
Chapter 13 – Dependability engineering

1Chapter 13 Dependability Engineering

Topics covered

² Redundancy and diversity
§ Fundamental approaches to achieve fault tolerance.

² Dependable processes
§ How the use of dependable processes leads to dependable

systems

² Dependable systems architectures
§ Architectural patterns for software fault tolerance

² Dependable programming
§ Guidelines for programming to avoid errors.

Chapter 13 Dependability Engineering 2

Software dependability

² In general, software customers expect all software to be
dependable. However, for non-critical applications, they
may be willing to accept some system failures.

² Some applications (critical systems) have very high
dependability requirements and special software
engineering techniques may be used to achieve this.
§ Medical systems
§ Telecommunications and power systems
§ Aerospace systems

3Chapter 13 Dependability Engineering

Dependability achievement

² Fault avoidance
§ The system is developed in such a way that human error is

avoided and thus system faults are minimised.
§ The development process is organised so that faults in the

system are detected and repaired before delivery to the
customer.

² Fault detection
§ Verification and validation techniques are used to discover and

remove faults in a system before it is deployed.

² Fault tolerance
§ The system is designed so that faults in the delivered software

do not result in system failure.

4Chapter 13 Dependability Engineering

The increasing costs of residual fault removal

5Chapter 13 Dependability Engineering

Regulated systems

² Many critical systems are regulated systems, which
means that their use must be approved by an external
regulator before the systems go into service.
§ Nuclear systems
§ Air traffic control systems
§ Medical devices

² A safety and dependability case has to be approved by
the regulator. Therefore, critical systems development
has to create the evidence to convince a regulator that
the system is dependable, safe and secure.

Chapter 13 Dependability Engineering 6

Diversity and redundancy

² Redundancy
§ Keep more than 1 version of a critical component available so

that if one fails then a backup is available.
² Diversity

§ Provide the same functionality in different ways so that they will
not fail in the same way.

² However, adding diversity and redundancy adds
complexity and this can increase the chances of error.

² Some engineers advocate simplicity and extensive V & V
is a more effective route to software dependability.

7Chapter 13 Dependability Engineering

Diversity and redundancy examples

² Redundancy. Where availability is critical (e.g. in e-
commerce systems), companies normally keep backup
servers and switch to these automatically if failure
occurs.

² Diversity. To provide resilience against external attacks,
different servers may be implemented using different
operating systems (e.g. Windows and Linux)

8Chapter 13 Dependability Engineering

Process diversity and redundancy

² Process activities, such as validation, should not depend
on a single approach, such as testing, to validate the
system

² Rather, multiple different process activities the
complement each other and allow for cross-checking
help to avoid process errors, which may lead to errors in
the software

Chapter 13 Dependability Engineering 9

Dependable processes

² To ensure a minimal number of software faults, it is
important to have a well-defined, repeatable software
process.

² A well-defined repeatable process is one that does not
depend entirely on individual skills; rather can be
enacted by different people.

² For fault detection, it is clear that the process activities
should include significant effort devoted to verification
and validation.

10Chapter 13 Dependability Engineering

Attributes of dependable processes

Process characteristic Description

Documentable The process should have a defined process model that sets
out the activities in the process and the documentation that is
to be produced during these activities.

Standardized A comprehensive set of software development standards
covering software production and documentation should be
available.

Auditable The process should be understandable by people apart from
process participants, who can check that process standards
are being followed and make suggestions for process
improvement.

Diverse The process should include redundant and diverse
verification and validation activities.

Robust The process should be able to recover from failures of
individual process activities.

11Chapter 13 Dependability Engineering

Validation activities

² Requirements reviews.

² Requirements management.

² Formal specification.

² System modelling

² Design and code inspection.
² Static analysis.

² Test planning and management.

² Change management, discussed in Chapter 25, is also
essential.

12Chapter 13 Dependability Engineering

Fault tolerance

² In critical situations, software systems must be
fault tolerant.

