
Chapter 7 – Design and Implementation

Lecture 1

1Chapter 7 Design and implementation

Design and implementation

² Software design and implementation is the stage in the
software engineering process at which an executable
software system is developed.

² Software design and implementation activities are
invariably inter-leaved.
§ Software design is a creative activity in which you identify

software components and their relationships, based on a
customer’s requirements.

§ Implementation is the process of realizing the design as a
program.

2Chapter 7 Design and implementation

Build or buy

² In a wide range of domains, it is now possible to buy off-
the-shelf systems (COTS) that can be adapted and
tailored to the users’ requirements.
§ For example, if you want to implement a medical records system,

you can buy a package that is already used in hospitals. It can
be cheaper and faster to use this approach rather than
developing a system in a conventional programming language.

² When you develop an application in this way, the design
process becomes concerned with how to use the
configuration features of that system to deliver the
system requirements.

3Chapter 7 Design and implementation

7.1 An object-oriented design process

² Structured object-oriented design processes involve
developing a number of different system models.

² They require a lot of effort for development and
maintenance of these models and, for small systems,
this may not be cost-effective.

² However, for large systems developed by different
groups design models are an important communication
mechanism.

4Chapter 7 Design and implementation

7.1 Process stages

² There are a variety of different object-oriented design
processes that depend on the organization using the
process.

² Common activities in these processes include:
1. Define the context and modes of use of the system;
2. Design the system architecture;
3. Identify the principal system objects;
4. Develop design models;
5. Specify object interfaces.

² Process illustrated here using a design for a wilderness
weather station.

5Chapter 7 Design and implementation

7.1.1. System context and interactions

² Understanding the relationships between the software that is
being designed and its external environment is essential for
deciding how to provide the required system functionality and
how to structure the system to communicate with its
environment.

² Understanding of the context also lets you establish the
boundaries of the system. Setting the system boundaries
helps you decide what features are implemented in the
system being designed and what features are in other
associated systems.

² A system context model is a structural model that
demonstrates the other systems in the environment of the
system being developed.

² An interaction model is a dynamic model that shows how the
system interacts with its environment as it is used.

6Chapter 7 Design and implementation

7.1.1. System context for the weather station
(continued)

7Chapter 7 Design and implementation

The systems in the environment of each weather station are a weather
information system, an onboard satellite system, and a control system.

7.1.1. Weather station use cases (continued)

8Chapter 7 Design and implementation

7.1.1. Use case description—Report weather
(continued)

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather
information system. The data sent are the maximum, minimum, and average
ground and air temperatures; the maximum, minimum, and average air
pressures; the maximum, minimum, and average wind speeds; the total
rainfall; and the wind direction as sampled at five-minute intervals.

Stimulus The weather information system establishes a satellite communication link
with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this frequency
may differ from one station to another and may be modified in the future.

9Chapter 7 Design and implementation

7.1.2. Architectural design

² Once interactions between the system and its
environment have been understood, you use this
information for designing the system architecture.

² You identify the major components that make up the
system and their interactions, and then may organize the
components using an architectural pattern such as a
layered or client-server model.

² The weather station is composed of independent
subsystems that communicate by broadcasting
messages on a common infrastructure.

10Chapter 7 Design and implementation

7.1.2. High-level architecture of the weather
station (continued)

11Chapter 7 Design and implementation

7.1.2. Architecture of data collection system
(continued)

12Chapter 7 Design and implementation

7.1.3. Object class identification (continued)

² Identifying object classes is often a difficult part of object oriented
design.

² There is no 'magic formula' for object identification. It relies on the
skill, experience and domain knowledge of system designers.

² Object identification is an iterative process. You are unlikely to get it
right first time.

² Use a grammatical approach based on a natural language
description of the system. Objects and attributes are nouns, and
operations and services are verbs.

² Base the identification on tangible things in the application domain
such as aircraft.

