
Chapter 3 – Agile Software Development

Lecture 1

1Chapter 3 Agile software development

Topics covered

² Agile methods

² Plan-driven and agile development
² Extreme programming

² Agile project management

² Scaling agile methods

2Chapter 3 Agile software development

Rapid software development

² Rapid development and delivery is now often the most
important requirement for software systems
§ Businesses operate in a fast –changing requirement and it is

practically impossible to produce a set of stable software
requirements

§ Software has to evolve quickly to reflect changing business needs.

² Rapid software development
§ Specification, design and implementation are inter-leaved
§ System is developed as a series of versions with stakeholders

involved in version evaluation
§ User interfaces are often developed using an IDE and graphical

toolset.

3Chapter 3 Agile software development

Agile methods

² Dissatisfaction with the overheads involved in software
design methods of the 1980s and 1990s led to the
creation of agile methods. These methods:
§ Focus on the code rather than the design
§ Are based on an iterative approach to software development
§ Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

² The aim of agile methods is to reduce overheads in the
software process (e.g. by limiting documentation) and to
be able to respond quickly to changing requirements
without excessive rework.

4Chapter 3 Agile software development

Agile manifesto

² We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:
§ Individuals and interactions over processes and tools
§ Working software over comprehensive documentation
§ Customer collaboration over contract negotiation
§ Responding to change over following a plan

² That is, while there is value in the items on the right, we
value the items on the left more.

Chapter 3 Agile software development 5

The principles of agile methods

Principle Description
Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new
system requirements and to evaluate the iterations of the
system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the
system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and
in the development process. Wherever possible, actively work
to eliminate complexity from the system.

6Chapter 3 Agile software development

Agile method applicability

² Product development where a software company is
developing a small or medium-sized product for sale.

² Custom system development within an organization,
where there is a clear commitment from the customer to
become involved in the development process and where
there are not a lot of external rules and regulations that
affect the software.

² Because of their focus on small, tightly-integrated teams,
there are problems in scaling agile methods to large
systems.

Chapter 3 Agile software development 7

Problems with agile methods

² It can be difficult to keep the interest of customers who
are involved in the process.

² Team members may be unsuited to the intense
involvement that characterizes agile methods.

² Prioritizing changes can be difficult where there are
multiple stakeholders.

² Maintaining simplicity requires extra work.
² Contracts may be a problem as with other approaches to

iterative development.

8Chapter 3 Agile software development

Agile methods and software maintenance

² Most organizations spend more on maintaining existing
software than they do on new software development. So,
if agile methods are to be successful, they have to
support maintenance as well as original development.

² Two key issues:
§ Are systems that are developed using an agile approach

maintainable, given the emphasis in the development process of
minimizing formal documentation?

§ Can agile methods be used effectively for evolving a system in
response to customer change requests?

² Problems may arise if original development team cannot
be maintained.

Chapter 3 Agile software development 9

Plan-driven and agile development

² Plan-driven development
§ A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced at
each of these stages planned in advance.

§ Not necessarily waterfall model – plan-driven, incremental
development is possible

§ Iteration occurs within activities.

² Agile development
§ Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are
decided through a process of negotiation during the software
development process.

10Chapter 3 Agile software development

Plan-driven and agile specification

11Chapter 3 Agile software development

Technical, human, organizational issues

² Most projects include elements of plan-driven and agile
processes. Deciding on the balance depends on:
§ Is it important to have a very detailed specification and design

before moving to implementation? If so, you probably need to use
a plan-driven approach.

§ Is an incremental delivery strategy, where you deliver the software
to customers and get rapid feedback from them, realistic? If so,
consider using agile methods.

§ How large is the system that is being developed? Agile methods
are most effective when the system can be developed with a small
co-located team who can communicate informally. This may not be
possible for large systems that require larger development teams
so a plan-driven approach may have to be used.

12Chapter 3 Agile software development

Technical, human, organizational issues

§ What type of system is being developed?
• Plan-driven approaches may be required for systems that require a lot

of analysis before implementation (e.g. real-time system with complex
timing requirements).

§ What is the expected system lifetime?
• Long-lifetime systems may require more design documentation to

communicate the original intentions of the system developers to the
support team.

§ What technologies are available to support system development?
• Agile methods rely on good tools to keep track of an evolving design

§ How is the development team organized?
• If the development team is distributed or if part of the development is

being outsourced, then you may need to develop design documents to
communicate across the development teams.

