experiment to discover weaknesses
and loopholes in the system.

² Static analysis may be used to guide the testing team to
areas of the program that may include errors and
vulnerabilities.

25Chapter 15 Dependability and Security Assurance

Security validation

² Experience-based validation
§ The system is reviewed and analysed against the types of attack

that are known to the validation team.
² Tiger teams

§ A team is established whose goal is to breach the security of the
system by simulating attacks on the system.

² Tool-based validation
§ Various security tools such as password checkers are used to

analyse the system in operation.
² Formal verification

§ The system is verified against a formal security specification.

26Chapter 15 Dependability and Security Assurance

Examples of entries in a security checklist

Security checklist
1. Do all files that are created in the application have appropriate access permissions? The
wrong access permissions may lead to these files being accessed by unauthorized users.
2. Does the system automatically terminate user sessions after a period of inactivity?
Sessions that are left active may allow unauthorized access through an unattended
computer.
3. If the system is written in a programming language without array bound checking, are
there situations where buffer overflow may be exploited? Buffer overflow may allow
attackers to send code strings to the system and then execute them.
4. If passwords are set, does the system check that passwords are ‘strong’? Strong
passwords consist of mixed letters, numbers, and punctuation, and are not normal dictionary
entries. They are more difficult to break than simple passwords.
5. Are inputs from the system’s environment always checked against an input specification?
Incorrect processing of badly formed inputs is a common cause of security vulnerabilities.

27Chapter 15 Dependability and Security Assurance

Process assurance

² Process assurance involves defining a dependable
process and ensuring that this process is followed during
the system development.

² Process assurance focuses on:
§ Do we have the right processes? Are the processes appropriate

for the level of dependability required. Should include
requirements management, change management, reviews and
inspections, etc.

§ Are we doing the processes right? Have these processes been
followed by the development team.

² Process assurance generates documentation
§ Agile processes therefore are rarely used for critical systems.

28Chapter 15 Dependability and Security Assurance

Processes for safety assurance

² Process assurance is important for safety-critical
systems development:
§ Accidents are rare events so testing may not find all problems;
§ Safety requirements are sometimes ‘shall not’ requirements so

cannot be demonstrated through testing.

² Safety assurance activities may be included in the
software process that record the analyses that have
been carried out and the people responsible for these.
§ Personal responsibility is important as system failures may lead

to subsequent legal actions.

29Chapter 15 Dependability and Security Assurance

Safety related process activities

² Creation of a hazard logging and monitoring system.

² Appointment of project safety engineers who have
explicit responsibility for system safety.

² Extensive use of safety reviews.

² Creation of a safety certification system where the safety
of critical components is formally certified.

² Detailed configuration management (see Chapter 25).

30Chapter 15 Dependability and Security Assurance

Hazard analysis

² Hazard analysis involves identifying hazards and their
root causes.

² There should be clear traceability from identified hazards
through their analysis to the actions taken during the
process to ensure that these hazards have been
covered.

² A hazard log may be used to track hazards throughout
the process.

31Chapter 15 Dependability and Security Assurance

A simplified hazard log entry

Hazard Log Page 4: Printed 20.02.2009

System: Insulin Pump System
Safety Engineer: James Brown

File: InsulinPump/Safety/HazardLog
Log version: 1/3

Identified Hazard Insulin overdose delivered to patient

Identified by Jane Williams

Criticality class 1

Identified risk High

Fault tree
identified

YES Date 24.01.07 Location Hazard Log, Page 5

Fault tree creators Jane Williams and Bill Smith

Fault tree checked YES Date 28.01.07 Checker James Brown

System safety design requirements

1. The system shall include self-testing software that will test the sensor system, the clock, and the insulin delivery system.

2. The self-checking software shall be executed once per minute.

3. In the event of the self-checking software discovering a fault in any of the system components, an audible warning shall be issued and the
pump display shall indicate the name of the component where the fault has been discovered. The delivery of insulin shall be suspended.

4. The system shall incorporate an override system that allows the system user to modify the computed dose of insulin that is to be delivered
by the system.

5. The amount of override shall be no greater than a pre-set value (maxOverride), which is set when the system is configured by medical staff.
32Chapter 15 Dependability and Security Assurance

Safety and dependability cases

² Safety and dependability cases are structured
documents that set out detailed arguments and evidence
that a required level of safety or dependability has been
achieved.

² They are normally required by regulators before a
system can be certified for operational use. The
regulator’s responsibility is to check that a system is as
safe or dependable as is practical.

² Regulators and developers work together and negotiate
what needs to be included in a system
safety/dependability case.

33Chapter 15 Dependability and Security Assurance

The system safety case

² A safety case is:
§ A documented body of evidence that provides a convincing and

valid argument that a system is adequately safe for a given
application in a given environment.

² Arguments in a safety or dependability case can be
based on formal proof, design rationale, safety proofs,
etc. Process factors may also be included.

² A software safety/dependability case is part of a wider
system safety/dependability case.

34Chapter 15 Dependability and Security Assurance

The contents of a software safety case

Chapter Description

System description An overview of the system and a description of its critical components.

Safety requirements The safety requirements abstracted from the system requirements specification. Details of
other relevant system requirements may also be included.