² Fault tolerance is required where there are high
availability requirements or where system failure costs
are very high.

² Fault tolerance means that the system can continue in
operation in spite of software failure.

² Even if the system has been proved to conform to its
specification, it must also be fault tolerant as there may
be specification errors or the validation may be incorrect.

13Chapter 13 Dependability Engineering

Dependable system architectures

² Dependable systems architectures are used in situations
where fault tolerance is essential. These architectures
are generally all based on redundancy and diversity.

² Examples of situations where dependable architectures
are used:
§ Flight control systems, where system failure could threaten the

safety of passengers
§ Reactor systems where failure of a control system could lead to

a chemical or nuclear emergency
§ Telecommunication systems, where there is a need for 24/7

availability.

Chapter 13 Dependability Engineering 14

Protection systems

² A specialized system that is associated with
some other control system, which can take
emergency action if a failure occurs.
§ System to stop a train if it passes a red light
§ System to shut down a reactor if

temperature/pressure are too high

² Protection systems independently monitor
the controlled system and the environment.

² If a problem is detected, it issues commands
to take emergency action to shut down the
system and avoid a catastrophe.

Chapter 13 Dependability Engineering 15

Protection system functionality

² Protection systems are redundant because they include
monitoring and control capabilities that replicate those in
the control software.

² Protection systems should be diverse and use different
technology from the control software.

² They are simpler than the control system so more effort
can be expended in validation and dependability
assurance.

² Aim is to ensure that there is a low probability of failure
on demand for the protection system.

Chapter 13 Dependability Engineering 16

Self-monitoring architectures

² Multi-channel architectures where the system monitors its
own operations and takes action if inconsistencies are
detected.

² The same computation is carried out on each channel and the
results are compared. If the results are identical and are
produced at the same time, then it is assumed that the system
is operating correctly.

² If the results are different, then a failure is assumed and a
failure exception is raised.

Chapter 13 Dependability Engineering 17

Self-monitoring systems

² Hardware in each channel has to be diverse so that
common mode hardware failure will not lead to each
channel producing the same results.

² Software in each channel must also be diverse,
otherwise the same software error would affect each
channel.

² If high-availability is required, you may use several self-
checking systems in parallel.
§ This is the approach used in the Airbus family of aircraft for their

flight control systems.

Chapter 13 Dependability Engineering 18

Airbus flight control system architecture

19

² The Airbus FCS has 5
separate computers, any
one of which can run the
control software.

² Extensive use has been
made of diversity
§ Primary systems use a

different processor from
the secondary systems.

§ Primary and secondary
systems use chipsets
from different
manufacturers.

§ Software in secondary
systems is less complex
than in primary system –
provides only critical
functionality.

§ Software in each
channel is developed in
different programming
languages by different
teams.

§ Different programming
languages used in
primary and secondary
systems.

N-version programming

² Multiple versions of a software system carry out
computations at the same time. There should be an odd
number of computers involved, typically 3.

² The results are compared using a voting system and the
majority result is taken to be the correct result.

² Approach derived from the notion of triple-modular
redundancy, as used in hardware systems.

Chapter 13 Dependability Engineering 20

Hardware fault tolerance

² Depends on triple-modular redundancy (TMR).
² There are three replicated identical components that receive

the same input and whose outputs are compared.
² If one output is different, it is ignored and component failure is

assumed.
² Based on most faults resulting from component failures

rather than design faults and a low probability of simultaneous
component failure.

21Chapter 13 Dependability Engineering

Triple modular redundancy

N-version programming

² The different system versions are designed and implemented
by different teams. It is assumed that there is a low probability
that they will make the same mistakes. The algorithms used
should but may not be different.

² There is some empirical evidence that teams commonly
misinterpret specifications in the same way and chose the
same algorithms in their systems.

22Chapter 13 Dependability Engineering

Software diversity

² Approaches to software fault tolerance depend on
software diversity where it is assumed that different
implementations of the same software specification will
fail in different ways.