13Chapter 3 Agile software development

Technical, human, organizational issues

§ Are there cultural or organizational issues that may affect the
system development?

• Traditional engineering organizations have a culture of plan-based
development, as this is the norm in engineering.

§ How good are the designers and programmers in the
development team?

• It is sometimes argued that agile methods require higher skill levels
than plan-based approaches in which programmers simply translate
a detailed design into code

§ Is the system subject to external regulation?
• If a system has to be approved by an external regulator (e.g. the

Federal Aviation Administration (FAA) approve software that is
critical to the operation of an aircraft) then you will probably be
required to produce detailed documentation as part of the system
safety case.

Chapter 3 Agile software development 14

Extreme programming

² Perhaps the best-known and most widely used agile
method.

² Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.
§ New versions may be built several times per day;
§ Increments are delivered to customers every 2 weeks;
§ All tests must be run for every build and the build is only

accepted if tests run successfully.

15Chapter 3 Agile software development

XP and agile principles

² Incremental development is supported through small,
frequent system releases.

² Customer involvement means full-time customer
engagement with the team.

² People not process through pair programming, collective
ownership and a process that avoids long working hours.

² Change supported through regular system releases.
² Maintaining simplicity through constant refactoring of

code.

16Chapter 3 Agile software development

The extreme programming release cycle

17Chapter 3 Agile software development

Extreme programming practices (a)

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be
included in a release are determined by the time available and
their relative priority. The developers break these stories into
development ‘Tasks’. See Figures 3.5 and 3.6.

Small releases The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent
and incrementally add functionality to the first release.

Simple design Enough design is carried out to meet the current requirements
and no more.

Test-first development An automated unit test framework is used to write tests for a
new piece of functionality before that functionality itself is
implemented.

Refactoring All developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

18Chapter 3 Agile software development

Extreme programming practices (b)

Pair programming Developers work in pairs, checking each other’s work and
providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers take
responsibility for all of the code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into
the whole system. After any such integration, all the unit tests in
the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as
the net effect is often to reduce code quality and medium term
productivity

On-site customer A representative of the end-user of the system (the customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of
the development team and is responsible for bringing system
requirements to the team for implementation.

19Chapter 3 Agile software development

Requirements scenarios

² In XP, a customer or user is part of the XP team and is
responsible for making decisions on requirements.

² User requirements are expressed as scenarios or user
stories.

² These are written on cards and the development team
break them down into implementation tasks. These tasks
are the basis of schedule and cost estimates.

² The customer chooses the stories for inclusion in the
next release based on their priorities and the schedule
estimates.

20Chapter 3 Agile software development

A ‘prescribing medication’ story

21Chapter 3 Agile software development

Examples of task cards for prescribing
medication

22Chapter 3 Agile software development

XP and change

² Conventional wisdom in software engineering is to
design for change. It is worth spending time and effort
anticipating changes as this reduces costs later in the life
cycle.

² XP, however, maintains that this is not worthwhile as
changes cannot be reliably anticipated.

² Rather, it proposes constant code improvement
(refactoring) to make changes easier when they have to
be implemented.

23Chapter 3 Agile software development

Refactoring

² Programming team look for possible software
improvements and make these improvements even
where there is no immediate need for them.

² This improves the understandability of the software and
so reduces the need for documentation.

² Changes are easier to make because the code is well-
structured and clear.

² However, some changes requires architecture
refactoring and this is much more expensive.

Chapter 3 Agile software development 24

Examples of refactoring

² Re-organization of a class hierarchy to remove duplicate
code.

² Tidying up and renaming attributes and methods to make
them easier to understand.

² The replacement of inline code with calls to methods that
have been included in a program library.

Chapter 3 Agile software development 25

Key points

² Agile methods are incremental development methods that focus on
rapid development, frequent releases of the software, reducing
process overheads and producing high-quality code. They involve
the customer directly in the development process.

² The decision on whether to use an agile or a plan-driven approach
to development should depend on the type of software being
developed, the capabilities of the development team and the culture
of the company developing the system.

² Extreme programming is a well-known agile method that integrates
a range of good programming practices such as frequent releases of
the software, continuous software improvement and customer
participation in the development team.

Chapter 3 Agile software development 26

Chapter 3 – Agile Software Development

Lecture 2

27Chapter 3 Agile software development

Testing in XP

² Testing is central to XP and XP has developed an
approach where the program is tested after every
change has been made.