² Use a scenario-based analysis. The objects, attributes and methods
in each scenario are identified.

13Chapter 7 Design and implementation

7.1.3 Weather station description (continued)

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected periodically.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data.
The summarised data is transmitted to the mapping computer
when a request is received.

14Chapter 7 Design and implementation

7.1.3 Weather station object classes (continued)

² Object class identification in the weather station system
may be based on the tangible hardware and data in the
system:
§ Ground thermometer, Anemometer, Barometer

• Application domain objects that are ‘hardware’ objects related to the
instruments in the system.

§ Weather station
• The basic interface of the weather station to its environment. It

therefore reflects the interactions identified in the use-case model.
§ Weather data

• Encapsulates the summarized data from the instruments.

15Chapter 7 Design and implementation

7.1.3 Weather station object classes (continued)

16Chapter 7 Design and implementation

7.1.4. Design models

² Design models show the objects and object classes and
relationships between these entities.

² Static models describe the static structure of the system
in terms of object classes and relationships.

² Dynamic models describe the dynamic interactions
between objects.

17Chapter 7 Design and implementation

7.1.4 Examples of design models (continued)

² Subsystem models that show logical groupings of
objects into coherent subsystems.

² Sequence models that show the sequence of object
interactions.

² State machine models that show how individual objects
change their state in response to events.

² Other models include use-case models, aggregation
models, generalisation models, etc.

18Chapter 7 Design and implementation

7.1.4 Subsystem models (continued)

² Shows how the design is organised into logically related
groups of objects.

² In the UML, these are shown using packages - an
encapsulation construct. This is a logical model. The
actual organisation of objects in the system may be
different.

19Chapter 7 Design and implementation

7.1.4 Sequence diagram describing data
collection (continued)

20Chapter 7 Design and implementation

Sequence models show the
sequence of object interactions
that take place
• Objects are arranged

horizontally across the top;
• Time is represented vertically so

models are read top to bottom;
• Interactions are represented by

labelled arrows, Different styles
of arrow represent different
types of interaction;

• A thin rectangle in an object
lifeline represents the time
when the object is the
controlling object in the system.

7.1.4 State diagrams (continued)

² State diagrams are used to show how objects respond to different service requests and
the state transitions triggered by these requests.

² State diagrams are useful high-level models of a system or an object’s run-time behavior.
² You don’t usually need a state diagram for all of the objects in the system. Many of the

objects in a system are relatively simple and a state model adds unnecessary detail to the
design.

21Chapter 7 Design and implementation

7.1.5 Interface specification

² Object interfaces have to be specified so that the objects and
other components can be designed in parallel.

² Designers should avoid designing the interface representation
but should hide this in the object itself.

² Objects may have several interfaces which are viewpoints on
the methods provided.

² The UML uses class diagrams for interface specification but
Java may also be used.

22Chapter 7 Design and implementation

7.2 Design patterns

² A design pattern is a way of reusing abstract knowledge
about a problem and its solution.

² A pattern is a description of the problem and the essence
of its solution.

² It should be sufficiently abstract to be reused in different
settings.

² Pattern descriptions usually make use of object-oriented
characteristics such as inheritance and polymorphism.

23Chapter 7 Design and implementation

7.2 Pattern elements (continued)

² Name
§ A meaningful pattern

identifier.
² Problem description.
² Solution description.

§ Not a concrete design
but a template for a
design solution that can
be instantiated in
different ways.

² Consequences
§ The results and trade-

offs of applying the
pattern.

24Chapter 7 Design and implementation

An Observer pattern
² Name

§ Observer.
² Description

§ Separates the display of object
state from the object itself.

² Problem description
§ Used when multiple displays of

state are needed.
² Solution description

§ See slide with UML description.
² Consequences

§ Optimisations to enhance
display performance are
impractical.

7.2 The Observer pattern (continued)

Pattern name Observer

Description Separates the display of the state of an object from the object itself and allows
alternative displays to be provided. When the object state changes, all displays are
automatically notified and updated to reflect the change.