² It is assumed that implementations are (a) independent
and (b) do not include common errors.

² Strategies to achieve diversity
§ Different programming languages
§ Different design methods and tools
§ Explicit specification of different algorithms

Chapter 13 Dependability Engineering 23

Problems with design diversity

² Teams are not culturally diverse so they tend to tackle
problems in the same way.

² Characteristic errors
§ Different teams make the same mistakes. Some parts of an

implementation are more difficult than others so all teams tend to
make mistakes in the same place;

§ Specification errors; if there is an error in the specification then
this is reflected in all implementations;

§ This can be addressed to some extent by using multiple
specification representations.

24Chapter 13 Dependability Engineering

Specification dependency

² Both approaches to software redundancy are susceptible
to specification errors. If the specification is incorrect, the
system could fail

² This is also a problem with hardware but software
specifications are usually more complex than hardware
specifications and harder to validate.

² This has been addressed in some cases by developing
separate software specifications from the same user
specification.

25Chapter 13 Dependability Engineering

Improvements in practice

² In principle, if diversity and independence can be
achieved, multi-version programming leads to very
significant improvements in reliability and availability.

² In practice, observed improvements are much less
significant but the approach seems leads to reliability
improvements of between 5 and 9 times.

² The key question is whether or not such improvements
are worth the considerable extra development costs for
multi-version programming.

Chapter 13 Dependability Engineering 26

Dependable programming

² Good programming practices can be adopted that help
reduce the incidence of program faults.

Chapter 13 Dependability Engineering 27

Dependable programming guidelines

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

Good practice guidelines for dependable programming

Control the visibility of information in a program

² Program components should only be allowed access to
data that they need for their implementation.

² This means that accidental corruption of parts of the
program state by these components is impossible.

² You can control visibility by using abstract data types
where the data representation is private and you only
allow access to the data through predefined operations
such as get () and put ().

Chapter 13 Dependability Engineering 28

Check all inputs for validity

² All program take inputs from their environment and make
assumptions about these inputs.

² However, program specifications rarely define what to do
if an input is not consistent with these assumptions.

² Consequently, many programs behave unpredictably
when presented with unusual inputs and, sometimes,
these are threats to the security of the system.

² Consequently, you should always check inputs before
processing against the assumptions made about these
inputs.

Chapter 13 Dependability Engineering 29

Validity checks

² Range checks
§ Check that the input falls within a known range.

² Size checks
§ Check that the input does not exceed some maximum size e.g.

40 characters for a name.

² Representation checks
§ Check that the input does not include characters that should not

be part of its representation e.g. names do not include numerals.

² Reasonableness checks
§ Use information about the input to check if it is reasonable rather

than an extreme value.

Chapter 13 Dependability Engineering 30

Provide a handler for all exceptions

² A program exception is an error or some
unexpected event such as a power failure.

² Exception handling constructs allow for
such events to be handled without the need
for continual status checking to detect
exceptions.

² Using normal control constructs to detect
exceptions needs many additional
statements to be added to the program.
This adds a significant overhead and is
potentially error-prone.

31Chapter 13 Dependability Engineering

Exception handling

² Three possible exception handling strategies
§ Signal to a calling component that an exception has occurred

and provide information about the type of exception.
§ Carry out some alternative processing to the processing where

the exception occurred. This is only possible where the
exception handler has enough information to recover from the
problem that has arisen.

§ Pass control to a run-time support system to handle the
exception.

² Exception handling is a mechanism to provide some fault
tolerance

Chapter 13 Dependability Engineering 32

Minimize the use of error-prone constructs

² Program faults are usually a consequence of human
error because programmers lose track of the
relationships between the different parts of the system

² This is exacerbated by error-prone constructs in
programming languages that are inherently complex or
that don’t check for mistakes when they could do so.

² Therefore, when programming, you should try to avoid or
at least minimize the use of these error-prone constructs.