² XP testing features:
§ Test-first development.
§ Incremental test development from scenarios.
§ User involvement in test development and validation.
§ Automated test harnesses are used to run all component tests

each time that a new release is built.

28Chapter 3 Agile software development

Test-first development

² Writing tests before code clarifies the requirements to be
implemented.

² Tests are written as programs rather than data so that
they can be executed automatically. The test includes a
check that it has executed correctly.
§ Usually relies on a testing framework such as Junit.

² All previous and new tests are run automatically when
new functionality is added, thus checking that the new
functionality has not introduced errors.

29Chapter 3 Agile software development

Customer involvement

² The role of the customer in the testing process is to help
develop acceptance tests for the stories that are to be
implemented in the next release of the system.

² The customer who is part of the team writes tests as
development proceeds. All new code is therefore
validated to ensure that it is what the customer needs.

² However, people adopting the customer role have limited
time available and so cannot work full-time with the
development team. They may feel that providing the
requirements was enough of a contribution and so may
be reluctant to get involved in the testing process.

Chapter 3 Agile software development 30

Test case description for dose checking

31Chapter 3 Agile software development

Test automation

² Test automation means that tests are written as
executable components before the task is implemented
§ These testing components should be stand-alone, should

simulate the submission of input to be tested and should check
that the result meets the output specification. An automated test
framework (e.g. Junit) is a system that makes it easy to write
executable tests and submit a set of tests for execution.

² As testing is automated, there is always a set of tests
that can be quickly and easily executed
§ Whenever any functionality is added to the system, the tests can

be run and problems that the new code has introduced can be
caught immediately.

Chapter 3 Agile software development 32

XP testing difficulties

² Programmers prefer programming to testing and
sometimes they take short cuts when writing tests. For
example, they may write incomplete tests that do not
check for all possible exceptions that may occur.

² Some tests can be very difficult to write incrementally.
For example, in a complex user interface, it is often
difficult to write unit tests for the code that implements
the ‘display logic’ and workflow between screens.

² It difficult to judge the completeness of a set of tests.
Although you may have a lot of system tests, your test
set may not provide complete coverage.

Chapter 3 Agile software development 33

Pair programming

² In XP, programmers work in pairs, sitting together to
develop code.

² This helps develop common ownership of code and
spreads knowledge across the team.

² It serves as an informal review process as each line of
code is looked at by more than 1 person.

² It encourages refactoring as the whole team can benefit
from this.

² Measurements suggest that development productivity
with pair programming is similar to that of two people
working independently.

34Chapter 3 Agile software development

Pair programming

² Pairs are created dynamically so that all team members
work with each other during the development process.

² The sharing of knowledge that happens during pair
programming is very important as it reduces the overall
risks to a project when team members leave.

² Pair programming is not necessarily inefficient and there
is evidence that a pair working together is more efficient
than 2 programmers working separately.

35Chapter 3 Agile software development

Advantages of pair programming

² It supports the idea of collective ownership and
responsibility for the system.
§ Individuals are not held responsible for problems with the code.

Instead, the team has collective responsibility for resolving these
problems.

² It acts as an informal review process because each line
of code is looked at by at least two people.

² It helps support refactoring, which is a process of
software improvement.
§ Where pair programming and collective ownership are used,

others benefit immediately from the refactoring so they are likely
to support the process.

Chapter 3 Agile software development 36

Agile project management

² The principal responsibility of software project managers
is to manage the project so that the software is delivered
on time and within the planned budget for the project.

² The standard approach to project management is plan-
driven. Managers draw up a plan for the project showing
what should be delivered, when it should be delivered
and who will work on the development of the project
deliverables.

² Agile project management requires a different approach,
which is adapted to incremental development and the
particular strengths of agile methods.

37Chapter 3 Agile software development

Scrum

² The Scrum approach is a general agile method but its
focus is on managing iterative development rather than
specific agile practices.

² There are three phases in Scrum.
§ The initial phase is an outline planning phase where you

establish the general objectives for the project and design the
software architecture.

§ This is followed by a series of sprint cycles, where each cycle
develops an increment of the system.

§ The project closure phase wraps up the project, completes
required documentation such as system help frames and user
manuals and assesses the lessons learned from the project.

²
Chapter 3 Agile software development 38

The Scrum process

39Chapter 3 Agile software development

The Sprint cycle

² Sprints are fixed length, normally 2–4 weeks. They correspond to
the development of a release of the system in XP.

² The starting point for planning is the product backlog, which is the
list of work to be done on the project.