Problem
description

In many situations, you have to provide multiple displays of state information, such
as a graphical display and a tabular display. This pattern may be used in all
situations where more than one display format for state information is required and
where it is not necessary for the object that maintains the state information to know
about the specific display formats used.

Solution
description

This involves two abstract objects, Subject and Observer, and two concrete objects,
ConcreteSubject and ConcreteObject, which inherit the attributes of the related
abstract objects. The abstract objects include general operations that are applicable
in all situations. The state to be displayed is maintained in ConcreteSubject, which
inherits operations from Subject allowing it to add and remove Observers (each
observer corresponds to a display) and to issue a notification when the state has
changed. The ConcreteObserver maintains a copy of the state of ConcreteSubject
and implements the Update() interface of Observer that allows these copies to be
kept in step.

Consequences The subject only knows the abstract Observer and does not know details of the
concrete class. Therefore there is minimal coupling between these objects.

25

7.2 Multiple displays using the Observer pattern
(continued)

26Chapter 7 Design and implementation

7.2 A UML model of the Observer pattern
(continued)

27Chapter 7 Design and implementation

7.2 Design problems (continued)

² To use patterns in your design, you need to recognize
that any design problem you are facing may have an
associated pattern that can be applied.
§ Tell several objects that the state of some other object has

changed (Observer pattern).
§ Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).
§ Provide a standard way of accessing the elements in a

collection, irrespective of how that collection is implemented
(Iterator pattern).

§ Allow for the possibility of extending the functionality of an
existing class at run-time (Decorator pattern).

28Chapter 7 Design and implementation

7.3 Implementation issues

² Focus here is not on programming, although this is
obviously important, but on other implementation issues
that are often not covered in programming texts:
§ Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you
should make as much use as possible of existing code.

§ Configuration management During the development process,
you have to keep track of the many different versions of each
software component in a configuration management system.

§ Host-target development Production software does not usually
execute on the same computer as the software development
environment. Rather, you develop it on one computer (the host
system) and execute it on a separate computer (the target
system).

29Chapter 7 Design and implementation

7.3.1 Reuse

² From the 1960s to the 1990s, most new software was
developed from scratch, by writing all code in a high-
level programming language.
§ The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

² Costs and schedule pressure mean that this approach
became increasingly unviable, especially for commercial
and Internet-based systems.

² An approach to development based around the reuse of
existing software emerged and is now generally used for
business and scientific software.

30Chapter 7 Design and implementation

7.3.1 Reuse levels

² The abstraction level
§ At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

² The object level
§ At this level, you directly reuse objects from a library rather than

writing the code yourself.

² The component level
§ Components are collections of objects and object classes that

you reuse in application systems.

² The system level
§ At this level, you reuse entire application systems.

31Chapter 7 Design and implementation

7.3.1 Reuse costs

² The costs of the time spent in looking for software to
reuse and assessing whether or not it meets your needs.

² Where applicable, the costs of buying the reusable
software. For large off-the-shelf systems, these costs
can be very high.

² The costs of adapting and configuring the reusable
software components or systems to reflect the
requirements of the system that you are developing.

² The costs of integrating reusable software elements with
each other (if you are using software from different
sources) and with the new code that you have
developed.

32Chapter 7 Design and implementation

7.3.2 Configuration management

² Configuration management is the name given to the
general process of managing a changing software
system.

² The aim of configuration management is to support the
system integration process so that all developers can
access the project code and documents in a controlled
way, find out what changes have been made, and
compile and link components to create a system.

² See also Chapter 25.

33Chapter 7 Design and implementation

7.3.2 Configuration management activities

² Version management, where support is provided to keep track
of the different versions of software components. Version
management systems include facilities to coordinate
development by several programmers.

² System integration, where support is provided to help
developers define what versions of components are used to
create each version of a system. This description is then used
to build a system automatically by compiling and linking the
required components.