Hazard and risk analysis Documents describing the hazards and risks that have been identified and the measures
taken to reduce risk. Hazard analyses and hazard logs.

Design analysis A set of structured arguments (see Section 15.5.1) that justify why the design is safe.

Verification and validation A description of the V & V procedures used and, where appropriate, the test plans for the
system. Summaries of the test results showing defects that have been detected and
corrected. If formal methods have been used, a formal system specification and any
analyses of that specification. Records of static analyses of the source code.

Review reports Records of all design and safety reviews.

Team competences Evidence of the competence of all of the team involved in safety-related systems
development and validation.

Process QA Records of the quality assurance processes (see Chapter 24) carried out during system
development.

Change management
processes

Records of all changes proposed, actions taken and, where appropriate, justification of the
safety of these changes. Information about configuration management procedures and
configuration management logs.

Associated safety cases References to other safety cases that may impact the safety case.

35Chapter 15 Dependability and Security Assurance

Structured arguments

² Safety/dependability cases should be based around
structured arguments that present evidence to justify the
assertions made in these arguments.

² The argument justifies why a claim about system
safety/security is justified by the available evidence.

36Chapter 15 Dependability and Security Assurance

Structured arguments

37Chapter 15 Dependability and Security Assurance

Insulin pump safety argument

² Arguments are based on claims and evidence.

² Insulin pump safety:
§ Claim: The maximum single dose of insulin to be delivered

(CurrentDose) will not exceed MaxDose.
§ Evidence: Safety argument for insulin pump (discussed later)
§ Evidence: Test data for insulin pump. The value of currentDose

was correctly computed in 400 tests
§ Evidence: Static analysis report for insulin pump software

revealed no anomalies that affected the value of CurrentDose
§ Argument: The evidence presented demonstrates that the

maximum dose of insulin that can be computed = MaxDose.

38Chapter 15 Dependability and Security Assurance

Structured safety arguments

² Structured arguments that demonstrate that a system
meets its safety obligations.

² It is not necessary to demonstrate that the program
works as intended; the aim is simply to demonstrate
safety.

² Generally based on a claim hierarchy.
§ You start at the leaves of the hierarchy and demonstrate safety.

This implies the higher-level claims are true.

39Chapter 15 Dependability and Security Assurance

A safety claim hierarchy for the insulin pump

40Chapter 15 Dependability and Security Assurance

Safety arguments

² Safety arguments are intended to show that the system
cannot reach in unsafe state.

² These are weaker than correctness arguments which
must show that the system code conforms to its
specification.

² They are generally based on proof by contradiction
§ Assume that an unsafe state can be reached;
§ Show that this is contradicted by the program code.

² A graphical model of the safety argument may be
developed.

41Chapter 15 Dependability and Security Assurance

Construction of a safety argument

² Establish the safe exit conditions for a component or a
program.

² Starting from the END of the code, work backwards until
you have identified all paths that lead to the exit of the
code.

² Assume that the exit condition is false.

² Show that, for each path leading to the exit that the
assignments made in that path contradict the
assumption of an unsafe exit from the component.

42Chapter 15 Dependability and Security Assurance

Insulin dose computation with safety checks

-- The insulin dose to be delivered is a function of blood sugar level,
-- the previous dose delivered and the time of delivery of the previous dose

currentDose = computeInsulin () ;

// Safety check—adjust currentDose if necessary.
// if statement 1
if (previousDose == 0)
{

if (currentDose > maxDose/2)
currentDose = maxDose/2 ;

}
else

if (currentDose > (previousDose * 2))
currentDose = previousDose * 2 ;

// if statement 2
if (currentDose < minimumDose)

currentDose = 0 ;
else if (currentDose > maxDose)

currentDose = maxDose ;
administerInsulin (currentDose) ;

43Chapter 15 Dependability and Security Assurance

Informal safety argument based on
demonstrating contradictions

44Chapter 15 Dependability and Security Assurance

Program paths

² Neither branch of if-statement 2 is executed
§ Can only happen if CurrentDose is >= minimumDose and <=

maxDose.

² then branch of if-statement 2 is executed
§ currentDose = 0.

² else branch of if-statement 2 is executed
§ currentDose = maxDose.

² In all cases, the post conditions contradict the unsafe
condition that the dose administered is greater than
maxDose.

45Chapter 15 Dependability and Security Assurance

Key points

² Security validation is difficult because security
requirements state what should not happen in a system,
rather than what should. Furthermore, system attackers
are intelligent and may have more time to probe for
weaknesses than is available for security testing.

² Security validation may be carried out using experience-
based analysis, tool-based analysis or ‘tiger teams’ that
simulate attacks on a system.

² It is important to have a well-defined, certified process
for safety-critical systems development. The process
must include the identification and monitoring of potential
hazards.

46Chapter 15 Dependability and Security Assurance

Key points

² Safety and dependability cases collect all of the
evidence that demonstrates a system is safe and
dependable. Safety cases are required when an external
regulator must certify the system before it is used.

² Safety cases are usually based on structured arguments.
Structured safety arguments show that an identified
hazardous condition can never occur by considering all
program paths that lead to an unsafe condition, and
showing that the condition cannot hold.

47Chapter 15 Dependability and Security Assurance