² The selection phase involves all of the project team who work with
the customer to select the features and functionality to be developed
during the sprint.

² Once these are agreed, the team organize themselves to develop
the software. During this stage the team is isolated from the
customer and the organization, with all communications channelled
through the so-called ‘Scrum master’. The role of the Scrum master
is to protect the development team from external distractions.

² At the end of the sprint, the work done is reviewed and presented to
stakeholders. The next sprint cycle then begins.

40Chapter 3 Agile software development

Teamwork in Scrum

² The ‘Scrum master’ is a facilitator who arranges daily
meetings, tracks the backlog of work to be done, records
decisions, measures progress against the backlog and
communicates with customers and management outside
of the team.

² The whole team attends short daily meetings where all
team members share information, describe their
progress since the last meeting, problems that have
arisen and what is planned for the following day.
§ This means that everyone on the team knows what is going on

and, if problems arise, can re-plan short-term work to cope with
them.

Chapter 3 Agile software development 41

Scrum benefits

² The product is broken down into a set of manageable
and understandable chunks.

² Unstable requirements do not hold up progress.

² The whole team have visibility of everything and
consequently team communication is improved.

² Customers see on-time delivery of increments and gain
feedback on how the product works.

² Trust between customers and developers is established
and a positive culture is created in which everyone
expects the project to succeed.

Chapter 3 Agile software development 42

Scaling agile methods

² Agile methods have proved to be successful for small
and medium sized projects that can be developed by a
small co-located team.

² It is sometimes argued that the success of these
methods comes because of improved communications
which is possible when everyone is working together.

² Scaling up agile methods involves changing these to
cope with larger, longer projects where there are multiple
development teams, perhaps working in different
locations.

43Chapter 3 Agile software development

Large systems development

² Large systems are usually collections of separate,
communicating systems, where separate teams develop each
system. Frequently, these teams are working in different
places, sometimes in different time zones.

² Large systems are ‘brownfield systems’, that is they include
and interact with a number of existing systems. Many of the
system requirements are concerned with this interaction and
so don’t really lend themselves to flexibility and incremental
development.

² Where several systems are integrated to create a system, a
significant fraction of the development is concerned with
system configuration rather than original code development.

44Chapter 3 Agile software development

Large system development

² Large systems and their development processes are
often constrained by external rules and regulations
limiting the way that they can be developed.

² Large systems have a long procurement and
development time. It is difficult to maintain coherent
teams who know about the system over that period as,
inevitably, people move on to other jobs and projects.

² Large systems usually have a diverse set of
stakeholders. It is practically impossible to involve all of
these different stakeholders in the development process.

45Chapter 3 Agile software development

Scaling out and scaling up

² ‘Scaling up’ is concerned with using agile methods for
developing large software systems that cannot be
developed by a small team.

² ‘Scaling out’ is concerned with how agile methods can
be introduced across a large organization with many
years of software development experience.

² When scaling agile methods it is essential to maintain
agile fundamentals
§ Flexible planning, frequent system releases, continuous

integration, test-driven development and good team
communications.

Chapter 3 Agile software development 46

Scaling up to large systems

² For large systems development, it is not possible to focus only
on the code of the system. You need to do more up-front
design and system documentation

² Cross-team communication mechanisms have to be designed
and used. This should involve regular phone and video
conferences between team members and frequent, short
electronic meetings where teams update each other on
progress.

² Continuous integration, where the whole system is built every
time any developer checks in a change, is practically
impossible. However, it is essential to maintain frequent
system builds and regular releases of the system.

47Chapter 3 Agile software development

Scaling out to large companies

² Project managers who do not have experience of agile
methods may be reluctant to accept the risk of a new approach.

² Large organizations often have quality procedures and
standards that all projects are expected to follow and, because
of their bureaucratic nature, these are likely to be incompatible
with agile methods.

² Agile methods seem to work best when team members have a
relatively high skill level. However, within large organizations,
there are likely to be a wide range of skills and abilities.

² There may be cultural resistance to agile methods, especially in
those organizations that have a long history of using
conventional systems engineering processes.

48Chapter 3 Agile software development

Key points

² A particular strength of extreme programming is the
development of automated tests before a program
feature is created. All tests must successfully execute
when an increment is integrated into a system.

² The Scrum method is an agile method that provides a
project management framework. It is centred round a set
of sprints, which are fixed time periods when a system
increment is developed.

² Scaling agile methods for large systems is difficult. Large
systems need up-front design and some documentation.

49Chapter 3 Agile software development