² Problem tracking, where support is provided to allow users to
report bugs and other problems, and to allow all developers to
see who is working on these problems and when they are
fixed.

34Chapter 7 Design and implementation

7.3.3 Host-target development

² Most software is developed on one computer (the host),
but runs on a separate machine (the target).

² More generally, we can talk about a development
platform and an execution platform.
§ A platform is more than just hardware.
§ It includes the installed operating system plus other supporting

software such as a database management system or, for
development platforms, an interactive development environment.

² Development platform usually has different installed
software than execution platform; these platforms may
have different architectures.

35Chapter 7 Design and implementation

7.3.3 Development platform tools

² An integrated compiler and syntax-directed editing
system that allows you to create, edit and compile code.

² A language debugging system.

² Graphical editing tools, such as tools to edit UML
models.

² Testing tools, such as Junit that can automatically run a
set of tests on a new version of a program.

² Project support tools that help you organize the code for
different development projects.

36Chapter 7 Design and implementation

7.3.3 Integrated development environments
(IDEs)

² Software development tools are often grouped to create
an integrated development environment (IDE).

² An IDE is a set of software tools that supports different
aspects of software development, within some common
framework and user interface.

² IDEs are created to support development in a specific
programming language such as Java. The language IDE
may be developed specially, or may be an instantiation
of a general-purpose IDE, with specific language-support
tools.

37Chapter 7 Design and implementation

7.4 Open source development

² Open source development is an approach to software development
in which the source code of a software system is published and
volunteers are invited to participate in the development process

² Its roots are in the Free Software Foundation (www.fsf.org), which
advocates that source code should not be proprietary but rather
should always be available for users to examine and modify as they
wish.

² Open source software extended this idea by using the Internet to
recruit a much larger population of volunteer developers. Many of
them are also users of the code.

² The best-known open source product is, of course, the Linux
operating system which is widely used as a server system and,
increasingly, as a desktop environment.

² Other important open source products are Java, the Apache web
server and the mySQL database management system.

38Chapter 7 Design and implementation

7.4 Open source issues

² Should the product that is being developed make use of open
source components?

² Should an open source approach be used for the software’s
development?

² More and more product companies are using an open source
approach to development.

² Their business model is not reliant on selling a software
product but on selling support for that product.

² They believe that involving the open source community will
allow software to be developed more cheaply, more quickly
and will create a community of users for the software

39Chapter 7 Design and implementation

7.4 Open source licensing

² A fundamental principle of open-source development is
that source code should be freely available, this does not
mean that anyone can do as they wish with that code.
§ Legally, the developer of the code (either a company or an

individual) still owns the code. They can place restrictions on
how it is used by including legally binding conditions in an open
source software license.

§ Some open source developers believe that if an open source
component is used to develop a new system, then that system
should also be open source.

§ Others are willing to allow their code to be used without this
restriction. The developed systems may be proprietary and sold
as closed source systems.

40Chapter 7 Design and implementation

7.4 License models

² The GNU General Public License (GPL). This is a so-called
‘reciprocal’ license that means that if you use open source
software that is licensed under the GPL license, then you
must make that software open source.

² The GNU Lesser General Public License (LGPL) is a variant
of the GPL license where you can write components that link
to open source code without having to publish the source of
these components.

² The Berkley Standard Distribution (BSD) License. This is a
non-reciprocal license, which means you are not obliged to re-
publish any changes or modifications made to open source
code. You can include the code in proprietary systems that
are sold.

41Chapter 7 Design and implementation

7.4 License management

² Establish a system for maintaining information about
open-source components that are downloaded and
used.

² Be aware of the different types of licenses and
understand how a component is licensed before it is
used.

² Be aware of evolution pathways for components.
² Educate people about open source.

² Have auditing systems in place.

² Participate in the open source community.

42Chapter 7 Design and implementation