Chapter 13 Dependability Engineering 33

Error-prone constructs

² Unconditional branch (goto) statements
² Floating-point numbers

§ Inherently imprecise. The imprecision may lead to invalid
comparisons.

² Pointers
§ Pointers referring to the wrong memory areas can corrupt

data. Aliasing can make programs difficult to understand
and change.

² Dynamic memory allocation
§ Run-time allocation can cause memory overflow.

34Chapter 13 Dependability Engineering

Error-prone constructs

² Parallelism
§ Can result in subtle timing errors because of unforeseen

interaction between parallel processes.
² Recursion

§ Errors in recursion can cause memory overflow as the
program stack fills up.

² Interrupts
§ Interrupts can cause a critical operation to be terminated

and make a program difficult to understand.
² Inheritance

§ Code is not localised. This can result in unexpected
behaviour when changes are made and problems of
understanding the code.

35Chapter 13 Dependability Engineering

Error-prone constructs

² Aliasing
§ Using more than 1 name to refer to the same state variable.

² Unbounded arrays
§ Buffer overflow failures can occur if no bound checking on

arrays.
² Default input processing

§ An input action that occurs irrespective of the input.
§ This can cause problems if the default action is to transfer

control elsewhere in the program. In incorrect or deliberately
malicious input can then trigger a program failure.

Chapter 13 Dependability Engineering 36

Provide restart capabilities

² For systems that involve long transactions or user
interactions, you should always provide a restart
capability that allows the system to restart after failure
without users having to redo everything that they have
done.

² Restart depends on the type of system
§ Keep copies of forms so that users don’t have to fill them in

again if there is a problem
§ Save state periodically and restart from the saved state

Chapter 13 Dependability Engineering 37

Check array bounds

² In some programming languages, such as C, it is
possible to address a memory location outside of the
range allowed for in an array declaration.

² This leads to the well-known ‘bounded buffer’
vulnerability where attackers write executable code into
memory by deliberately writing beyond the top element
in an array.

² If your language does not include bound checking, you
should therefore always check that an array access is
within the bounds of the array.

Chapter 13 Dependability Engineering 38

Include timeouts when calling external
components

² In a distributed system, failure of a remote computer can
be ‘silent’ so that programs expecting a service from that
computer may never receive that service or any
indication that there has been a failure.

² To avoid this, you should always include timeouts on all
calls to external components.

² After a defined time period has elapsed without a
response, your system should then assume failure and
take whatever actions are required to recover from this.

Chapter 13 Dependability Engineering 39

Name all constants that represent real-world
values

² Always give constants that reflect real-world values
(such as tax rates) names rather than using their
numeric values and always refer to them by name

² You are less likely to make mistakes and type the wrong
value when you are using a name rather than a value.

² This means that when these ‘constants’ change (for
sure, they are not really constant), then you only have to
make the change in one place in your program.

Chapter 13 Dependability Engineering 40

Key points

² Dependability in a program can be achieved by avoiding the
introduction of faults, by detecting and removing faults before
system deployment, and by including fault tolerance facilities.

² The use of redundancy and diversity in hardware, software
processes and software systems is essential for the development of
dependable systems.

² The use of a well-defined, repeatable process is essential if faults in
a system are to be minimized.

² Dependable system architectures are system architectures that are
designed for fault tolerance. Architectural styles that support fault
tolerance include protection systems, self-monitoring architectures
and N-version programming.

Chapter 13 Dependability Engineering 41

Key points

² Software diversity is difficult to achieve because it is
practically impossible to ensure that each version of the
software is truly independent.

² Dependable programming relies on the inclusion of
redundancy in a program to check the validity of inputs
and the values of program variables.

² Some programming constructs and techniques, such as
goto statements, pointers, recursion, inheritance and
floating-point numbers, are inherently error-prone. You
should try to avoid these constructs when developing
dependable systems.

Chapter 13 Dependability Engineering 42

